From 0142cec406510ece95a52b26fd37477f9a745d28 Mon Sep 17 00:00:00 2001 From: Your Name Date: Mon, 14 Oct 2024 12:36:52 +0530 Subject: [PATCH 01/11] Updated cookbook for fetch scores example --- cookbook/example_usage_of_fetch_scores.ipynb | 1320 +++++++++++++++++ cookbook/example_usage_of_fetch_scores.md | 1020 +++++++++++++ .../example_usage_of_fetch_scores_23_0.png | Bin 0 -> 69461 bytes pages/docs/integrations/dspy.md | 2 +- pages/docs/integrations/instructor.md | 1 + .../langchain/example-javascript.md | 4 +- .../langchain/example-python-langgraph.md | 10 +- .../example-python-instrumentation-module.md | 4 +- .../integrations/mirascope/example-python.md | 14 +- pages/docs/integrations/mistral-sdk.md | 4 +- pages/docs/integrations/ollama.md | 4 +- .../openai/python/structured-outputs.md | 6 +- pages/docs/prompts/example-langchain.md | 4 +- .../scores/external-evaluation-pipelines.md | 2 +- .../docs/sdk/typescript/example-vercel-ai.md | 4 +- .../example_external_evaluation_pipelines.md | 2 +- pages/guides/cookbook/integration_dspy.md | 4 +- .../guides/cookbook/integration_instructor.md | 5 +- .../guides/cookbook/integration_langgraph.md | 10 +- ...integration_llama-index_instrumentation.md | 4 +- ...integration_llama_index_posthog_mistral.md | 6 +- .../guides/cookbook/integration_mirascope.md | 6 +- .../cookbook/integration_mistral_sdk.md | 4 +- pages/guides/cookbook/integration_ollama.md | 4 +- .../integration_openai_structured_output.md | 6 +- .../cookbook/js_integration_langchain.md | 4 +- .../js_tracing_example_vercel_ai_sdk.md | 4 +- .../cookbook/prompt_management_langchain.md | 4 +- 28 files changed, 2402 insertions(+), 60 deletions(-) create mode 100644 cookbook/example_usage_of_fetch_scores.ipynb create mode 100644 cookbook/example_usage_of_fetch_scores.md create mode 100644 cookbook/example_usage_of_fetch_scores_files/example_usage_of_fetch_scores_23_0.png diff --git a/cookbook/example_usage_of_fetch_scores.ipynb b/cookbook/example_usage_of_fetch_scores.ipynb new file mode 100644 index 000000000..01834550a --- /dev/null +++ b/cookbook/example_usage_of_fetch_scores.ipynb @@ -0,0 +1,1320 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## description: This document focuses on retrieving evaluation results logged in Langfuse using the fetch_scores. category: Examples" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "---\n", + "\n", + "# Fetching Scores from Langfuse\n", + "\n", + "Example: Using UpTrain and Ragas for Model Evaluation and Retrieving Metrics from Langfuse\n", + "Langfuse makes it easy to log and retrieve model evaluation metrics, helping users analyze and compare various performance measures. In this example, we'll demonstrate how UpTrain and Ragas can be used to evaluate models and retrieve specific evaluation metrics logged into Langfuse using `fetch_scores()` function and verify these metrics extracted by creating comparisons using a correlation matrix.\n", + "\n", + "**fetch_scores()** provides these arguments - \n", + " \n", + "- `page` (*Optional[int]*): The page number of the scores to return. Defaults to None. \n", + "- `limit` (*Optional[int]*): The maximum number of scores to return. Defaults to None. \n", + "- `user_id` (*Optional[str]*): A user identifier. Defaults to None. \n", + "- `name` (*Optional[str]*): The name of the scores to return. Defaults to None. \n", + "- `from_timestamp` (*Optional[dt.datetime]*): Retrieve only scores with a timestamp on or after this datetime. Defaults to None. \n", + "- `to_timestamp` (*Optional[dt.datetime]*): Retrieve only scores with a timestamp before this datetime. Defaults to None. \n", + "- `source` (*Optional[ScoreSource]*): The source of the scores. Defaults to None. \n", + "- `operator` (*Optional[str]*): The operator of the scores. Defaults to None. \n", + "- `value` (*Optional[float]*): The value of the scores. Defaults to None. \n", + "- `score_ids` (*Optional[str]*): The score identifier. Defaults to None. \n", + "- `config_id` (*Optional[str]*): The configuration identifier. Defaults to None. \n", + "- `data_type` (*Optional[ScoreDataType]*): The data type of the scores. Defaults to None. \n", + "- `request_options` (*Optional[RequestOptions]*): Additional request options. Defaults to None. \n", + "\n", + "The returned data contains a list of scores along with associated metadata, which can be useful for evaluating the performance of different models or experiments. If an error occurs during the request, it raises an exception, providing insight into what went wrong.\n", + "\n", + "---" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 1. Setting up the environment\n", + "\n", + "Importing necessary libraries and setting up enviornment variables" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true, + "id": "cY0ndxos4XIV" + }, + "outputs": [], + "source": [ + "!pip install ragas uptrain litellm datasets rouge_score langfuse" + ] + }, + { + "cell_type": "code", + "execution_count": 41, + "metadata": { + "id": "Hxfc8X0B-Rjd" + }, + "outputs": [], + "source": [ + "import os\n", + "# get keys for your project from https://cloud.langfuse.com\n", + "os.environ[\"LANGFUSE_PUBLIC_KEY\"] = \"\"\n", + "os.environ[\"LANGFUSE_SECRET_KEY\"] = \"\"\n", + "# your openai key\n", + "os.environ[\"OPENAI_API_KEY\"] = \"\"\n", + "\n", + "# Your host, defaults to https://cloud.langfuse.com\n", + "# For US data region, set to \"https://us.cloud.langfuse.com\"\n", + "os.environ[\"LANGFUSE_HOST\"] = \"https://us.cloud.langfuse.com\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 2. Getting the data\n", + "\n", + "This section demonstrates how to load and prepare a dataset for evaluation. The \"amnesty_qa\" dataset is loaded using the `datasets` library, and a subset of 5 evaluation examples is selected for analysis. The selected data is then converted into a pandas DataFrame for convenient handling and processing." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "UP7-L9Bhdxyx" + }, + "outputs": [], + "source": [ + "from datasets import load_dataset\n", + "\n", + "amnesty_qa = load_dataset(\"explodinggradients/amnesty_qa\", \"english_v2\")\n", + "amnesty_qa_ragas = amnesty_qa[\"eval\"].select(range(5))\n", + "amnesty_qa_ragas.to_pandas()" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 206 + }, + "collapsed": true, + "id": "wXgbdsp_2d1j", + "outputId": "79c3888d-01ef-426a-9b40-d131986cd006" + }, + "outputs": [ + { + "data": { + "application/vnd.google.colaboratory.intrinsic+json": { + "summary": "{\n \"name\": \"amnesty_qa_df\",\n \"rows\": 5,\n \"fields\": [\n {\n \"column\": \"question\",\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 5,\n \"samples\": [\n \"Which companies are the main contributors to GHG emissions and their role in global warming according to the Carbon Majors database?\",\n \"What are the recommendations made by Amnesty International to the Special Rapporteur on Human Rights Defenders?\",\n \"Which private companies in the Americas are the largest GHG emitters according to the Carbon Majors database?\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"ground_truth\",\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 5,\n \"samples\": [\n \"According to the Carbon Majors database, the main contributors to GHG emissions and their role in global warming are fossil fuel companies. These companies, both state-owned and private, have produced almost a trillion tons of GHG emissions in 150 years. The database shows that 100 existing fossil fuel companies, along with eight that no longer exist, are responsible for 71% of all GHG emissions since 1988. In the Americas, the private companies that have contributed the most emissions are ExxonMobil, Chevron, and Peabody, all from the United States. Among state-owned companies in the Americas, the largest emitter is Mexican company Pemex, followed by Venezuelan company Petr\\u00f3leos de Venezuela, S.A. It is important to note that while people with fewer resources, particularly from countries in the global South, do not significantly contribute to climate change, they are the ones most affected by its impacts. Approximately half of the global population lives in areas that are \\\"very vulnerable\\\" to climate change, and it is people with limited development opportunities who face the greatest risks. This unequal impact disproportionately affects the human rights of those with fewer resources and greater vulnerability in the context of climate change in the global South. Additionally, between 2010 and 2020, human mortality due to climate disasters was 15 times higher in vulnerable regions and populations.\",\n \"The recommendations made by Amnesty International to the Special Rapporteur on Human Rights Defenders include embedding a focus on child and young HRDs in future work, raising awareness about the differences and challenges they face, incorporating age disaggregated data in reports, and creating safe spaces for engagement.\",\n \"The largest private companies in the Americas that are the largest GHG emitters according to the Carbon Majors database are ExxonMobil, Chevron, and Peabody.\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"answer\",\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 5,\n \"samples\": [\n \"According to the Carbon Majors database, the main contributors to greenhouse gas (GHG) emissions and their role in global warming are primarily fossil fuel companies. These companies extract, produce, and sell fossil fuels, which when burned release carbon dioxide (CO2) and other GHGs into the atmosphere. The top contributors include:\\n\\n1. Saudi Arabian Oil Company (Saudi Aramco): As the world's largest oil producer, Saudi Aramco is responsible for a significant portion of global GHG emissions. It is estimated to have contributed around 59.26 gigatons of CO2 equivalent (GtCO2e) between 1965 and 2017.\\n\\n2. Chevron Corporation: Chevron is one of the largest oil and gas companies globally and has contributed approximately 43.35 GtCO2e between 1965 and 2017.\\n\\n3. ExxonMobil Corporation: ExxonMobil is another major oil and gas company and has contributed around 41.90 GtCO2e between 1965 and 2017.\\n\\n4. BP plc: BP is a multinational oil and gas company and has contributed approximately 34.02 GtCO2e between 1965 and 2017.\\n\\n5. Royal Dutch Shell plc: Shell is one of the largest oil and gas companies globally and has contributed around 31.95 GtCO2e between 1965 and 2017.\\n\\n6. TotalEnergies SE: TotalEnergies is a French multinational oil and gas company and has contributed approximately 31.91 GtCO2e between 1965 and 2017.\\n\\n7. ConocoPhillips Company: ConocoPhillips is an American multinational energy corporation and has contributed around 20.67 GtCO2e between 1965 and 2017.\\n\\n8. PetroChina Company Limited: PetroChina is the largest oil and gas producer in China and has contributed approximately 17.26 GtCO2e between 1965 and 2017.\\n\\n9. Peabody Energy Corporation: Peabody Energy is the largest private-sector coal company globally and has contributed around 15.39 GtCO2e between 1965 and 2017.\\n\\n10. Glencore plc: Glencore is a multinational commodity trading and mining company and has contributed approximately 15.11 GtCO2e between 1965 and 2017.\\n\\nThese companies, along with others in the fossil\",\n \"Amnesty International made several recommendations to the Special Rapporteur on Human Rights Defenders. These recommendations include:\\n\\n1. Urging states to fully implement the UN Declaration on Human Rights Defenders and ensure that national laws and policies are in line with international human rights standards.\\n\\n2. Calling on states to create a safe and enabling environment for human rights defenders, including by adopting legislation that protects defenders from threats, attacks, and reprisals.\\n\\n3. Encouraging states to establish effective mechanisms for the protection of human rights defenders, such as national human rights institutions and specialized units within law enforcement agencies.\\n\\n4. Urging states to investigate and hold accountable those responsible for attacks and threats against human rights defenders, ensuring that they are brought to justice in fair trials.\\n\\n5. Calling on states to repeal or amend laws that are used to criminalize or restrict the work of human rights defenders, including laws on defamation, sedition, and counter-terrorism.\\n\\n6. Encouraging states to provide adequate resources and support to human rights defenders, including funding for their work, access to legal assistance, and psychosocial support.\\n\\n7. Urging states to consult and engage with human rights defenders in the development and implementation of laws, policies, and programs that affect their rights and work.\\n\\n8. Calling on states to ensure that human rights defenders are able to access and share information freely, including through the internet and other digital platforms.\\n\\n9. Encouraging states to protect the rights of specific groups of human rights defenders who face particular risks and challenges, such as women defenders, indigenous defenders, and defenders working on issues related to sexual orientation and gender identity.\\n\\n10. Urging states to cooperate with the Special Rapporteur and other UN mechanisms in the promotion and protection of human rights defenders, including by responding to communications and requests for visits.\",\n \"According to the Carbon Majors database, the largest private companies in the Americas that are the largest GHG emitters are:\\n\\n1. Chevron Corporation (United States)\\n2. ExxonMobil Corporation (United States)\\n3. ConocoPhillips Company (United States)\\n4. BP plc (United Kingdom, but with significant operations in the Americas)\\n5. Royal Dutch Shell plc (Netherlands, but with significant operations in the Americas)\\n6. Peabody Energy Corporation (United States)\\n7. Duke Energy Corporation (United States)\\n8. TotalEnergies SE (France, but with significant operations in the Americas)\\n9. BHP Group Limited (Australia, but with significant operations in the Americas)\\n10. Rio Tinto Group (United Kingdom/Australia, but with significant operations in the Americas)\\n\\nPlease note that the rankings may change over time as new data becomes available.\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"contexts\",\n \"properties\": {\n \"dtype\": \"object\",\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}", + "type": "dataframe", + "variable_name": "amnesty_qa_df" + }, + "text/html": [ + "\n", + "
\n", + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
questionground_truthanswercontexts
0What are the global implications of the USA Su...The global implications of the USA Supreme Cou...The global implications of the USA Supreme Cou...[- In 2022, the USA Supreme Court handed down ...
1Which companies are the main contributors to G...According to the Carbon Majors database, the m...According to the Carbon Majors database, the m...[In recent years, there has been increasing pr...
2Which private companies in the Americas are th...The largest private companies in the Americas ...According to the Carbon Majors database, the l...[The issue of greenhouse gas emissions has bec...
3What action did Amnesty International urge its...Amnesty International urged its supporters to ...Amnesty International urged its supporters to ...[In the case of the Ogoni 9, Amnesty Internati...
4What are the recommendations made by Amnesty I...The recommendations made by Amnesty Internatio...Amnesty International made several recommendat...[In recent years, Amnesty International has fo...
\n", + "
\n", + "
\n", + "\n", + "
\n", + " \n", + "\n", + " \n", + "\n", + " \n", + "
\n", + "\n", + "\n", + "
\n", + " \n", + "\n", + "\n", + "\n", + " \n", + "
\n", + "\n", + "
\n", + " \n", + " \n", + " \n", + "
\n", + "\n", + "
\n", + "
\n" + ], + "text/plain": [ + " question \\\n", + "0 What are the global implications of the USA Su... \n", + "1 Which companies are the main contributors to G... \n", + "2 Which private companies in the Americas are th... \n", + "3 What action did Amnesty International urge its... \n", + "4 What are the recommendations made by Amnesty I... \n", + "\n", + " ground_truth \\\n", + "0 The global implications of the USA Supreme Cou... \n", + "1 According to the Carbon Majors database, the m... \n", + "2 The largest private companies in the Americas ... \n", + "3 Amnesty International urged its supporters to ... \n", + "4 The recommendations made by Amnesty Internatio... \n", + "\n", + " answer \\\n", + "0 The global implications of the USA Supreme Cou... \n", + "1 According to the Carbon Majors database, the m... \n", + "2 According to the Carbon Majors database, the l... \n", + "3 Amnesty International urged its supporters to ... \n", + "4 Amnesty International made several recommendat... \n", + "\n", + " contexts \n", + "0 [- In 2022, the USA Supreme Court handed down ... \n", + "1 [In recent years, there has been increasing pr... \n", + "2 [The issue of greenhouse gas emissions has bec... \n", + "3 [In the case of the Ogoni 9, Amnesty Internati... \n", + "4 [In recent years, Amnesty International has fo... " + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "import pandas as pd\n", + "amnesty_qa_df = pd.DataFrame(amnesty_qa[\"eval\"].select(range(5)))" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 293 + }, + "id": "ZwjDqG6l2xqd", + "outputId": "b3b42102-5869-4f7b-abfa-cc8b51d655f0" + }, + "outputs": [ + { + "data": { + "application/vnd.google.colaboratory.intrinsic+json": { + "summary": "{\n \"name\": \"amnesty_qa_df\",\n \"rows\": 5,\n \"fields\": [\n {\n \"column\": \"question\",\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 5,\n \"samples\": [\n \"Which companies are the main contributors to GHG emissions and their role in global warming according to the Carbon Majors database?\",\n \"What are the recommendations made by Amnesty International to the Special Rapporteur on Human Rights Defenders?\",\n \"Which private companies in the Americas are the largest GHG emitters according to the Carbon Majors database?\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"ground_truth\",\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 5,\n \"samples\": [\n \"According to the Carbon Majors database, the main contributors to GHG emissions and their role in global warming are fossil fuel companies. These companies, both state-owned and private, have produced almost a trillion tons of GHG emissions in 150 years. The database shows that 100 existing fossil fuel companies, along with eight that no longer exist, are responsible for 71% of all GHG emissions since 1988. In the Americas, the private companies that have contributed the most emissions are ExxonMobil, Chevron, and Peabody, all from the United States. Among state-owned companies in the Americas, the largest emitter is Mexican company Pemex, followed by Venezuelan company Petr\\u00f3leos de Venezuela, S.A. It is important to note that while people with fewer resources, particularly from countries in the global South, do not significantly contribute to climate change, they are the ones most affected by its impacts. Approximately half of the global population lives in areas that are \\\"very vulnerable\\\" to climate change, and it is people with limited development opportunities who face the greatest risks. This unequal impact disproportionately affects the human rights of those with fewer resources and greater vulnerability in the context of climate change in the global South. Additionally, between 2010 and 2020, human mortality due to climate disasters was 15 times higher in vulnerable regions and populations.\",\n \"The recommendations made by Amnesty International to the Special Rapporteur on Human Rights Defenders include embedding a focus on child and young HRDs in future work, raising awareness about the differences and challenges they face, incorporating age disaggregated data in reports, and creating safe spaces for engagement.\",\n \"The largest private companies in the Americas that are the largest GHG emitters according to the Carbon Majors database are ExxonMobil, Chevron, and Peabody.\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"answer\",\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 5,\n \"samples\": [\n \"According to the Carbon Majors database, the main contributors to greenhouse gas (GHG) emissions and their role in global warming are primarily fossil fuel companies. These companies extract, produce, and sell fossil fuels, which when burned release carbon dioxide (CO2) and other GHGs into the atmosphere. The top contributors include:\\n\\n1. Saudi Arabian Oil Company (Saudi Aramco): As the world's largest oil producer, Saudi Aramco is responsible for a significant portion of global GHG emissions. It is estimated to have contributed around 59.26 gigatons of CO2 equivalent (GtCO2e) between 1965 and 2017.\\n\\n2. Chevron Corporation: Chevron is one of the largest oil and gas companies globally and has contributed approximately 43.35 GtCO2e between 1965 and 2017.\\n\\n3. ExxonMobil Corporation: ExxonMobil is another major oil and gas company and has contributed around 41.90 GtCO2e between 1965 and 2017.\\n\\n4. BP plc: BP is a multinational oil and gas company and has contributed approximately 34.02 GtCO2e between 1965 and 2017.\\n\\n5. Royal Dutch Shell plc: Shell is one of the largest oil and gas companies globally and has contributed around 31.95 GtCO2e between 1965 and 2017.\\n\\n6. TotalEnergies SE: TotalEnergies is a French multinational oil and gas company and has contributed approximately 31.91 GtCO2e between 1965 and 2017.\\n\\n7. ConocoPhillips Company: ConocoPhillips is an American multinational energy corporation and has contributed around 20.67 GtCO2e between 1965 and 2017.\\n\\n8. PetroChina Company Limited: PetroChina is the largest oil and gas producer in China and has contributed approximately 17.26 GtCO2e between 1965 and 2017.\\n\\n9. Peabody Energy Corporation: Peabody Energy is the largest private-sector coal company globally and has contributed around 15.39 GtCO2e between 1965 and 2017.\\n\\n10. Glencore plc: Glencore is a multinational commodity trading and mining company and has contributed approximately 15.11 GtCO2e between 1965 and 2017.\\n\\nThese companies, along with others in the fossil\",\n \"Amnesty International made several recommendations to the Special Rapporteur on Human Rights Defenders. These recommendations include:\\n\\n1. Urging states to fully implement the UN Declaration on Human Rights Defenders and ensure that national laws and policies are in line with international human rights standards.\\n\\n2. Calling on states to create a safe and enabling environment for human rights defenders, including by adopting legislation that protects defenders from threats, attacks, and reprisals.\\n\\n3. Encouraging states to establish effective mechanisms for the protection of human rights defenders, such as national human rights institutions and specialized units within law enforcement agencies.\\n\\n4. Urging states to investigate and hold accountable those responsible for attacks and threats against human rights defenders, ensuring that they are brought to justice in fair trials.\\n\\n5. Calling on states to repeal or amend laws that are used to criminalize or restrict the work of human rights defenders, including laws on defamation, sedition, and counter-terrorism.\\n\\n6. Encouraging states to provide adequate resources and support to human rights defenders, including funding for their work, access to legal assistance, and psychosocial support.\\n\\n7. Urging states to consult and engage with human rights defenders in the development and implementation of laws, policies, and programs that affect their rights and work.\\n\\n8. Calling on states to ensure that human rights defenders are able to access and share information freely, including through the internet and other digital platforms.\\n\\n9. Encouraging states to protect the rights of specific groups of human rights defenders who face particular risks and challenges, such as women defenders, indigenous defenders, and defenders working on issues related to sexual orientation and gender identity.\\n\\n10. Urging states to cooperate with the Special Rapporteur and other UN mechanisms in the promotion and protection of human rights defenders, including by responding to communications and requests for visits.\",\n \"According to the Carbon Majors database, the largest private companies in the Americas that are the largest GHG emitters are:\\n\\n1. Chevron Corporation (United States)\\n2. ExxonMobil Corporation (United States)\\n3. ConocoPhillips Company (United States)\\n4. BP plc (United Kingdom, but with significant operations in the Americas)\\n5. Royal Dutch Shell plc (Netherlands, but with significant operations in the Americas)\\n6. Peabody Energy Corporation (United States)\\n7. Duke Energy Corporation (United States)\\n8. TotalEnergies SE (France, but with significant operations in the Americas)\\n9. BHP Group Limited (Australia, but with significant operations in the Americas)\\n10. Rio Tinto Group (United Kingdom/Australia, but with significant operations in the Americas)\\n\\nPlease note that the rankings may change over time as new data becomes available.\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"context\",\n \"properties\": {\n \"dtype\": \"object\",\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"response\",\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 5,\n \"samples\": [\n \"According to the Carbon Majors database, the main contributors to greenhouse gas (GHG) emissions and their role in global warming are primarily fossil fuel companies. These companies extract, produce, and sell fossil fuels, which when burned release carbon dioxide (CO2) and other GHGs into the atmosphere. The top contributors include:\\n\\n1. Saudi Arabian Oil Company (Saudi Aramco): As the world's largest oil producer, Saudi Aramco is responsible for a significant portion of global GHG emissions. It is estimated to have contributed around 59.26 gigatons of CO2 equivalent (GtCO2e) between 1965 and 2017.\\n\\n2. Chevron Corporation: Chevron is one of the largest oil and gas companies globally and has contributed approximately 43.35 GtCO2e between 1965 and 2017.\\n\\n3. ExxonMobil Corporation: ExxonMobil is another major oil and gas company and has contributed around 41.90 GtCO2e between 1965 and 2017.\\n\\n4. BP plc: BP is a multinational oil and gas company and has contributed approximately 34.02 GtCO2e between 1965 and 2017.\\n\\n5. Royal Dutch Shell plc: Shell is one of the largest oil and gas companies globally and has contributed around 31.95 GtCO2e between 1965 and 2017.\\n\\n6. TotalEnergies SE: TotalEnergies is a French multinational oil and gas company and has contributed approximately 31.91 GtCO2e between 1965 and 2017.\\n\\n7. ConocoPhillips Company: ConocoPhillips is an American multinational energy corporation and has contributed around 20.67 GtCO2e between 1965 and 2017.\\n\\n8. PetroChina Company Limited: PetroChina is the largest oil and gas producer in China and has contributed approximately 17.26 GtCO2e between 1965 and 2017.\\n\\n9. Peabody Energy Corporation: Peabody Energy is the largest private-sector coal company globally and has contributed around 15.39 GtCO2e between 1965 and 2017.\\n\\n10. Glencore plc: Glencore is a multinational commodity trading and mining company and has contributed approximately 15.11 GtCO2e between 1965 and 2017.\\n\\nThese companies, along with others in the fossil\",\n \"Amnesty International made several recommendations to the Special Rapporteur on Human Rights Defenders. These recommendations include:\\n\\n1. Urging states to fully implement the UN Declaration on Human Rights Defenders and ensure that national laws and policies are in line with international human rights standards.\\n\\n2. Calling on states to create a safe and enabling environment for human rights defenders, including by adopting legislation that protects defenders from threats, attacks, and reprisals.\\n\\n3. Encouraging states to establish effective mechanisms for the protection of human rights defenders, such as national human rights institutions and specialized units within law enforcement agencies.\\n\\n4. Urging states to investigate and hold accountable those responsible for attacks and threats against human rights defenders, ensuring that they are brought to justice in fair trials.\\n\\n5. Calling on states to repeal or amend laws that are used to criminalize or restrict the work of human rights defenders, including laws on defamation, sedition, and counter-terrorism.\\n\\n6. Encouraging states to provide adequate resources and support to human rights defenders, including funding for their work, access to legal assistance, and psychosocial support.\\n\\n7. Urging states to consult and engage with human rights defenders in the development and implementation of laws, policies, and programs that affect their rights and work.\\n\\n8. Calling on states to ensure that human rights defenders are able to access and share information freely, including through the internet and other digital platforms.\\n\\n9. Encouraging states to protect the rights of specific groups of human rights defenders who face particular risks and challenges, such as women defenders, indigenous defenders, and defenders working on issues related to sexual orientation and gender identity.\\n\\n10. Urging states to cooperate with the Special Rapporteur and other UN mechanisms in the promotion and protection of human rights defenders, including by responding to communications and requests for visits.\",\n \"According to the Carbon Majors database, the largest private companies in the Americas that are the largest GHG emitters are:\\n\\n1. Chevron Corporation (United States)\\n2. ExxonMobil Corporation (United States)\\n3. ConocoPhillips Company (United States)\\n4. BP plc (United Kingdom, but with significant operations in the Americas)\\n5. Royal Dutch Shell plc (Netherlands, but with significant operations in the Americas)\\n6. Peabody Energy Corporation (United States)\\n7. Duke Energy Corporation (United States)\\n8. TotalEnergies SE (France, but with significant operations in the Americas)\\n9. BHP Group Limited (Australia, but with significant operations in the Americas)\\n10. Rio Tinto Group (United Kingdom/Australia, but with significant operations in the Americas)\\n\\nPlease note that the rankings may change over time as new data becomes available.\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}", + "type": "dataframe", + "variable_name": "amnesty_qa_df" + }, + "text/html": [ + "\n", + "
\n", + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
questionground_truthanswercontextresponse
0What are the global implications of the USA Su...The global implications of the USA Supreme Cou...The global implications of the USA Supreme Cou...[- In 2022, the USA Supreme Court handed down ...The global implications of the USA Supreme Cou...
1Which companies are the main contributors to G...According to the Carbon Majors database, the m...According to the Carbon Majors database, the m...[In recent years, there has been increasing pr...According to the Carbon Majors database, the m...
2Which private companies in the Americas are th...The largest private companies in the Americas ...According to the Carbon Majors database, the l...[The issue of greenhouse gas emissions has bec...According to the Carbon Majors database, the l...
3What action did Amnesty International urge its...Amnesty International urged its supporters to ...Amnesty International urged its supporters to ...[In the case of the Ogoni 9, Amnesty Internati...Amnesty International urged its supporters to ...
4What are the recommendations made by Amnesty I...The recommendations made by Amnesty Internatio...Amnesty International made several recommendat...[In recent years, Amnesty International has fo...Amnesty International made several recommendat...
\n", + "
\n", + "
\n", + "\n", + "
\n", + " \n", + "\n", + " \n", + "\n", + " \n", + "
\n", + "\n", + "\n", + "
\n", + " \n", + "\n", + "\n", + "\n", + " \n", + "
\n", + "\n", + "
\n", + " \n", + " \n", + " \n", + "
\n", + "\n", + "
\n", + "
\n" + ], + "text/plain": [ + " question \\\n", + "0 What are the global implications of the USA Su... \n", + "1 Which companies are the main contributors to G... \n", + "2 Which private companies in the Americas are th... \n", + "3 What action did Amnesty International urge its... \n", + "4 What are the recommendations made by Amnesty I... \n", + "\n", + " ground_truth \\\n", + "0 The global implications of the USA Supreme Cou... \n", + "1 According to the Carbon Majors database, the m... \n", + "2 The largest private companies in the Americas ... \n", + "3 Amnesty International urged its supporters to ... \n", + "4 The recommendations made by Amnesty Internatio... \n", + "\n", + " answer \\\n", + "0 The global implications of the USA Supreme Cou... \n", + "1 According to the Carbon Majors database, the m... \n", + "2 According to the Carbon Majors database, the l... \n", + "3 Amnesty International urged its supporters to ... \n", + "4 Amnesty International made several recommendat... \n", + "\n", + " context \\\n", + "0 [- In 2022, the USA Supreme Court handed down ... \n", + "1 [In recent years, there has been increasing pr... \n", + "2 [The issue of greenhouse gas emissions has bec... \n", + "3 [In the case of the Ogoni 9, Amnesty Internati... \n", + "4 [In recent years, Amnesty International has fo... \n", + "\n", + " response \n", + "0 The global implications of the USA Supreme Cou... \n", + "1 According to the Carbon Majors database, the m... \n", + "2 According to the Carbon Majors database, the l... \n", + "3 Amnesty International urged its supporters to ... \n", + "4 Amnesty International made several recommendat... " + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "amnesty_qa_df['response'] = amnesty_qa_df['answer']\n", + "amnesty_qa_df.rename(columns={'contexts':'context'}, inplace=True)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 3. Evaluation with UpTrain\n", + "\n", + "This code demonstrates how to evaluate a dataset using UpTrain's `EvalLLM` class. An instance of `EvalLLM` is created using the OpenAI API key. The `evaluate` function assesses the `amnesty_qa_df` DataFrame against three evaluation criteria: context relevance, factual accuracy, and response completeness. The evaluation results are stored in a new DataFrame, which is then printed and optionally saved as a CSV file. Finally, the function is called in the main block to execute the evaluation and store the results. Refer a detailed version [here](https://langfuse.com/guides/cookbook/evaluation_with_uptrain)" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "gb0_o8jWIIoO", + "outputId": "8edba767-f4b6-4b01-ee2f-17e73a629ead" + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "100%|██████████| 5/5 [00:01<00:00, 3.19it/s]\n", + "100%|██████████| 5/5 [00:02<00:00, 2.01it/s]\n", + "100%|██████████| 5/5 [00:06<00:00, 1.30s/it]\n", + "100%|██████████| 5/5 [00:02<00:00, 2.25it/s]\n", + "\u001b[32m2024-10-13 16:50:32.097\u001b[0m | \u001b[1mINFO \u001b[0m | \u001b[36muptrain.framework.evalllm\u001b[0m:\u001b[36mevaluate\u001b[0m:\u001b[36m376\u001b[0m - \u001b[1mLocal server not running, start the server to log data and visualize in the dashboard!\u001b[0m\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " question \\\n", + "0 What are the global implications of the USA Su... \n", + "1 Which companies are the main contributors to G... \n", + "2 Which private companies in the Americas are th... \n", + "3 What action did Amnesty International urge its... \n", + "4 What are the recommendations made by Amnesty I... \n", + "\n", + " ground_truth \\\n", + "0 The global implications of the USA Supreme Cou... \n", + "1 According to the Carbon Majors database, the m... \n", + "2 The largest private companies in the Americas ... \n", + "3 Amnesty International urged its supporters to ... \n", + "4 The recommendations made by Amnesty Internatio... \n", + "\n", + " answer \\\n", + "0 The global implications of the USA Supreme Cou... \n", + "1 According to the Carbon Majors database, the m... \n", + "2 According to the Carbon Majors database, the l... \n", + "3 Amnesty International urged its supporters to ... \n", + "4 Amnesty International made several recommendat... \n", + "\n", + " context \\\n", + "0 [- In 2022, the USA Supreme Court handed down ... \n", + "1 [In recent years, there has been increasing pr... \n", + "2 [The issue of greenhouse gas emissions has bec... \n", + "3 [In the case of the Ogoni 9, Amnesty Internati... \n", + "4 [In recent years, Amnesty International has fo... \n", + "\n", + " response score_context_relevance \\\n", + "0 The global implications of the USA Supreme Cou... 1.0 \n", + "1 According to the Carbon Majors database, the m... 1.0 \n", + "2 According to the Carbon Majors database, the l... 1.0 \n", + "3 Amnesty International urged its supporters to ... 1.0 \n", + "4 Amnesty International made several recommendat... 1.0 \n", + "\n", + " explanation_context_relevance score_factual_accuracy \\\n", + "0 {\\n \"Reasoning\": \"The extracted context con... 1.0 \n", + "1 {\\n \"Reasoning\": \"The given context provide... 0.6 \n", + "2 {\\n \"Reasoning\": \"The extracted context pro... 0.4 \n", + "3 {\\n \"Reasoning\": \"The given context contain... 0.8 \n", + "4 {\\n \"Reasoning\": \"The extracted context con... 0.6 \n", + "\n", + " explanation_factual_accuracy \\\n", + "0 {\\n \"Result\": [\\n {\\n \"Fa... \n", + "1 {\\n \"Result\": [\\n {\\n \"Fa... \n", + "2 {\\n \"Result\": [\\n {\\n \"Fa... \n", + "3 {\\n \"Result\": [\\n {\\n \"Fa... \n", + "4 {\\n \"Result\": [\\n {\\n \"Fa... \n", + "\n", + " score_response_completeness \\\n", + "0 1.0 \n", + "1 1.0 \n", + "2 1.0 \n", + "3 1.0 \n", + "4 1.0 \n", + "\n", + " explanation_response_completeness \n", + "0 {\\n \"Reasoning\": \"The given response is com... \n", + "1 {\\n \"Reasoning\": \"The given response is com... \n", + "2 {\\n \"Reasoning\": \"The given response is com... \n", + "3 {\\n \"Reasoning\": \"The given response is com... \n", + "4 {\\n \"Reasoning\": \"The given response is com... \n" + ] + } + ], + "source": [ + "import os\n", + "import json\n", + "import pandas as pd\n", + "from uptrain import EvalLLM, Evals\n", + "\n", + "OPENAI_API_KEY = os.getenv('OPENAI_API_KEY')\n", + "eval_llm = EvalLLM(openai_api_key=OPENAI_API_KEY)\n", + "\n", + "def evaluate():\n", + " # Step 5: Evaluate data using UpTrain\n", + " results = eval_llm.evaluate(\n", + " data=amnesty_qa_df,\n", + " checks=[Evals.CONTEXT_RELEVANCE, Evals.FACTUAL_ACCURACY, Evals.RESPONSE_COMPLETENESS]\n", + " )\n", + "\n", + " # Convert the results to a DataFrame\n", + " results_df = pd.DataFrame(results)\n", + "\n", + " # Print the DataFrame\n", + " print(results_df)\n", + "\n", + " # Optionally, save the DataFrame to a CSV file\n", + " results_df.to_csv('evaluation_results.csv', index=False)\n", + "\n", + " return results_df\n", + "\n", + "# Call the function and store results in a DataFrame\n", + "if __name__ == \"__main__\":\n", + " uptrain_df = evaluate()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 4. Evaluation with Ragas\n", + "\n", + "The `evaluate` function is called with the selected evaluation data and a list of metrics, including context precision, faithfulness, and answer relevancy. The results from the evaluation are then converted into a Pandas DataFrame for easier analysis. This approach enables users to assess the quality of model responses based on specific criteria. For more detailed information on evaluating RAG models with Ragas visit [here](https://langfuse.com/guides/cookbook/evaluation_of_rag_with_ragas)." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "dfRCTHEauMcK" + }, + "outputs": [], + "source": [ + "import json\n", + "from ragas import evaluate\n", + "from ragas.metrics import (\n", + " answer_relevancy,\n", + " faithfulness,\n", + " context_precision,\n", + ")\n", + "\n", + "ragas_result = evaluate(\n", + " amnesty_qa[\"eval\"].select(range(5)),\n", + " metrics=[\n", + " context_precision,\n", + " faithfulness,\n", + " answer_relevancy,\n", + " ],\n", + ")\n", + "\n", + "ragas_df = ragas_result.to_pandas()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 5. Setting Up Langfuse Client\n", + "\n", + "This code snippet initializes a Langfuse client using the `Langfuse` class. The client is configured with a secret key, public key, and host URL, which are retrieved from the environment variables. This setup allows users to interact with the Langfuse API for logging and analyzing model evaluation metrics seamlessly." + ] + }, + { + "cell_type": "code", + "execution_count": 42, + "metadata": { + "id": "NwExqBSEinBB" + }, + "outputs": [], + "source": [ + "from langfuse import Langfuse\n", + "langfuse_client = Langfuse(\n", + " secret_key=os.environ.get(\"LANGFUSE_SECRET_KEY\"),\n", + " public_key=os.environ.get(\"LANGFUSE_PUBLIC_KEY\"),\n", + " host = os.environ.get(\"LANGFUSE_HOST\")\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 6. Logging Evaluation Scores to Langfuse\n", + "\n", + "The functions `log_uptrain_scores_to_langfuse` and `log_ragas_scores_to_langfuse` log evaluation scores from the UpTrain and Ragas frameworks into Langfuse. Each function iterates through its respective DataFrame, extracting relevant score columns and logging them with `langfuse_client.score`, using a unique ID for each entry.\n", + "\n", + "Scores in Langfuse are objects for storing evaluation metrics, linked to traces and optional observations. Each score can include attributes such as name, value, trace ID, and configuration ID to ensure they comply with a specified schema. This structured approach enables effective analysis of evaluation metrics within the Langfuse platform. \n", + "\n", + "#### Key Attributes of a Score Object:\n", + "- **name**: Name of the score (e.g., user_feedback).\n", + "- **value**: Numeric value of the score.\n", + "- **traceId**: ID of the related trace.\n", + "- **id**: Unique identifier for the score.\n", + "\n", + "Using scores effectively allows for quick overviews of evaluations, segmentation of traces by quality, and detailed reporting across use cases. Score schemas can be defined to standardize metrics for consistency and comparability in analysis." + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": { + "id": "PSw4ocNHrOOk" + }, + "outputs": [], + "source": [ + "def log_uptrain_scores_to_langfuse(uptrain_df):\n", + " \"\"\"Log evaluation scores to Langfuse.\"\"\"\n", + " score_columns = ['score_factual_accuracy', 'score_context_relevance', 'score_response_completeness']\n", + " for index, row in uptrain_df.iterrows():\n", + " for score_name in score_columns:\n", + " score_value = row[score_name]\n", + " langfuse_client.score(id=f\"Uptrain_{index}_{score_name}\", value=score_value, name=score_name)" + ] + }, + { + "cell_type": "code", + "execution_count": 35, + "metadata": { + "id": "dN1YgjgdwLFn" + }, + "outputs": [], + "source": [ + "def log_ragas_scores_to_langfuse(ragas_df):\n", + " score_columns = ['context_precision', 'faithfulness', 'answer_relevancy']\n", + "\n", + " for index, row in ragas_df.iterrows():\n", + " for score_name in score_columns:\n", + " score_value = row[score_name]\n", + " langfuse_client.score(id=f\"Ragas_{index}_{score_name}\", value=score_value, name=score_name)" + ] + }, + { + "cell_type": "code", + "execution_count": 43, + "metadata": { + "id": "MK9w1bFgyG1F" + }, + "outputs": [], + "source": [ + "log_ragas_scores_to_langfuse(ragas_df)\n", + "log_uptrain_scores_to_langfuse(uptrain_df)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 7. Fetching Scores from Langfuse\n", + "\n", + "The `fetch_scores_from_langfuse` function retrieves evaluation scores from Langfuse based on the specified score name. It utilizes the `fetch_scores` method from the Langfuse client to obtain a comprehensive list of scores that have been logged in the system. This function is particularly useful for users who want to analyze specific evaluation metrics associated with their models or applications.\n", + "\n", + "By using the `fetch_scores` method, the function provides flexibility through various optional parameters that allow users to filter the retrieved scores according to their needs. For instance, users can specify pagination options such as the page number and the limit on the number of scores returned, making it easier to handle large datasets without overwhelming the interface.\n", + "\n", + "In addition to pagination, the function supports filtering scores by criteria like user identifiers, timestamps, and score sources. This means users can fetch scores that were recorded by specific users or during a certain time frame, allowing for a more focused analysis. Users can also filter scores based on their values or specific configurations, ensuring that the retrieved data aligns with the evaluation metrics of interest.\n", + "\n", + "The result of this function is a `FetchScoresResponse`, which includes not only the list of scores but also metadata about the scores retrieved. This allows users to quickly gain insights into the evaluation metrics relevant to their projects and make informed decisions based on the data. Overall, this function enhances the usability of Langfuse by simplifying the process of accessing and analyzing evaluation scores." + ] + }, + { + "cell_type": "code", + "execution_count": 45, + "metadata": { + "id": "Lgd0Xz2Bvo9V" + }, + "outputs": [], + "source": [ + "def fetch_scores_from_langfuse(score_name):\n", + " \"\"\"Fetch scores from Langfuse based on score name.\"\"\"\n", + " # Fetch scores for the specified name from Langfuse\n", + " scores_fetched = langfuse_client.fetch_scores(name=score_name)\n", + " return scores_fetched" + ] + }, + { + "cell_type": "code", + "execution_count": 75, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "yIxYZ0vjPlkI", + "outputId": "1d115955-a31b-488e-9d25-b27f366b72eb" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[Score_Numeric(value=1.0, id='Uptrain_4_score_context_relevance', trace_id='95ad7bdd-b93b-4905-a865-938f346871bd', name='score_context_relevance', source=, observation_id=None, timestamp=datetime.datetime(2024, 10, 13, 16, 59, 25, 177000, tzinfo=datetime.timezone.utc), created_at=datetime.datetime(2024, 10, 13, 16, 59, 25, 177000, tzinfo=datetime.timezone.utc), updated_at=datetime.datetime(2024, 10, 13, 16, 59, 25, 177000, tzinfo=datetime.timezone.utc), author_user_id=None, comment=None, config_id=None, data_type='NUMERIC', stringValue=None, trace={'userId': None}, projectId='cm1vkhmj40jxlhaue9mntmwk8'), Score_Numeric(value=1.0, id='Uptrain_3_score_context_relevance', trace_id='f9b43538-77b6-478f-a5d9-c2be3b4cdada', name='score_context_relevance', source=, observation_id=None, timestamp=datetime.datetime(2024, 10, 13, 16, 59, 24, 897000, tzinfo=datetime.timezone.utc), created_at=datetime.datetime(2024, 10, 13, 16, 59, 24, 897000, tzinfo=datetime.timezone.utc), updated_at=datetime.datetime(2024, 10, 13, 16, 59, 24, 897000, tzinfo=datetime.timezone.utc), author_user_id=None, comment=None, config_id=None, data_type='NUMERIC', stringValue=None, trace={'userId': None}, projectId='cm1vkhmj40jxlhaue9mntmwk8'), Score_Numeric(value=1.0, id='Uptrain_2_score_context_relevance', trace_id='02185905-be84-41d9-9b64-b02fb45704f3', name='score_context_relevance', source=, observation_id=None, timestamp=datetime.datetime(2024, 10, 13, 16, 59, 24, 614000, tzinfo=datetime.timezone.utc), created_at=datetime.datetime(2024, 10, 13, 16, 59, 24, 614000, tzinfo=datetime.timezone.utc), updated_at=datetime.datetime(2024, 10, 13, 16, 59, 24, 614000, tzinfo=datetime.timezone.utc), author_user_id=None, comment=None, config_id=None, data_type='NUMERIC', stringValue=None, trace={'userId': None}, projectId='cm1vkhmj40jxlhaue9mntmwk8'), Score_Numeric(value=1.0, id='Uptrain_1_score_context_relevance', trace_id='b68fc2e6-e6a0-489b-becc-5441d9f1dd4e', name='score_context_relevance', source=, observation_id=None, timestamp=datetime.datetime(2024, 10, 13, 16, 59, 24, 326000, tzinfo=datetime.timezone.utc), created_at=datetime.datetime(2024, 10, 13, 16, 59, 24, 326000, tzinfo=datetime.timezone.utc), updated_at=datetime.datetime(2024, 10, 13, 16, 59, 24, 326000, tzinfo=datetime.timezone.utc), author_user_id=None, comment=None, config_id=None, data_type='NUMERIC', stringValue=None, trace={'userId': None}, projectId='cm1vkhmj40jxlhaue9mntmwk8'), Score_Numeric(value=1.0, id='Uptrain_0_score_context_relevance', trace_id='75bd20ac-3a34-4fa0-b74a-0fb7a454bfa1', name='score_context_relevance', source=, observation_id=None, timestamp=datetime.datetime(2024, 10, 13, 16, 59, 24, 46000, tzinfo=datetime.timezone.utc), created_at=datetime.datetime(2024, 10, 13, 16, 59, 24, 46000, tzinfo=datetime.timezone.utc), updated_at=datetime.datetime(2024, 10, 13, 16, 59, 24, 46000, tzinfo=datetime.timezone.utc), author_user_id=None, comment=None, config_id=None, data_type='NUMERIC', stringValue=None, trace={'userId': None}, projectId='cm1vkhmj40jxlhaue9mntmwk8')]\n", + "[Score_Numeric(value=0.6, id='Uptrain_4_score_factual_accuracy', trace_id='e5ad0a8e-3c20-4dc8-ba19-1f11f224ebbf', name='score_factual_accuracy', source=, observation_id=None, timestamp=datetime.datetime(2024, 10, 13, 16, 59, 25, 84000, tzinfo=datetime.timezone.utc), created_at=datetime.datetime(2024, 10, 13, 16, 59, 25, 84000, tzinfo=datetime.timezone.utc), updated_at=datetime.datetime(2024, 10, 13, 16, 59, 25, 84000, tzinfo=datetime.timezone.utc), author_user_id=None, comment=None, config_id=None, data_type='NUMERIC', stringValue=None, trace={'userId': None}, projectId='cm1vkhmj40jxlhaue9mntmwk8'), Score_Numeric(value=0.8, id='Uptrain_3_score_factual_accuracy', trace_id='2ed536e7-a583-401c-b3e9-1227985875c1', name='score_factual_accuracy', source=, observation_id=None, timestamp=datetime.datetime(2024, 10, 13, 16, 59, 24, 804000, tzinfo=datetime.timezone.utc), created_at=datetime.datetime(2024, 10, 13, 16, 59, 24, 804000, tzinfo=datetime.timezone.utc), updated_at=datetime.datetime(2024, 10, 13, 16, 59, 24, 804000, tzinfo=datetime.timezone.utc), author_user_id=None, comment=None, config_id=None, data_type='NUMERIC', stringValue=None, trace={'userId': None}, projectId='cm1vkhmj40jxlhaue9mntmwk8'), Score_Numeric(value=0.4, id='Uptrain_2_score_factual_accuracy', trace_id='8552536a-70ae-4678-a789-c0af61d3a436', name='score_factual_accuracy', source=, observation_id=None, timestamp=datetime.datetime(2024, 10, 13, 16, 59, 24, 517000, tzinfo=datetime.timezone.utc), created_at=datetime.datetime(2024, 10, 13, 16, 59, 24, 517000, tzinfo=datetime.timezone.utc), updated_at=datetime.datetime(2024, 10, 13, 16, 59, 24, 517000, tzinfo=datetime.timezone.utc), author_user_id=None, comment=None, config_id=None, data_type='NUMERIC', stringValue=None, trace={'userId': None}, projectId='cm1vkhmj40jxlhaue9mntmwk8'), Score_Numeric(value=0.6, id='Uptrain_1_score_factual_accuracy', trace_id='812d7ae7-f2bf-4251-9784-9ee248b469d7', name='score_factual_accuracy', source=, observation_id=None, timestamp=datetime.datetime(2024, 10, 13, 16, 59, 24, 231000, tzinfo=datetime.timezone.utc), created_at=datetime.datetime(2024, 10, 13, 16, 59, 24, 231000, tzinfo=datetime.timezone.utc), updated_at=datetime.datetime(2024, 10, 13, 16, 59, 24, 231000, tzinfo=datetime.timezone.utc), author_user_id=None, comment=None, config_id=None, data_type='NUMERIC', stringValue=None, trace={'userId': None}, projectId='cm1vkhmj40jxlhaue9mntmwk8'), Score_Numeric(value=1.0, id='Uptrain_0_score_factual_accuracy', trace_id='f4135b5b-d20a-4741-b777-186d37d1fa52', name='score_factual_accuracy', source=, observation_id=None, timestamp=datetime.datetime(2024, 10, 13, 16, 59, 23, 954000, tzinfo=datetime.timezone.utc), created_at=datetime.datetime(2024, 10, 13, 16, 59, 23, 954000, tzinfo=datetime.timezone.utc), updated_at=datetime.datetime(2024, 10, 13, 16, 59, 23, 954000, tzinfo=datetime.timezone.utc), author_user_id=None, comment=None, config_id=None, data_type='NUMERIC', stringValue=None, trace={'userId': None}, projectId='cm1vkhmj40jxlhaue9mntmwk8')]\n", + "[Score_Numeric(value=1.0, id='Uptrain_4_score_response_completeness', trace_id='1a54b4e2-3e2c-4235-801b-b56153c8e293', name='score_response_completeness', source=, observation_id=None, timestamp=datetime.datetime(2024, 10, 13, 16, 59, 25, 271000, tzinfo=datetime.timezone.utc), created_at=datetime.datetime(2024, 10, 13, 16, 59, 25, 271000, tzinfo=datetime.timezone.utc), updated_at=datetime.datetime(2024, 10, 13, 16, 59, 25, 271000, tzinfo=datetime.timezone.utc), author_user_id=None, comment=None, config_id=None, data_type='NUMERIC', stringValue=None, trace={'userId': None}, projectId='cm1vkhmj40jxlhaue9mntmwk8'), Score_Numeric(value=1.0, id='Uptrain_3_score_response_completeness', trace_id='ce78dce7-f4bd-45a4-b69c-f31fd6258565', name='score_response_completeness', source=, observation_id=None, timestamp=datetime.datetime(2024, 10, 13, 16, 59, 24, 990000, tzinfo=datetime.timezone.utc), created_at=datetime.datetime(2024, 10, 13, 16, 59, 24, 990000, tzinfo=datetime.timezone.utc), updated_at=datetime.datetime(2024, 10, 13, 16, 59, 24, 990000, tzinfo=datetime.timezone.utc), author_user_id=None, comment=None, config_id=None, data_type='NUMERIC', stringValue=None, trace={'userId': None}, projectId='cm1vkhmj40jxlhaue9mntmwk8'), Score_Numeric(value=1.0, id='Uptrain_2_score_response_completeness', trace_id='103927f0-dd9f-4d94-95d6-a4a6fce3898d', name='score_response_completeness', source=, observation_id=None, timestamp=datetime.datetime(2024, 10, 13, 16, 59, 24, 709000, tzinfo=datetime.timezone.utc), created_at=datetime.datetime(2024, 10, 13, 16, 59, 24, 709000, tzinfo=datetime.timezone.utc), updated_at=datetime.datetime(2024, 10, 13, 16, 59, 24, 709000, tzinfo=datetime.timezone.utc), author_user_id=None, comment=None, config_id=None, data_type='NUMERIC', stringValue=None, trace={'userId': None}, projectId='cm1vkhmj40jxlhaue9mntmwk8'), Score_Numeric(value=1.0, id='Uptrain_1_score_response_completeness', trace_id='6e7ae4f6-aca0-4152-b299-5b1ae06bd7e9', name='score_response_completeness', source=, observation_id=None, timestamp=datetime.datetime(2024, 10, 13, 16, 59, 24, 423000, tzinfo=datetime.timezone.utc), created_at=datetime.datetime(2024, 10, 13, 16, 59, 24, 423000, tzinfo=datetime.timezone.utc), updated_at=datetime.datetime(2024, 10, 13, 16, 59, 24, 423000, tzinfo=datetime.timezone.utc), author_user_id=None, comment=None, config_id=None, data_type='NUMERIC', stringValue=None, trace={'userId': None}, projectId='cm1vkhmj40jxlhaue9mntmwk8'), Score_Numeric(value=1.0, id='Uptrain_0_score_response_completeness', trace_id='3c100175-8e20-4d1f-ab1b-a7e4dc870cac', name='score_response_completeness', source=, observation_id=None, timestamp=datetime.datetime(2024, 10, 13, 16, 59, 24, 138000, tzinfo=datetime.timezone.utc), created_at=datetime.datetime(2024, 10, 13, 16, 59, 24, 138000, tzinfo=datetime.timezone.utc), updated_at=datetime.datetime(2024, 10, 13, 16, 59, 24, 138000, tzinfo=datetime.timezone.utc), author_user_id=None, comment=None, config_id=None, data_type='NUMERIC', stringValue=None, trace={'userId': None}, projectId='cm1vkhmj40jxlhaue9mntmwk8')]\n", + "[Score_Numeric(value=0.9999999999666667, id='Ragas_4_context_precision', trace_id='1441c394-fc54-42f3-a798-7ab1b338748c', name='context_precision', source=, observation_id=None, timestamp=datetime.datetime(2024, 10, 13, 16, 59, 25, 207000, tzinfo=datetime.timezone.utc), created_at=datetime.datetime(2024, 10, 13, 16, 59, 25, 207000, tzinfo=datetime.timezone.utc), updated_at=datetime.datetime(2024, 10, 13, 16, 59, 25, 207000, tzinfo=datetime.timezone.utc), author_user_id=None, comment=None, config_id=None, data_type='NUMERIC', stringValue=None, trace={'userId': None}, projectId='cm1vkhmj40jxlhaue9mntmwk8'), Score_Numeric(value=0.99999999995, id='Ragas_3_context_precision', trace_id='a91146c0-09d4-4039-828d-adf308d09dd8', name='context_precision', source=, observation_id=None, timestamp=datetime.datetime(2024, 10, 13, 16, 59, 24, 927000, tzinfo=datetime.timezone.utc), created_at=datetime.datetime(2024, 10, 13, 16, 59, 24, 927000, tzinfo=datetime.timezone.utc), updated_at=datetime.datetime(2024, 10, 13, 16, 59, 24, 927000, tzinfo=datetime.timezone.utc), author_user_id=None, comment=None, config_id=None, data_type='NUMERIC', stringValue=None, trace={'userId': None}, projectId='cm1vkhmj40jxlhaue9mntmwk8'), Score_Numeric(value=0.8333333332916666, id='Ragas_2_context_precision', trace_id='16bf0af8-b988-44d0-a9c5-35a0ffa69ffd', name='context_precision', source=, observation_id=None, timestamp=datetime.datetime(2024, 10, 13, 16, 59, 24, 643000, tzinfo=datetime.timezone.utc), created_at=datetime.datetime(2024, 10, 13, 16, 59, 24, 643000, tzinfo=datetime.timezone.utc), updated_at=datetime.datetime(2024, 10, 13, 16, 59, 24, 643000, tzinfo=datetime.timezone.utc), author_user_id=None, comment=None, config_id=None, data_type='NUMERIC', stringValue=None, trace={'userId': None}, projectId='cm1vkhmj40jxlhaue9mntmwk8'), Score_Numeric(value=0.9999999999666667, id='Ragas_1_context_precision', trace_id='976e6974-f6d7-4ff0-b961-5653ae58e9ef', name='context_precision', source=, observation_id=None, timestamp=datetime.datetime(2024, 10, 13, 16, 59, 24, 310000, tzinfo=datetime.timezone.utc), created_at=datetime.datetime(2024, 10, 13, 16, 59, 24, 310000, tzinfo=datetime.timezone.utc), updated_at=datetime.datetime(2024, 10, 13, 16, 59, 24, 310000, tzinfo=datetime.timezone.utc), author_user_id=None, comment=None, config_id=None, data_type='NUMERIC', stringValue=None, trace={'userId': None}, projectId='cm1vkhmj40jxlhaue9mntmwk8'), Score_Numeric(value=0.9999999999666667, id='Ragas_0_context_precision', trace_id='4e0edb60-c6b1-452d-ae58-ce7449dc3f47', name='context_precision', source=, observation_id=None, timestamp=datetime.datetime(2024, 10, 13, 16, 59, 23, 798000, tzinfo=datetime.timezone.utc), created_at=datetime.datetime(2024, 10, 13, 16, 59, 23, 798000, tzinfo=datetime.timezone.utc), updated_at=datetime.datetime(2024, 10, 13, 16, 59, 23, 798000, tzinfo=datetime.timezone.utc), author_user_id=None, comment=None, config_id=None, data_type='NUMERIC', stringValue=None, trace={'userId': None}, projectId='cm1vkhmj40jxlhaue9mntmwk8')]\n", + "[Score_Numeric(value=0.1428571428571428, id='Ragas_4_faithfulness', trace_id='8c3f995f-bc00-4935-90e5-069478987ce3', name='faithfulness', source=, observation_id=None, timestamp=datetime.datetime(2024, 10, 13, 16, 59, 25, 300000, tzinfo=datetime.timezone.utc), created_at=datetime.datetime(2024, 10, 13, 16, 59, 25, 300000, tzinfo=datetime.timezone.utc), updated_at=datetime.datetime(2024, 10, 13, 16, 59, 25, 300000, tzinfo=datetime.timezone.utc), author_user_id=None, comment=None, config_id=None, data_type='NUMERIC', stringValue=None, trace={'userId': None}, projectId='cm1vkhmj40jxlhaue9mntmwk8'), Score_Numeric(value=0.2, id='Ragas_3_faithfulness', trace_id='424fddad-f617-491a-9816-d9642f33d0e6', name='faithfulness', source=, observation_id=None, timestamp=datetime.datetime(2024, 10, 13, 16, 59, 25, 19000, tzinfo=datetime.timezone.utc), created_at=datetime.datetime(2024, 10, 13, 16, 59, 25, 19000, tzinfo=datetime.timezone.utc), updated_at=datetime.datetime(2024, 10, 13, 16, 59, 25, 19000, tzinfo=datetime.timezone.utc), author_user_id=None, comment=None, config_id=None, data_type='NUMERIC', stringValue=None, trace={'userId': None}, projectId='cm1vkhmj40jxlhaue9mntmwk8'), Score_Numeric(value=0.0, id='Ragas_2_faithfulness', trace_id='c7b7e4a1-ab80-4951-ae16-293265970dc3', name='faithfulness', source=, observation_id=None, timestamp=datetime.datetime(2024, 10, 13, 16, 59, 24, 740000, tzinfo=datetime.timezone.utc), created_at=datetime.datetime(2024, 10, 13, 16, 59, 24, 740000, tzinfo=datetime.timezone.utc), updated_at=datetime.datetime(2024, 10, 13, 16, 59, 24, 740000, tzinfo=datetime.timezone.utc), author_user_id=None, comment=None, config_id=None, data_type='NUMERIC', stringValue=None, trace={'userId': None}, projectId='cm1vkhmj40jxlhaue9mntmwk8'), Score_Numeric(value=0.12, id='Ragas_1_faithfulness', trace_id='77a2d6ae-b840-454f-b4e3-52edb8909bcb', name='faithfulness', source=, observation_id=None, timestamp=datetime.datetime(2024, 10, 13, 16, 59, 24, 456000, tzinfo=datetime.timezone.utc), created_at=datetime.datetime(2024, 10, 13, 16, 59, 24, 456000, tzinfo=datetime.timezone.utc), updated_at=datetime.datetime(2024, 10, 13, 16, 59, 24, 456000, tzinfo=datetime.timezone.utc), author_user_id=None, comment=None, config_id=None, data_type='NUMERIC', stringValue=None, trace={'userId': None}, projectId='cm1vkhmj40jxlhaue9mntmwk8'), Score_Numeric(value=1.0, id='Ragas_0_faithfulness', trace_id='8f61a293-836f-4cc9-84f9-996c19c42620', name='faithfulness', source=, observation_id=None, timestamp=datetime.datetime(2024, 10, 13, 16, 59, 23, 894000, tzinfo=datetime.timezone.utc), created_at=datetime.datetime(2024, 10, 13, 16, 59, 23, 894000, tzinfo=datetime.timezone.utc), updated_at=datetime.datetime(2024, 10, 13, 16, 59, 23, 894000, tzinfo=datetime.timezone.utc), author_user_id=None, comment=None, config_id=None, data_type='NUMERIC', stringValue=None, trace={'userId': None}, projectId='cm1vkhmj40jxlhaue9mntmwk8')]\n", + "[Score_Numeric(value=0.9891308706741455, id='Ragas_4_answer_relevancy', trace_id='21a3c662-a494-4029-b95a-8fd25f90a8c6', name='answer_relevancy', source=, observation_id=None, timestamp=datetime.datetime(2024, 10, 13, 16, 59, 25, 398000, tzinfo=datetime.timezone.utc), created_at=datetime.datetime(2024, 10, 13, 16, 59, 25, 398000, tzinfo=datetime.timezone.utc), updated_at=datetime.datetime(2024, 10, 13, 16, 59, 25, 398000, tzinfo=datetime.timezone.utc), author_user_id=None, comment=None, config_id=None, data_type='NUMERIC', stringValue=None, trace={'userId': None}, projectId='cm1vkhmj40jxlhaue9mntmwk8'), Score_Numeric(value=0.9795341682836177, id='Ragas_3_answer_relevancy', trace_id='f398dd78-ccdd-423c-9662-92ff548183e7', name='answer_relevancy', source=, observation_id=None, timestamp=datetime.datetime(2024, 10, 13, 16, 59, 25, 114000, tzinfo=datetime.timezone.utc), created_at=datetime.datetime(2024, 10, 13, 16, 59, 25, 114000, tzinfo=datetime.timezone.utc), updated_at=datetime.datetime(2024, 10, 13, 16, 59, 25, 114000, tzinfo=datetime.timezone.utc), author_user_id=None, comment=None, config_id=None, data_type='NUMERIC', stringValue=None, trace={'userId': None}, projectId='cm1vkhmj40jxlhaue9mntmwk8'), Score_Numeric(value=0.9916994382653276, id='Ragas_2_answer_relevancy', trace_id='65d48c73-2fbd-4577-bec9-7a46858e0a6a', name='answer_relevancy', source=, observation_id=None, timestamp=datetime.datetime(2024, 10, 13, 16, 59, 24, 834000, tzinfo=datetime.timezone.utc), created_at=datetime.datetime(2024, 10, 13, 16, 59, 24, 834000, tzinfo=datetime.timezone.utc), updated_at=datetime.datetime(2024, 10, 13, 16, 59, 24, 834000, tzinfo=datetime.timezone.utc), author_user_id=None, comment=None, config_id=None, data_type='NUMERIC', stringValue=None, trace={'userId': None}, projectId='cm1vkhmj40jxlhaue9mntmwk8'), Score_Numeric(value=0.9652149513821247, id='Ragas_1_answer_relevancy', trace_id='116c5ac3-7931-471b-83eb-da6c91725621', name='answer_relevancy', source=, observation_id=None, timestamp=datetime.datetime(2024, 10, 13, 16, 59, 24, 550000, tzinfo=datetime.timezone.utc), created_at=datetime.datetime(2024, 10, 13, 16, 59, 24, 550000, tzinfo=datetime.timezone.utc), updated_at=datetime.datetime(2024, 10, 13, 16, 59, 24, 550000, tzinfo=datetime.timezone.utc), author_user_id=None, comment=None, config_id=None, data_type='NUMERIC', stringValue=None, trace={'userId': None}, projectId='cm1vkhmj40jxlhaue9mntmwk8'), Score_Numeric(value=1.0, id='Ragas_0_answer_relevancy', trace_id='e7642418-7f1f-4c4f-8480-06dd8c276fbd', name='answer_relevancy', source=, observation_id=None, timestamp=datetime.datetime(2024, 10, 13, 16, 59, 24, 59000, tzinfo=datetime.timezone.utc), created_at=datetime.datetime(2024, 10, 13, 16, 59, 24, 59000, tzinfo=datetime.timezone.utc), updated_at=datetime.datetime(2024, 10, 13, 16, 59, 24, 59000, tzinfo=datetime.timezone.utc), author_user_id=None, comment=None, config_id=None, data_type='NUMERIC', stringValue=None, trace={'userId': None}, projectId='cm1vkhmj40jxlhaue9mntmwk8')]\n" + ] + } + ], + "source": [ + "score_columns = [ 'score_context_relevance', 'score_factual_accuracy', 'score_response_completeness', 'context_precision', 'faithfulness', 'answer_relevancy']\n", + "\n", + "scores_df = pd.DataFrame(columns=score_columns)\n", + "\n", + "for score_name in score_columns:\n", + " fetch_scores = fetch_scores_from_langfuse(score_name)\n", + " print(fetch_scores.data)\n", + " scores_df[score_name] = [score.value for score in fetch_scores.data[::-1]]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 8. Creating a Correlation Heatmap\n", + "\n", + "This section illustrates how to visualize the correlation between evaluation scores using a heatmap. The code calculates the correlation matrix for two sets of scores: UpTrain scores (`'score_context_relevance'`, `'score_factual_accuracy'`, and `'score_response_completeness'`) and RAGAS scores (`'context_precision'`, `'faithfulness'`, and `'answer_relevancy'`).\n", + "\n", + "1. **Calculate the Correlation Matrix**: The `corr()` function computes correlation coefficients between specified score columns in the `scores_df` DataFrame, indicating the strength and direction of relationships.\n", + "\n", + "2. **Create and Customize the Heatmap**: A heatmap is generated using Matplotlib and Seaborn, displaying correlation coefficients with colors ranging from blue (negative) to red (positive). The layout is adjusted for clarity.\n", + "\n", + "This visualization helps identify patterns in the evaluation metrics, aiding in the analysis of `fetch_scores()` performance." + ] + }, + { + "cell_type": "code", + "execution_count": 83, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 807 + }, + "id": "FqNgHsA-W0m8", + "outputId": "36e3014a-009e-4c76-ca98-c42beeff982c" + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA7wAAAMWCAYAAADSxIq/AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd1RURxsG8GdpS2+CgIigYEFFEbtGRSEiKmIv8RNLLIkSNTZiLIBEjcauibFE0cQWS+yNoKhgwYaiIjYQCx0RAen7/YFc3VAty+r6/M7Zk+zcuXNndtlxZ9+ZuSKJRCIBERERERERkYJRkncFiIiIiIiIiGSBA14iIiIiIiJSSBzwEhERERERkULigJeIiIiIiIgUEge8REREREREpJA44CUiIiIiIiKFxAEvERERERERKSQOeImIiIiIiEghccBLRERERERECokDXiIi+qz4+/tDJBIhOjr6g5UZHR0NkUgEf3//D1bmp87R0RGOjo6Vft28vDxMmzYNFhYWUFJSQs+ePd+7zKCgIIhEIgQFBb13WUREVLk44CUiovd2//59jBkzBrVq1YK6ujp0dXXRtm1bLF++HC9fvpR39T6YrVu3YtmyZfKuhpRhw4ZBJBJBV1e3xNf67t27EIlEEIlEWLRo0VuX//TpU/j4+CAsLOwD1Fb2NmzYgF9++QV9+/bFpk2b8P3335eat6CgAJs3b0bLli1haGgIHR0d1KlTBx4eHjh//rxM6xkcHAxXV1eYm5tDXV0dNWrUgJubG7Zu3SrT6xIRfW5U5F0BIiL6tB06dAj9+vWDWCyGh4cHGjZsiJycHAQHB2Pq1Km4efMm1q5dK+9qfhBbt27FjRs3MHHiRKl0S0tLvHz5EqqqqnKpl4qKCjIzM3HgwAH0799f6tiWLVugrq6OrKysdyr76dOn8PX1hZWVFezt7St83vHjx9/peu/rxIkTMDc3x9KlS8vNO378ePz6669wd3fH4MGDoaKigsjISBw5cgS1atVCq1atAADt27fHy5cvoaam9kHquHPnTgwYMAD29vaYMGECDAwMEBUVhdOnT2PdunX46quvPsh1iIiIA14iInoPUVFRGDhwICwtLXHixAmYmZkJx8aNG4d79+7h0KFD730diUSCrKwsaGhoFDuWlZUFNTU1KCnJb9KSSCSCurq63K4vFovRtm1bbNu2rdiAd+vWrejWrRt2795dKXXJzMyEpqbmBxscvq2EhATo6+uXmy8+Ph6//fYbRo0aVewHmWXLliExMVF4rqSk9EHfXx8fH9SvXx/nz58v9jolJCR8sOuUp6zPFRGRouCUZiIiemcLFy5Eeno6/vjjD6nBbhEbGxtMmDBBeJ6Xlwc/Pz9YW1tDLBbDysoKP/74I7Kzs6XOs7KyQvfu3XHs2DE0a9YMGhoaWLNmjbCWcvv27Zg5cybMzc2hqamJtLQ0AMCFCxfQpUsX6OnpQVNTEx06dEBISEi57di3bx+6deuGatWqQSwWw9raGn5+fsjPzxfyODo64tChQ3j48KEwRdjKygpA6Wt4T5w4gXbt2kFLSwv6+vpwd3dHRESEVB4fHx+IRCLcu3cPw4YNg76+PvT09DB8+HBkZmaWW/ciX331FY4cOYLU1FQh7eLFi7h7926JEcOUlBRMmTIFdnZ20NbWhq6uLlxdXXHt2jUhT1BQEJo3bw4AGD58uNDuonY6OjqiYcOGuHz5Mtq3bw9NTU38+OOPwrE31/AOHToU6urqxdrv4uICAwMDPH36tMz2ZWRkYPLkybCwsIBYLEbdunWxaNEiSCQSAK/fg5MnT+LmzZtCXUtbdxsVFQWJRIK2bdsWOyYSiVC1alWp1+HNsiIiIqChoQEPDw+p84KDg6GsrAwvL68y23L//n00b968xB8F3rwuUDjtevny5bCzs4O6ujqMjY3RpUsXXLp0Scjzvp8rAEhNTcXEiROF19fGxgYLFixAQUGBVBnbt29H06ZNoaOjA11dXdjZ2WH58uVltpeISJ444CUiond24MAB1KpVC23atKlQ/pEjR2L27NlwcHDA0qVL0aFDB8yfPx8DBw4sljcyMhKDBg3Cl19+ieXLl0tNp/Xz88OhQ4cwZcoUzJs3D2pqajhx4gTat2+PtLQ0eHt7Y968eUhNTUWnTp0QGhpaZr38/f2hra2NSZMmYfny5WjatClmz56NH374QcgzY8YM2Nvbw8jICH/++Sf+/PPPMtfz/vvvv3BxcUFCQgJ8fHwwadIknD17Fm3bti1xw6z+/fvjxYsXmD9/Pvr37w9/f3/4+vqW+5oW6d27N0QiEfbs2SOkbd26FfXq1YODg0Ox/A8ePMDevXvRvXt3LFmyBFOnTkV4eDg6dOggDD5tbW0xZ84cAMDo0aOFdrdv314oJzk5Ga6urrC3t8eyZcvQsWPHEuu3fPlyGBsbY+jQocIPCWvWrMHx48excuVKVKtWrdS2SSQS9OjRA0uXLkWXLl2wZMkS1K1bF1OnTsWkSZMAAMbGxvjzzz9Rr149VK9eXairra1tiWVaWloCKJxe/DY/LBS9Ln5+fvjzzz+xf/9+AIUD8mHDhqFevXrCa1YaS0tLBAYG4vHjx+Ve6+uvvxYGogsWLMAPP/wAdXV1qTXG7/u5yszMRIcOHfDXX3/Bw8MDK1asQNu2bTF9+nTh9QWAgIAADBo0CAYGBliwYAF+/vlnODo6VuhHJSIiuZEQERG9g+fPn0sASNzd3SuUPywsTAJAMnLkSKn0KVOmSABITpw4IaRZWlpKAEiOHj0qlffkyZMSAJJatWpJMjMzhfSCggJJ7dq1JS4uLpKCggIhPTMzU1KzZk3Jl19+KaRt3LhRAkASFRUlle+/xowZI9HU1JRkZWUJad26dZNYWloWyxsVFSUBINm4caOQZm9vL6lataokOTlZSLt27ZpESUlJ4uHhIaR5e3tLAEhGjBghVWavXr0kVapUKXat/xo6dKhES0tLIpFIJH379pU4OTlJJBKJJD8/X2Jqairx9fUV6vfLL78I52VlZUny8/OLtUMsFkvmzJkjpF28eLFY24p06NBBAkDy+++/l3isQ4cOUmnHjh2TAJD89NNPkgcPHki0tbUlPXv2LLeNe/fuFc57U9++fSUikUhy7949qes2aNCg3DIlEonEw8NDAkBiYGAg6dWrl2TRokWSiIiIYvmK/u5OnjwppOXn50u++OILiYmJiSQpKUkybtw4iYqKiuTixYvlXvePP/6QAJCoqalJOnbsKJk1a5bkzJkzxd6PEydOSABIxo8fX6yMor/zD/G58vPzk2hpaUnu3Lkjlf7DDz9IlJWVJTExMRKJRCKZMGGCRFdXV5KXl1duG4mIPhaM8BIR0Tspmkaso6NTofyHDx8GAKmIEQBMnjwZAIqt9a1ZsyZcXFxKLGvo0KFS6w7DwsKEqbvJyclISkpCUlISMjIy4OTkhNOnTxebmvmmN8t68eIFkpKS0K5dO2RmZuL27dsVat+bYmNjERYWhmHDhsHQ0FBIb9SoEb788kvhtXjTN998I/W8Xbt2SE5OFl7nivjqq68QFBSEuLg4nDhxAnFxcaVugCQWi4V1z/n5+UhOToa2tjbq1q2LK1euVPiaYrEYw4cPr1Dezp07Y8yYMZgzZw569+4NdXV1YUptWQ4fPgxlZWWMHz9eKn3y5MmQSCQ4cuRIhev7po0bN2LVqlWoWbMm/vnnH0yZMgW2trZwcnLCkydPyjxXSUkJ/v7+SE9Ph6urK3777TdMnz4dzZo1K/e6I0aMwNGjR+Ho6Ijg4GD4+fmhXbt2qF27Ns6ePSvk2717N0QiEby9vYuVIRKJAHyYz9XOnTvRrl07GBgYCJ+dpKQkODs7Iz8/H6dPnwYA6OvrIyMjAwEBAeW2kYjoY8EBLxERvRNdXV0AhQPEinj48CGUlJRgY2MjlW5qagp9fX08fPhQKr1mzZqllvXfY3fv3gVQOBA2NjaWeqxfvx7Z2dl4/vx5qeXdvHkTvXr1gp6eHnR1dWFsbIz//e9/AFDmeaUpakvdunWLHbO1tRUG42+qUaOG1HMDAwMAwLNnzyp83a5du0JHRwc7duzAli1b0Lx582Kvd5GCggIsXboUtWvXhlgshpGREYyNjXH9+vW3arO5uflbbVC1aNEiGBoaIiwsDCtWrCi2ZrUkDx8+RLVq1Yr9uFI0Xfm/fzsVpaSkhHHjxuHy5ctISkrCvn374OrqihMnTpQ4Hfi/rK2t4ePjg4sXL6JBgwaYNWtWha/t4uKCY8eOITU1FadPn8a4cePw8OFDdO/eXdi46v79+6hWrZrUjyb/9SE+V3fv3sXRo0eLfXacnZ0BvN5Ia+zYsahTpw5cXV1RvXp1YeBORPQx4y7NRET0TnR1dVGtWjXcuHHjrc4rikyVp6ydY/97rCh6+8svv5R66xxtbe0S01NTU9GhQwfo6upizpw5sLa2hrq6Oq5cuQIvL68yI8MfkrKyconpklebMlWEWCxG7969sWnTJjx48AA+Pj6l5p03bx5mzZqFESNGwM/PD4aGhlBSUsLEiRPfqs1vu8Pv1atXhQFUeHg4Bg0a9Fbny0qVKlXQo0cP9OjRA46Ojjh16hQePnworPUtTdHtl54+fYrk5GSYmpq+1XU1NTXRrl07tGvXDkZGRvD19cWRI0cwdOjQtyrnfT5XBQUF+PLLLzFt2rQSz6lTpw6Awg21wsLCcOzYMRw5cgRHjhzBxo0b4eHhgU2bNr1VfYmIKgsHvERE9M66d++OtWvX4ty5c2jdunWZeS0tLVFQUIC7d+9KbSQUHx+P1NTUcgcWZbG2tgZQOAgvikpVVFBQEJKTk7Fnzx6pzZiioqKK5a3ooKKoLZGRkcWO3b59G0ZGRtDS0nqrelbUV199hQ0bNkBJSanMKOWuXbvQsWNH/PHHH1LpqampMDIyEp5XtM0VkZGRgeHDh6N+/fpo06YNFi5ciF69egk7QZfG0tIS//77L168eCEV5S2abv4+fzsladasGU6dOoXY2Ngyy/79998REBCAuXPnYv78+RgzZgz27dv3XtcFCqfEA4V/18eOHUNKSkqpUd4P8bmytrZGenp6hT47ampqcHNzg5ubGwoKCjB27FisWbMGs2bNKnU2ARGRPHFKMxERvbNp06ZBS0sLI0eORHx8fLHj9+/fF25Z0rVrVwAotrPxkiVLAADdunV753o0bdoU1tbWWLRoEdLT04sdf/Oeqv9VFFl9M5Kak5OD3377rVheLS2tCk33NTMzg729PTZt2iR1m6AbN27g+PHjwmshCx07doSfnx9WrVpVZrRRWVm5WPR4586dxdauFg3M32zHu/Ly8kJMTAw2bdqEJUuWwMrKCkOHDi12+5z/6tq1K/Lz87Fq1Sqp9KVLl0IkEsHV1fWt6xIXF4dbt24VS8/JyUFgYGCJ04TfFBUVhalTp6JPnz748ccfsWjRIuzfvx+bN28u99qBgYElphetxy2aCt+nTx9IJJISd+sueu8+xOeqf//+OHfuHI4dO1bsWGpqKvLy8gAU7sj9JiUlJTRq1AgAyn0PiYjkhRFeIiJ6Z9bW1ti6dSsGDBgAW1tbeHh4oGHDhsjJycHZs2exc+dODBs2DADQuHFjDB06FGvXrhWmEYeGhmLTpk3o2bNnqbezqQglJSWsX78erq6uaNCgAYYPHw5zc3M8efIEJ0+ehK6uLg4cOFDiuW3atIGBgQGGDh2K8ePHQyQS4c8//yxxKnHTpk2xY8cOTJo0Cc2bN4e2tjbc3NxKLPeXX36Bq6srWrduja+//hovX77EypUroaenV+ZU4/elpKSEmTNnlpuve/fumDNnDoYPH442bdogPDwcW7ZsQa1ataTyWVtbQ19fH7///jt0dHSgpaWFli1blrnGuiQnTpzAb7/9Bm9vb+E2SRs3boSjoyNmzZqFhQsXlnqum5sbOnbsiBkzZiA6OhqNGzfG8ePHsW/fPkycOFGI8L+Nx48fo0WLFujUqROcnJxgamqKhIQEbNu2DdeuXcPEiROlIt1vkkgkGDFiBDQ0NLB69WoAwJgxY7B7925MmDABzs7OZd5myd3dHTVr1oSbmxusra2RkZGBf//9FwcOHEDz5s2Fv6mOHTtiyJAhWLFiBe7evYsuXbqgoKAAZ86cQceOHeHp6flBPldTp07F/v370b17dwwbNgxNmzZFRkYGwsPDsWvXLkRHR8PIyAgjR45ESkoKOnXqhOrVq+Phw4dYuXIl7O3tS739ExGR3Mlvg2giIlIUd+7ckYwaNUpiZWUlUVNTk+jo6Ejatm0rWblypdRtfXJzcyW+vr6SmjVrSlRVVSUWFhaS6dOnS+WRSApvn9KtW7di1ym6PczOnTtLrMfVq1clvXv3llSpUkUiFosllpaWkv79+0sCAwOFPCXdligkJETSqlUriYaGhqRatWqSadOmCbfQefNWNOnp6ZKvvvpKoq+vLwEg3KKopNsSSSQSyb///itp27atRENDQ6Krqytxc3OT3Lp1SypP0W2JEhMTpdJLqmdJ3rwtUWlKuy3R5MmTJWZmZhINDQ1J27ZtJefOnSvxdkL79u2T1K9fX6KioiLVzrJuAfRmOWlpaRJLS0uJg4ODJDc3Vyrf999/L1FSUpKcO3euzDa8ePFC8v3330uqVasmUVVVldSuXVvyyy+/SN2Gqrw6vSktLU2yfPlyiYuLi6R69eoSVVVViY6OjqR169aSdevWSZX739sSLV++XAJAsnv3bqkyY2JiJLq6upKuXbuWee1t27ZJBg4cKLG2tpZoaGhI1NXVJfXr15fMmDFDkpaWJpU3Ly9P8ssvv0jq1asnUVNTkxgbG0tcXV0lly9fFvK87+dKIil8fadPny6xsbGRqKmpSYyMjCRt2rSRLFq0SJKTkyORSCSSXbt2STp37iypWrWqRE1NTVKjRg3JmDFjJLGxsWW/2EREciSSSN5iNwwiIiIiIiKiTwTX8BIREREREZFC4oCXiIiIiIiIFBIHvERERERERKSQOOAlIiIiIiIiwenTp+Hm5oZq1apBJBJh79695Z4TFBQEBwcHiMVi2NjYwN/fv1ieX3/9FVZWVlBXV0fLli0RGhr64Sv/HxzwEhERERERkSAjIwONGzfGr7/+WqH8UVFR6NatGzp27IiwsDBMnDgRI0eOlLq/d9Ft/by9vXHlyhU0btwYLi4uSEhIkFUzAADcpZmIiIiIiIhKJBKJ8M8//6Bnz56l5vHy8sKhQ4dw48YNIW3gwIFITU3F0aNHAQAtW7ZE8+bNsWrVKgBAQUEBLCws8N133+GHH36QWf0Z4SUiIiIiIlJw2dnZSEtLk3pkZ2d/kLLPnTsHZ2dnqTQXFxecO3cOAJCTk4PLly9L5VFSUoKzs7OQR1ZUZFo6ERERERERlcrOYXKlXKdPDx34+vpKpXl7e8PHx+e9y46Li4OJiYlUmomJCdLS0vDy5Us8e/YM+fn5Jea5ffv2e1+/LBzwEn2kKqvzo/KFX1kMi1EL5F0NeuXROi/02bRc3tWgV3YPncD+6iMSfmUxLEYvlHc16JVHa6eh+7pl8q4GvXJw1ER5V0Gupk+fjkmTJkmlicViOdWm8nDAS0REREREpODEYrHMBrimpqaIj4+XSouPj4euri40NDSgrKwMZWXlEvOYmprKpE5FuIaXiIiIiIiI3lnr1q0RGBgolRYQEIDWrVsDANTU1NC0aVOpPAUFBQgMDBTyyAoHvERERERERPIiqqTHW0hPT0dYWBjCwsIAFN52KCwsDDExMQAKp0d7eHgI+b/55hs8ePAA06ZNw+3bt/Hbb7/h77//xvfffy/kmTRpEtatW4dNmzYhIiIC3377LTIyMjB8+PC3q9xb4pRmIiIiIiIiEly6dAkdO3YUnhet/R06dCj8/f0RGxsrDH4BoGbNmjh06BC+//57LF++HNWrV8f69evh4uIi5BkwYAASExMxe/ZsxMXFwd7eHkePHi22kdWHxgEvERERERERCRwdHSGRSEo97u/vX+I5V69eLbNcT09PeHp6vm/13goHvERERERERPIiesv5xvRWuIaXiIiIiIiIFBIjvERERERERPLCAK9MMcJLRERERERECokRXiIiIiIiInlhhFemGOElIiIiIiIihcQILxERERERkdwwxCtLjPASERERERGRQmKEl4iIiIiISE4kDPDKFCO8REREREREpJAY4SUiIiIiIpIXRnhlihFeIiIiIiIiUkiM8BIREREREcmLiCFeWWKEl4iIiIiIiBQSB7xERERERESkkDjgJSIiIiIiIoXENbxERERERETywiW8MsUILxERERERESkkRniJiIiIiIjkhbs0yxQjvERERERERKSQGOElIiIiIiKSFwZ4ZYoRXiIiIiIiIlJIjPASERERERHJiUTeFVBwjPASERERERGRQmKEl4iIiIiISF64S7NMMcJLRERERERECokRXiIiIiIiInlhgFemGOElIiIiIiIihcQILxERERERkdwwxCtLjPASERERERGRQuKAlz5K0dHREIlECAsLk3dViIiIiIhkR1RJj88UpzQrqGHDhiE1NRV79+79JMolxdHUoRaGeTiivm11VDXWw4RJG3Ei6Ia8q6WQhjo2wRiXljDW00LEowTM3vYvwqJjyz2vR3Nb/Dq6B45dvYORv/0DAFBRVsLUnu3QqaE1ahjr4cXLbJyJeIifd59C/PN0WTdFYQy0bwXn2g2hqSZGZMJTrD1/ErEvUkvN71LXDi51GsFYWwcA8Cg1BTuvX8DVJw+FPL4ufdDQtLrUecciw7H2/AmZtOFzwv6q8gx1bIIxnVsU9lePi/qruHLP69G8Hn4d1QPHwu4K/RUAdGlSG0M62MOuhikMtDXgMscftx4nyLIJCmdw01ZwqWcHLTUxIuKf4rfgE3iallpq/n6Nm6N1TWtU1zNETn4eIuJj4R8ajCfPnwl59DU0MaJlOzQxrwENVTU8fv4Mf18Nxdnoe5XQIqKSMcL7lnJycuRdhU9ebm6uvKtAMqShroY7d55i7s975F0VhebWrB5m9e+EZQdC0NWv8IvenxP7o4qOZpnnVa+ii5n9OuLCnUdS6RpqKmhYwxTLD52Fq98mjFq9F9Ymhtjg2VuWzVAoPRs2RVdbe6w5fwLTD+9AVl4uZn3ZE6pKyqWek5yRjr+uhGDawe2Ydmg7bsQ9gldHN1joG0rlC7gTjq93rBMef14OlnVzPgvsryqHW7N6mNWvI5YdDEHXnzbh1qNE/Dmhgv1V3+L9FQBoilURevcJ5u05JatqK7Q+jZvBrUET/BociMn7tiMrNxdzXHtBVbn0/qqhmTkO3byOKfu3Y9bhPVBRUoKfay+IVV7HzyY5uqC6ngH8ju/HuN1/4lz0PXg5dUWtKsaV0axPFyO8MqUwA95du3bBzs4OGhoaqFKlCpydnZGRkQEA2LBhAxo0aACxWAwzMzN4enoK58XExMDd3R3a2trQ1dVF//79ER8fLxz38fGBvb091q9fj5o1a0JdXR0AkJqaipEjR8LY2Bi6urro1KkTrl27VuH6HjhwAM2bN4e6ujqMjIzQq1cv4dizZ8/g4eEBAwMDaGpqwtXVFXfv3hWO+/v7Q19fH8eOHYOtrS20tbXRpUsXxMbGCnXetGkT9u3bB5FIBJFIhKCgIADAo0eP0L9/f+jr68PQ0BDu7u6Ijo4GANy+fRuamprYunWrcK2///4bGhoauHXrVpnllqZoavKOHTvQoUMHqKurY8uWLQCA9evXw9bWFurq6qhXrx5+++23Msu6ceMGXF1doa2tDRMTEwwZMgRJSUkAgLVr16JatWooKCiQOsfd3R0jRowAANy/fx/u7u4wMTGBtrY2mjdvjn///Vcqv5WVFebNm4cRI0ZAR0cHNWrUwNq1a6XyPH78GIMGDYKhoSG0tLTQrFkzXLhwQTi+b98+ODg4QF1dHbVq1YKvry/y8vLKbJsiCT57Gyt/O4oTJxklkaVRXzbHtjPX8PfZcNyNTcb0v44hKycXA9ralXqOkkiEFSPdsHh/MGKSUqWOvXiZg8FLd+Dgpdt4EJ+Cqw+eYta2ADSyMkM1Qx0Zt0YxdLdtgl3XQ3Hx0QM8fJaElcHHYaCphRY1rEs959LjKFx5Eo3YF6mITUvF1qvnkJWXizpGZlL5svPykJqVKTxe5vLH1w+B/VXlGPVlM2wLvo6/z94o7K+2VLC/+rp7if0VAOw5fwvLD51FcES07CquwNwbNsGOqxdw4eEDRKckYUnQMRhqaqG1Zen9lffRvQi8ewsxz1IQlZKEpaeOo6qOLmyMTIQ8tiZmOHAzDHcS4xH/Ig07roYiIycbNkZVK6NZRCVSiAFvbGwsBg0ahBEjRiAiIgJBQUHo3bs3JBIJVq9ejXHjxmH06NEIDw/H/v37YWNjAwAoKCiAu7s7UlJScOrUKQQEBODBgwcYMGCAVPn37t3D7t27sWfPHmFNab9+/ZCQkIAjR47g8uXLcHBwgJOTE1JSUsqt76FDh9CrVy907doVV69eRWBgIFq0aCEcHzZsGC5duoT9+/fj3LlzkEgk6Nq1q1RkNDMzE4sWLcKff/6J06dPIyYmBlOmTAEATJkyBf379xcGwbGxsWjTpg1yc3Ph4uICHR0dnDlzBiEhIcJgOScnB/Xq1cOiRYswduxYxMTE4PHjx/jmm2+wYMEC1K9fv9RyK+KHH37AhAkTEBERARcXF2zZsgWzZ8/G3LlzERERgXnz5mHWrFnYtGlTieenpqaiU6dOaNKkCS5duoSjR48iPj4e/fv3F96P5ORknDx5UjgnJSUFR48exeDBgwEA6enp6Nq1KwIDA3H16lV06dIFbm5uiImJkbrW4sWL0axZM1y9ehVjx47Ft99+i8jISKGMDh064MmTJ9i/fz+uXbuGadOmCQPtM2fOwMPDAxMmTMCtW7ewZs0a+Pv7Y+7cuRV6nYgqQlVZCXaWpgiOeD3tVSIBzkREo6m1eannTXRri+QXmdgRfL1C19HREKOgQIK0zOz3rrOiM9HWhYGmFq4/fd2fZObm4G5iHOoam1aoDCWRCG2t6kBdRQWRidJT09vVqouNA0ZjaY/BGOzQBmrKXJFEnwZVZSXY1TCVGpgW9lcP0bRWtVLPm9i9TWF/FRJeCbX8vJjo6MJQUwthT15HzjNzcxCZGId6JmZlnClNS00NAJCenSWkRcTHop11HWiLxRABaF+rDtSUVRAe+/iD1Z/obSnEv5ixsbHIy8tD7969YWlpCQCwsyv81fCnn37C5MmTMWHCBCF/8+bNAQCBgYEIDw9HVFQULCwsAACbN29GgwYNcPHiRSFfTk4ONm/eDGPjwukYwcHBCA0NRUJCAsRiMQBg0aJF2Lt3L3bt2oXRo0eXWd+5c+di4MCB8PX1FdIaN24MALh79y7279+PkJAQYTC5ZcsWWFhYYO/evejXrx+AwmnBv//+O6ytC3+J8/T0xJw5cwAA2tra0NDQQHZ2NkxNX3/R+uuvv1BQUID169dDJCqc17Bx40bo6+sjKCgInTt3xtixY3H48GH873//g5qaGpo3b47vvvuuzHIrYuLEiejd+/XUSG9vbyxevFhIq1mzpjBAHDp0aLHzV61ahSZNmmDevHlC2oYNG2BhYYE7d+6gTp06cHV1xdatW+Hk5ASgMOpvZGSEjh07Cq9x0esMAH5+fvjnn3+wf/9+qah/165dMXbsWACAl5cXli5dipMnT6Ju3brYunUrEhMTcfHiRRgaFk45LPoBBQB8fX3xww8/CG2oVasW/Pz8MG3aNHh7e7/Va0ZUGkNtTagoKyExLUMqPSktEzamVUo8p7mNOQZ+0QguczZW6BpiFWVM7+OIfRdvIT2L0cTy6GtoAQBSszKl0p9nZQrHSlNDvwrmde0PNWUVZOXlYuHJQ3j8/PWPp8EPIpGYkYaUzAxYGhhhSNO2qKZrgF+CDn34hhB9YK/7K+nPRtKLDNiYGZZ4jtBf+flXQg0/PwZF/dVL6X9DUl+W318VEQEY1boDbsY9wcNnyUL6gsDD8HLqiu0e3yKvIB/ZeXmYG3AAsWnPP1j9FZFE9BnPN64ECjHgbdy4MZycnGBnZwcXFxd07twZffv2RW5uLp4+fSoMgP4rIiICFhYWwmAXAOrXrw99fX1EREQIA15LS0thsAsA165dQ3p6OqpUkf5i+fLlS9y/f7/c+oaFhWHUqFGl1klFRQUtW7YU0qpUqYK6desiIiJCSNPU1BQGuwBgZmaGhISyN2u4du0a7t27Bx0d6emJWVlZUvXesGED6tSpAyUlJdy8eVMYHL+PZs2aCf+fkZGB+/fv4+uvv5Z6HfLy8qCnp1dq3U+ePAltbe1ix+7fv486depg8ODBGDVqFH777TeIxWJs2bIFAwcOhJJS4USG9PR0+Pj44NChQ8KPJC9fviwW4W3UqJHw/yKRCKampsJrGxYWhiZNmgiD3ZLqGRISIhXRzc/PR1ZWFjIzM6GpWXy9UnZ2NrKzpSNoRT+kEH0IWmI1LPu6O6ZtPopn6S/Lza+irITVY9whAvDjX8dlX8FPULuadTGmdSfh+bzA/e9c1tO0Z5hyYCs0VcVobWUDzy++xOyju4VBb8Dd19NtY1KT8exlBnxd+sBERw/xL/glkhSLllgNy0Z0w7Q/K9ZfUfkcretiXLvX34V9j+577zK/bdsJlgZGmHbgb6n0/zVrDS01MWYc2o20rJdoZWUNL6du8Drwt9TAmKgyKcSAV1lZGQEBATh79iyOHz+OlStXYsaMGQgMDPwg5WtpSf/alZ6eDjMzsxLXr+rr65dbnoaGxnvXSVVVVeq5SCSCRCIp85z09HQ0bdpUWEP7pv8O6DMyMqCkpITY2FiYmVV8ektp3nwN09MLd3xdt26d1MAeKHwvS6u7m5sbFixYUOxYUf3c3NwgkUhw6NAhNG/eHGfOnMHSpUuFfFOmTEFAQAAWLVoEGxsbaGhooG/fvsU2IivptS2aslzee5eeng5fX1+paHaRovXf/zV//nypaD8ARoOpTCnpmcjLL4CxrnTfZKSrWSzqCwCWVfVRw0gfGz37CGlKr37Iivp9KhxnrcPDxFQArwe75lX0MGDxNkZ3S3Hx0QPcTXq9w2zRRi/66ppIffk6kqWnronolMQyy8orKEDcq4Hrg5QE2FQxQbdXm1+VpOi6Zhzw0ifgdX8l/YOvkY4WEp+X0F8Zv+qvxpXQX62eAsfZ64X+iirmQswDRO4pob/S0MKzN/orfQ1NRCWX3V8BwDdtHNG8Rk38cHAnkjNe7+JvqqMHtwb2GLtrM2KeFf5gF5WShAam5ujeoDF+DebO8iQfCjHgBQoHJW3btkXbtm0xe/ZsWFpaIiAgAFZWVggMDBSmtb7J1tYWjx49wqNHj4Qo761bt5Camor69euXei0HBwfExcVBRUUFVlZWb13XRo0aITAwEMOHDy+xTnl5ebhw4YIwpTk5ORmRkZFl1um/1NTUkJ+fX6zeO3bsQNWqVaGrq1vieSkpKRg2bBhmzJiB2NhYDB48GFeuXBEGeiWV+7ZMTExQrVo1PHjwQFhfWx4HBwfs3r0bVlZWUFEp+c9WXV0dvXv3xpYtW3Dv3j3UrVsXDg4OwvGQkBAMGzZM2CAsPT1d2LCroho1aoT169cjJSWlxCivg4MDIiMjpaY5l2f69OmYNGmSVJpYLMbu/T++Vd3o85GbX4Dwh3Foa2uJY2GFG9qJRMAXtlbwP3G5WP77sclw9v5DKm1qz3bQUleDz/ZAPE1JA/B6sFuzqgH6L9qG1IysYmVRoay8XGGQWuRZZgbszCwQ/axwMz0NVTXUNjbFsci3W4MoEonK3CnVyqDwB8o3v6gSfaxy8wsQHhOHtvUscSys8NY0hf2VJfxPXimW/35cMpx9NkilTe3ZDlpiNfjseN1fUcW9zM3Fy1zp/iolMwP25haIevWDnIaqGuoam+LIrbL3ePimjSNaW9lg+sFdiH8h/V4U7dZc8J8ATIFEAtHnvEUwyZ1CbFp14cIFzJs3D5cuXUJMTAz27NmDxMRE2NrawsfHB4sXL8aKFStw9+5dXLlyBStXrgQAODs7w87OThjUhYaGwsPDAx06dJCagvtfzs7OaN26NXr27Injx48jOjoaZ8+exYwZM3Dp0qVy6+vt7Y1t27bB29sbERERCA8PFyKXtWvXhru7O0aNGoXg4GBcu3YN//vf/2Bubg53d/cKvyZWVla4fv06IiMjkZSUhNzcXAwePBhGRkZwd3fHmTNnEBUVhaCgIIwfPx6PHxduJvDNN9/AwsICM2fOxJIlS5Cfny9shlVaue/C19cX8+fPx4oVK3Dnzh2Eh4dj48aNWLJkSYn5x40bh5SUFAwaNAgXL17E/fv3cezYMQwfPlxqAD548GAcOnQIGzZsKDaYrl27trDx2LVr1/DVV18V29W5PIMGDYKpqSl69uyJkJAQPHjwALt378a5c+cAALNnz8bmzZvh6+uLmzdvIiIiAtu3b8fMmTNLLVMsFkNXV1fq8SlPadbQUEPdOtVQt07hZiTm5oaoW6caTE315VsxBbMu4CIGtWuMvq0bwsa0CuYNdoGGmir+frXBy9IR3eDVqz0AIDsvH5FPk6QeaS+zkZGVg8inScjNL4CKshLWfNMTjSxN8d36A1BWUoKxrhaMdbWgqqwQ/1TI3MGIq+jbqAWaWdREDf0qGP9FZzzLzEBozOslI96de8O13utlE4Md2qC+STUYa+mghn4VDHZogwam1XH6QeFGeSY6eujbqAVqGVaFsZYOmlnUxPh2nXEz7jEevhpY07tjf1U51gVcetVfNYCNqSHmDe4s3V8N71p2f5WZhYzs1/0VAOhrqqN+9aqobWYEALA2NUT96lWLzXyhku27cRUDmrRAixq1YGlQBZMcXZCSmYFzD1/3V3O79kb3+q/3Pvm2bUc42tjilxNHkJmbA30NTehraELt1Q90j1Of4enzZ/D8wgl1jE1gqqOHXnYOsDevgfMPy1/y91kTiSrn8ZlSiAivrq4uTp8+jWXLliEtLQ2WlpZYvHgxXF1dARSuUV26dCmmTJkCIyMj9O3bF0Dhr+j79u3Dd999h/bt20NJSQldunQRBsSlEYlEOHz4MGbMmIHhw4cjMTERpqamaN++PUxMTMo8FwAcHR2xc+dO+Pn54eeff4auri7at28vHN+4cSMmTJiA7t27IycnB+3bt8fhw4eLTbUty6hRoxAUFIRmzZohPT0dJ0+ehKOjI06fPg0vLy/07t0bL168gLm5OZycnKCrq4vNmzfj8OHDuHr1KlRUVKCiooK//voLX3zxBbp37w5XV9dSy31bI0eOhKamJn755RdMnToVWlpasLOzw8SJE0vMX61aNYSEhMDLywudO3dGdnY2LC0t0aVLF2GNLgB06tQJhoaGiIyMxFdffSVVxpIlSzBixAi0adMGRkZG8PLyQlra2/1SrKamhuPHj2Py5Mno2rUr8vLyUL9+ffz6668AABcXFxw8eBBz5szBggULoKqqinr16mHkyJFv9wJ9whrUt8DGdWOF59MmF/5Qs2//Rcz02S6vaimcA5duw1BHE5Pdv4CxrhZuPUrAkOV/I+lFYdTP3FC33GUObzLV10Zn+9oAgOPeI6SO9ftlK86XcB9Mkrb3xmWoq6jim9ZO0FIT43b8U/j9uxe5Ba9/lDPV0YOO+PXSCD11TXz3hQsMNDSRmZODh8+S4BewF9djC/cWyMvPRyMzC3S3tYdYVRXJGek4//Aedl2/WOntU0TsrypHYX+lgck9XvVXjxMwZMXOd+6vAODLxjZYMryr8Py30T0AAEsOhGDpgZAPV3kFtfvaJairqOC7doX91a34p5h99B/kvhFEMNXVh6766/6q26vB789u/aTKWhp0HIF3byFfUgCfo/swtEVbzOrcAxqqaohNS8XSoGO49Ci6UtpFVBKR5G17GCKqFHYOk+VdBXol/MpiWIwqvn6c5OPROi/02bRc3tWgV3YPncD+6iMSfmUxLEYvlHc16JVHa6eh+7pl8q4GvXJw1ER5V6FE9Z1mVMp1bgV+nrfJ5Dw1IiIiIiIiUkgc8MpAgwYNoK2tXeKjpB2SP2Xz5s0rta1FU8qJiIiIiKhkkkp6fK4UYg3vx+bw4cOlbuZUkTW+n5JvvvkG/fv3L/HYh7j9EhERERER0bvigFcGLC0t5V2FSmNoaFji7XmIiIiIiKgCPuMdlCsDpzQTERERERGRQmKEl4iIiIiISF4Y4JUpRniJiIiIiIhIITHCS0REREREJC9cwytTjPASERERERGRQmKEl4iIiIiISE4+53vkVgZGeImIiIiIiEghMcJLREREREQkL1zCK1OM8BIREREREZFC4oCXiIiIiIhIXkSiynm8g19//RVWVlZQV1dHy5YtERoaWmpeR0dHiESiYo9u3boJeYYNG1bseJcuXd6pbhXFKc1EREREREQkZceOHZg0aRJ+//13tGzZEsuWLYOLiwsiIyNRtWrVYvn37NmDnJwc4XlycjIaN26Mfv36SeXr0qULNm7cKDwXi8WyawQY4SUiIiIiIqL/WLJkCUaNGoXhw4ejfv36+P3336GpqYkNGzaUmN/Q0BCmpqbCIyAgAJqamsUGvGKxWCqfgYGBTNvBAS8REREREZGCy87ORlpamtQjOzu7xLw5OTm4fPkynJ2dhTQlJSU4Ozvj3LlzFbreH3/8gYEDB0JLS0sqPSgoCFWrVkXdunXx7bffIjk5+d0bVQEc8BIREREREcmJRCSqlMf8+fOhp6cn9Zg/f36JdUpKSkJ+fj5MTEyk0k1MTBAXF1dum0JDQ3Hjxg2MHDlSKr1Lly7YvHkzAgMDsWDBApw6dQqurq7Iz89/9xewHFzDS0REREREpOCmT5+OSZMmSaXJav3sH3/8ATs7O7Ro0UIqfeDAgcL/29nZoVGjRrC2tkZQUBCcnJxkUhdGeImIiIiIiORFVDkPsVgMXV1dqUdpA14jIyMoKysjPj5eKj0+Ph6mpqZlNicjIwPbt2/H119/XW7Ta9WqBSMjI9y7d6/cvO+KA14iIiIiIiISqKmpoWnTpggMDBTSCgoKEBgYiNatW5d57s6dO5GdnY3//e9/5V7n8ePHSE5OhpmZ2XvXuTQc8BIREREREZGUSZMmYd26ddi0aRMiIiLw7bffIiMjA8OHDwcAeHh4YPr06cXO++OPP9CzZ09UqVJFKj09PR1Tp07F+fPnER0djcDAQLi7u8PGxgYuLi4yawfX8BIREREREZGUAQMGIDExEbNnz0ZcXBzs7e1x9OhRYSOrmJgYKClJx08jIyMRHByM48ePFytPWVkZ169fx6ZNm5Camopq1aqhc+fO8PPzk+m9eDngJSIiIiIikhOJSCTvKpTK09MTnp6eJR4LCgoqlla3bl1IJJIS82toaODYsWMfsnoVwinNREREREREpJA44CUiIiIiIiKFxCnNRERERERE8vLxzmhWCIzwEhERERERkUJihJeIiIiIiEheGOGVKUZ4iYiIiIiISCExwktERERERCQ3DPHKEiO8REREREREpJAY4SUiIiIiIpITCQO8MsUILxERERERESkkRniJiIiIiIjkhRFemWKEl4iIiIiIiBQSI7xERERERERywxCvLDHCS0RERERERAqJEV4iIiIiIiI54S7NsiWSSCQSeVeCiIiIiIjoc2TTc06lXOfe3tmVcp2PDSO8RB8pi1EL5F0FeuXROi/YOUyWdzXolfAri2H11Tx5V4Neid76I/urjwj7q49L+JXFqDHsZ3lXg16J8f9B3lUoGSO8MsU1vERERERERKSQGOElIiIiIiKSG4Z4ZYkRXiIiIiIiIlJIjPASERERERHJCXdpli1GeImIiIiIiEghMcJLREREREQkL4zwyhQjvERERERERKSQGOElIiIiIiKSG4Z4ZYkRXiIiIiIiIlJIjPASERERERHJCwO8MsUILxERERERESkkRniJiIiIiIjkhPfhlS1GeImIiIiIiEghMcJLREREREQkL4zwyhQjvERERERERKSQGOElIiIiIiKSG4Z4ZYkRXiIiIiIiIlJIjPASERERERHJCXdpli1GeImIiIiIiEghccBLREREREREColTmomIiIiIiOSFU5plihFeIiIiIiIiUkgc8BIREREREZFC4oCXiIiIiIiIFBLX8BIREREREcmLiIt4ZYkRXiIiIiIiIlJIjPASERERERHJiYQBXplihJeIiIiIiIgUEge8REREREREpJA44CUiIiIiIiKFxDW8RERERERE8sI1vDLFCC8REREREREpJEZ4iYiIiIiI5IX34ZUpRniJiIiIiIhIITHCS0REREREJCcSeVdAwTHC+5Fbu3YtLCwsoKSkhGXLlsm7OmXy9/eHvr6+vKtBREREREQEgBHej1paWho8PT2xZMkS9OnTB3p6eu9dZlBQEDp27Ihnz55xcEpvbahjE4xxaQljPS1EPErA7G3/Iiw6ttzzejS3xa+je+DY1TsY+ds/AAAVZSVM7dkOnRpao4axHl68zMaZiIf4efcpxD9Pl3VTPhtNHWphmIcj6ttWR1VjPUyYtBEngm7Iu1oKaciXTTGme0sY62kjIiYe3puO49r9kj8ffdvbYdE3blJp2Tl5qDtsofB80Zju6NuhkVSeU9fuY+iCHR++8gqI/dXHZWD/thjm4QijKjqIvPMU8xf+gxs3H5WYV0VFCSOHO6FH92aoWlUP0Q8TsXTFQYScjRTyaGqK4Tm2C5w6NoShgQ5uRz7Bz7/sxc1bJZdJ0jycHDDG9dXnIyYBs/8KwLWo8j8fbi1t8eu37jh25Q5GrdgjpGuKVfFDP0e4ONSGgbYGHiU+x8Z/L+Gvk2EybIUC4RJemeKAV0ZycnKgpqb2XmXExMQgNzcX3bp1g5mZ2QeqGZXmQ7xnisytWT3M6t8JP/51HFejnuJr52b4c2J/OM5ah+QXmaWeV72KLmb264gLd6S/hGioqaBhDVMsP3QWtx4lQE9LHb4DnLDBsze6zd0s6+Z8NjTU1XDnzlP8sy8UyxcPl3d1FFb3VraY+T8nzNxwFFfvPcUI1+bY/MNAdJq8BslpJX8+0jKz4DR5jfBcUsKctqCw+5i65qDwPDsv/4PXXRGxv/q4uHS2x9RJPeA3bxeuh8dgyOB2WPPraLj1WoCUZ8V/MPhurCu6dW0KX7+/ERWdgDat62LZouEYMnwlbkc+AQD4zu4PG2tT/DhrGxISn6N716ZYt3oMevZdiITEtMpu4ifFrUU9zBrYCT9uOoawB0/xdefm+GvKADj+sLbsz4eRHmYO6IgLkcV/VJg9yAltbC0xYe1BPE56jvYNrPCThwvin6UjIOyeLJtDVK7Pbkrzrl27YGdnBw0NDVSpUgXOzs7IyMgAAGzYsAENGjSAWCyGmZkZPD09hfNiYmLg7u4ObW1t6Orqon///oiPjxeO+/j4wN7eHuvXr0fNmjWhrq4OAEhNTcXIkSNhbGwMXV1ddOrUCdeuXSu3nv7+/rCzswMA1KpVCyKRCNHR0bh//z7c3d1hYmICbW1tNG/eHP/++6/UudnZ2fDy8oKFhQXEYjFsbGzwxx9/IDo6Gh07dgQAGBgYQCQSYdiwYQAAKyurYlOm7e3t4ePjIzxfsmQJ7OzsoKWlBQsLC4wdOxbp6e/2y/b7tKPIzZs30b17d+jq6kJHRwft2rXD/fv3AQCOjo6YOHGiVHk9e/YU2lvUZj8/P3h4eEBXVxejR48GAHh5eaFOnTrQ1NRErVq1MGvWLOTm5kqVdeDAATRv3hzq6uowMjJCr169AABz5sxBw4YNi7XX3t4es2bNeqfX6mMx6svm2HbmGv4+G467scmY/tcxZOXkYkBbu1LPURKJsGKkGxbvD0ZMUqrUsRcvczB46Q4cvHQbD+JTcPXBU8zaFoBGVmaoZqgj49Z8PoLP3sbK347ixElGdWVpZNcW2H4yDDtPXce9J0mY8ccRvMzOQ/8OjUs/SQIkPs8QHklpGcWy5OTlSeVJy8iSYSsUB/urj4vH4PbY/c957N1/EQ+i4jFn7m68zMpFL/cWJebv3q0p1m8IxJmQ23j8JAV/7zqHMyERGDqkAwBALFaBcyc7LFl+EJevPMCjR8lYveY4Hj1OwoB+bSqzaZ+kkS4tsO3UNewMDsfdp8mYvukoXubkYkD7RqWeoyQSYcUYNyzZG4yYxNRix5vamGNXSDjO347B46Tn2HrqGiIeJaBxLQZsKkRUSY938Ouvv8LKygrq6upo2bIlQkNDS83r7+8PkUgk9SgaExWRSCSYPXs2zMzMoKGhAWdnZ9y9e/fdKldBn9WANzY2FoMGDcKIESMQERGBoKAg9O7dGxKJBKtXr8a4ceMwevRohIeHY//+/bCxsQEAFBQUwN3dHSkpKTh16hQCAgLw4MEDDBgwQKr8e/fuYffu3dizZw/CwsIAAP369UNCQgKOHDmCy5cvw8HBAU5OTkhJSSmzrgMGDBAGgKGhoYiNjYWFhQXS09PRtWtXBAYG4urVq+jSpQvc3NwQExMjnOvh4YFt27ZhxYoViIiIwJo1a6CtrQ0LCwvs3r0bABAZGYnY2FgsX768wq+fkpISVqxYgZs3b2LTpk04ceIEpk2bVuHz3/Q+7QCAJ0+eoH379hCLxThx4gQuX76MESNGIC8v763qsWjRIjRu3BhXr14VBqQ6Ojrw9/fHrVu3sHz5cqxbtw5Lly4Vzjl06BB69eqFrl274urVqwgMDESLFoX/aBf9bV28eFHIf/XqVVy/fh3Dh3+60TVVZSXYWZoiOOKhkCaRAGciotHU2rzU8ya6tUXyi0zsCL5eoevoaIhRUCBBWmb2e9eZqLKoKiuhYU0zhNyIFtIkEiDkRhQcapf++dBUV0Pw8nE4u9IT6yb1RW1zo2J5Wtla4tLqCQhcNAY/jegCfW0NWTRBobC/+rioqCijvm11nL/w+gutRCLB+Qt30LiRZYnnqKmqIDtb+ofm7OxcNLGvCQBQVlaGiooycnKk/83PysoT8lDJVJWVYGdliuBb0UKaRAIE34yGQ1mfD/e2SErLxI7TJX8+Lt97gi/ta8NEv/B7Wut6NVDTxACn3+gX6dOzY8cOTJo0Cd7e3rhy5QoaN24MFxcXJCQklHqOrq4uYmNjhcfDhw+lji9cuBArVqzA77//jgsXLkBLSwsuLi7IypLdD7qf1ZTm2NhY5OXloXfv3rC0LOxki6KoP/30EyZPnowJEyYI+Zs3bw4ACAwMRHh4OKKiomBhYQEA2Lx5Mxo0aICLFy8K+XJycrB582YYGxsDAIKDgxEaGoqEhASIxWIAhQOsvXv3YteuXUJEsSRFEWgAMDY2hqmpKQCgcePGaNz4dcTAz88P//zzD/bv3w9PT0/cuXMHf//9NwICAuDs7AygMEJcxNDQEABQtWrVt17D+2bE1MrKCj/99BO++eYb/Pbbb29Vzodox6+//go9PT1s374dqqqqAIA6deq8dT06deqEyZMnS6XNnDlT+H8rKytMmTIF27dvFwb3c+fOxcCBA+Hr6yvVHgCoXr06XFxcsHHjRuHvYuPGjejQoYNU/T81htqaUFFWQuJ/IlBJaZmwMa1S4jnNbcwx8ItGcJmzsULXEKsoY3ofR+y7eAvpWTnvXWeiymKgU/j5SHou/flIfJ4B62olfz4exKZg2tqDuB2TAB0NdYzq3hK7fT3Qedo6xKW8AACcuv4ARy9G4lFiKixNDDC1vyP8vQag9+xNKChp/jMBYH/1sTHQ14KKijKSX/1dF0lOSUdNq6olnnP2XCQ8/tehMHr7OBmtWtSGU0c7KCsXxmkyM7MRdi0aY0Y648GDeCSnvEDXLk3QuJElYh4lybxNnzLDUvqrpLQMWJuV8vmoXR0D2jdCl9mlfz5m/xWAn4d1wcVlnsjNy0eBRIIfNh5F6B2uqf6ULVmyBKNGjRKCNr///jsOHTqEDRs24IcffijxHJFIJIxb/ksikWDZsmWYOXMm3N3dARSOqUxMTLB3714MHDhQJu34rCK8jRs3hpOTE+zs7NCvXz+sW7cOz549Q0JCAp4+fQonJ6cSz4uIiICFhYUw2AWA+vXrQ19fHxEREUKapaWlMNgFgGvXriE9PR1VqlSBtra28IiKihKm3r6t9PR0TJkyBba2ttDX14e2tjYiIiKEyGhYWBiUlZXRoUOHdyq/LP/++y+cnJxgbm4OHR0dDBkyBMnJycjMLH29R2netx1hYWFo166dMNh9V82aNSuWtmPHDrRt2xampqbQ1tbGzJkzpSLPYWFhpf6tAMCoUaOwbds2ZGVlIScnB1u3bsWIESNKzZ+dnY20tDSpR3b2px0x0BKrYdnX3TFt81E8S39Zbn4VZSWsHuMOEYAf/zou+woSydmVu0+w58wN3HqYgAu3Y/DN0t1IScvEV05NhDwHzt3Cv1fuIvJRIo5fuoMRi/6GvXU1tKpfclSM3g37q4/Pz7/sRUxMEvbv8cKVCwsw3asX9h24iIKC1z/0TJ+1FSKRCCeOe+Py+QX4amA7HDl2FRL+GPRBaamrYeno7vDaWPbnY5hzUzSxroYRy3ahm48/ftp+An5DvsQX7K8+Km/znTMnJweXL18WAk9A4WxPZ2dnnDt3rtRrpKenw9LSEhYWFnB3d8fNmzeFY1FRUYiLi5MqU09PDy1btiyzzPf1WUV4lZWVERAQgLNnz+L48eNYuXIlZsyYgcDAwA9SvpaWltTz9PR0mJmZISgoqFjed90hecqUKQgICMCiRYtgY2MDDQ0N9O3bFzk5hb8wa2i823Q3JSWlYv9IvLluNTo6Gt27d8e3336LuXPnwtDQEMHBwfj666+Rk5MDTU3NSm1HecfLa0+R/75n586dw+DBg+Hr6wsXFxchirx48eIKX9vNzQ1isRj//PMP1NTUkJubi759+5aaf/78+VLRYgDw9vYG8PFMXUxJz0RefgGMdaVfLyNdzWJRFACwrKqPGkb62OjZR0hTEhUuHon6fSocZ63Dw1drgIq+PJpX0cOAxdsYLaFPzrMXhZ8PIz3pz4exnhYSU4t/PkqSl1+Amw/jYWViUGqeRwmpSE7LhJWJAc7ejH6fKis09lcfl2epGcjLy0eV/6x1rmKojeTkF6WeM2HyRqipqUBfTxMJiWn4fnw3PH6SLOR5/DgZw0f9Bg11NWhpi5GU9AK//DwEjx8nl1gmFUoppb8y0tVC4vNSPh/G+tgw8fX3mKLPx4M/pqHjD2sRl5qOaX07YPTKPThxrTCgc/txIurXMMFo15YIvvWwWLn0H6LK2aa5tO+cb+7ZUyQpKQn5+fkwMTGRSjcxMcHt27dLLL9u3brYsGEDGjVqhOfPn2PRokVo06YNbt68ierVqyMuLk4o479lFh2Thc9qwAsUhtnbtm2Ltm3bYvbs2bC0tERAQACsrKwQGBgobOr0JltbWzx69AiPHj0Sory3bt1Camoq6tevX+q1HBwcEBcXBxUVFVhZWX2Q+oeEhGDYsGHCJknp6emIjo4WjtvZ2aGgoACnTp2S+vWkSNEuxPn50jt9GhsbIzb29Xb0aWlpiIqKEp5fvnwZBQUFWLx4MZSUCicG/P3333JrR6NGjbBp0ybk5uaWGOX9b3vy8/Nx48aNEt/fN509exaWlpaYMWOGkPbftQeNGjVCYGBgqWtyVVRUMHToUGzcuBFqamoYOHBgmYPk6dOnY9KkSVJpYrEYf3guK7OulSk3vwDhD+PQ1tYSx8IK12GJRMAXtlbwP3G5WP77sclw9v5DKm1qz3bQUleDz/ZAPE0p3EGz6MtjzaoG6L9oG1K5IQ99gnLzC3AjKhZtGljh+KU7AAo/H20aWGHz8eKfj5IoiUSoZ1EVJ8vYzdTUUAcG2hpISOVtcMrC/urjkpeXj1sRj9GyRW3hlmgikQitWtTGth0hZZ6bk5OHhMQ0qKgowdmpEY4FhBXL8zIrBy+zcqCro4E2reti6fKDxQsiQW5+AcKj49C2vhWOX3n9+Whb3xKbAq8Uy38/NhnOM9ZLpU3t0x7a6mrw3vIvnqakQayqAjUVZakIPFC4B45SJQ3kqGJK+875obRu3RqtW7cWnrdp0wa2trZYs2YN/Pz8Pth13tZnNeC9cOECAgMD0blzZ1StWhUXLlxAYmIibG1t4ePjg2+++QZVq1aFq6srXrx4gZCQEHz33XdwdnaGnZ0dBg8ejGXLliEvLw9jx45Fhw4dSpwSW8TZ2RmtW7dGz549sXDhQtSpUwdPnz4VNj0q69zS1K5dG3v27IGbmxtEIhFmzZqFgoIC4biVlRWGDh2KESNGYMWKFWjcuDEePnyIhIQE9O/fH5aWlhCJRDh48CC6du0KDQ0NaGtro1OnTvD394ebmxv09fUxe/ZsKCsrC+Xa2NggNzcXK1euhJubG0JCQvD777+/df0/VDs8PT2xcuVKDBw4ENOnT4eenh7Onz+PFi1aoG7duujUqRMmTZqEQ4cOwdraGkuWLEFqamqF6hUTE4Pt27ejefPmOHToEP755x+pPN7e3nBycoK1tTUGDhyIvLw8HD58GF5eXkKekSNHwtbWFkDh4L4sYrH4g3Y2srIu4CKWjOiG69FxCIuKxdfOzaChpoq/Q8IBAEtHdEPcsxdY8M9pZOflI/Kp9DqqtJeFU2aK0lWUlbDmm55oWMMEw1bugrKSkhCRSc14idz8AtD709BQQw2L15shmZsbom6danielom4uFT5VUzBrD8cisXfuCH8QSzC7j/F164toKmuip2nCjd4WfytG+JTXmDhjiAAwPheX+DqvSeIjn8GXU0xxnRvBXMjXWw/WbiLv6ZYFRP6tMPR0NtITM1ADRMDTP+qI6LjU3D6+gN5NfOTwf7q47J5y2nM9R2Im7ceIfxmDIZ81R4aGmrYu79wt9e5cwYhIeE5lq86DACwa1gDVavqITLyCapW1cO3Y1ygJBJho/9Jocw2retCJAKioxNRw8IIkyZ2R1R0glAmlW79sVAsHtUd4VGxCHsQi687N4OmWA1/nynsr5aO6l74+dh1Ctm5+bjz5D+fj1cbtRWl5+bn4NztGMwY0BFZuXl4kvQcLevVQJ+2DTFn24nKbdwnSlJJvwu8zXdOIyMjKCsrS92VBgDi4+NLXaP7X6qqqmjSpAnu3Sv8MbfovPj4eKlbrsbHx8Pe3r5CZb6Lz2rAq6uri9OnT2PZsmVIS0uDpaUlFi9eDFdXVwBAVlYWli5diilTpsDIyEiYhioSibBv3z589913aN++PZSUlNClSxesXLmyzOuJRCIcPnwYM2bMwPDhw5GYmAhTU1O0b9++WCi/opYsWYIRI0agTZs2MDIygpeXF9LSpO83t3r1avz4448YO3YskpOTUaNGDfz4448AAHNzc/j6+uKHH37A8OHD4eHhAX9/f0yfPh1RUVHo3r079PT04OfnJxXhbdy4MZYsWYIFCxZg+vTpaN++PebPnw8PDw+5tKNKlSo4ceIEpk6dig4dOkBZWRn29vZo27YtgMLdkq9duwYPDw+oqKjg+++/Lze6CwA9evTA999/D09PT2RnZ6Nbt26YNWuW1FQPR0dH7Ny5E35+fvj555+hq6uL9u3bS5VTu3ZttGnTBikpKWjZsuU7vUYfmwOXbsNQRxOT3b+Asa4Wbj1KwJDlfyPp1T37zA1132rtlKm+Njrb1wYAHPeWXuPc75etOM+NLj6IBvUtsHHdWOH5tMmFm0Ts238RM322y6taCufg+QgY6mri+77tYayvhYiH8Rj68w7hVkPmVXQheSP6oaeljvkju8JYXwtpGVkIj4pDH+/NuPfqC2R+gQS2NaqiTzs76GqpI+HZC5wOj8KSv08jh/fiLRf7q4/LseNhMDTQwrhvXWBURRe3I5/gG891SE4pnK1gZqov9fkQq6ngu7FdUN28CjIzc3AmJAI/ztyKF+mvo+o62uqY4NkVJib6eP48E/+euI4Vvx5BXh5/fCjPgdDCz8ekXu1grKeFWzEJGLJ4B5Je3TO8WhXdt94Yz3P1Pnj17YAVY9ygr6WOx8lpWLj7NP46eVUWTaBKoKamhqZNmyIwMBA9e/YEUBi1DwwMlLp1a1ny8/MRHh6Orl27AgBq1qwJU1NTBAYGCgPctLQ0XLhwAd9++60smgEAEEm4up/og5NIJKhduzbGjh1bbOpIRVmMWvCBa0Xv6tE6L9g5TC4/I1WK8CuLYfXVPHlXg16J3voj+6uPCPurj0v4lcWoMexneVeDXonxL3lnYXmrrL+Rt23/jh07MHToUKxZswYtWrTAsmXL8Pfff+P27dswMTGBh4cHzM3NMX/+fADAnDlz0KpVK9jY2CA1NRW//PIL9u7di8uXLwvLQBcsWICff/4ZmzZtQs2aNTFr1ixcv34dt27dKnbP3g/ls4rwElWGxMREbN++HXFxcZ/0vXeJiIiI6PM1YMAAJCYmYvbs2YiLi4O9vT2OHj0qzFSNiYkR9vYBgGfPnmHUqFGIi4uDgYEBmjZtirNnz0rteTRt2jRkZGRg9OjRSE1NxRdffIGjR4/KbLALcMArVw0aNCi2IVKRNWvWYPDgwZVcow9HkdtWnqpVq8LIyAhr166FgUHpO64SEREREeEj3tvL09Oz1CnM/70TzdKlS7F06dIyyxOJRJgzZw7mzJnzoapYLg545ejw4cMl3ioHKL5d96dGkdtWHq4SICIiIiL6OHDAK0eWlop7M25FbhsRERER0QfzEUd4FYFS+VmIiIiIiIiIPj2M8BIREREREckNQ7yyxAgvERERERERKSQOeImIiIiIiEghcUozERERERGRvHBGs0wxwktEREREREQKiRFeIiIiIiIieWGEV6YY4SUiIiIiIiKFxAgvERERERGRnEjkXQEFxwgvERERERERKSRGeImIiIiIiOSFa3hlihFeIiIiIiIiUkgc8BIREREREZFC4oCXiIiIiIiIFBLX8BIREREREcmLiIt4ZYkRXiIiIiIiIlJIjPASERERERHJCwO8MsUILxERERERESkkDniJiIiIiIhIIXHAS0RERERERAqJa3iJiIiIiIjkhWt4ZYoRXiIiIiIiIlJIjPASERERERHJCyO8MsUILxERERERESkkDniJiIiIiIhIIXHAS0RERERERAqJa3iJiIiIiIjkhWt4ZYoRXiIiIiIiIlJIjPASERERERHJiUjEEK8sMcJLRERERERECokDXiIiIiIiIlJIHPASERERERGRQuIaXiIiIiIiInnhEl6ZYoSXiIiIiIiIFBIjvERERERERPLCCK9MiSQSiUTelSAiIiIiIvoc1fjul0q5TszKqZVynY8NI7xEH6k+m5bLuwr0yu6hE2D11Tx5V4Neid76I+wcJsu7GvRK+JXF7K8+IruHTkCtfj/Juxr0yoOdM2HXbIq8q0GvhF9aJO8qkBxwDS8REREREREpJA54iYiIiIiISCFxSjMREREREZGciLhplUwxwktEREREREQKiQNeIiIiIiIiUkgc8BIREREREZFC4hpeIiIiIiIieeEaXplihJeIiIiIiIgUEiO8RERERERE8sIIr0wxwktEREREREQKiRFeIiIiIiIiOWGAV7YY4SUiIiIiIiKFxAgvERERERGRvIgY45UlRniJiIiIiIhIITHCS0REREREJCcM8MoWI7xERERERESkkDjgJSIiIiIiomJ+/fVXWFlZQV1dHS1btkRoaGipedetW4d27drBwMAABgYGcHZ2LpZ/2LBhEIlEUo8uXbrItA0c8BIREREREZGUHTt2YNKkSfD29saVK1fQuHFjuLi4ICEhocT8QUFBGDRoEE6ePIlz587BwsICnTt3xpMnT6TydenSBbGxscJj27ZtMm0HB7xERERERETyIqqkx1tasmQJRo0aheHDh6N+/fr4/fffoampiQ0bNpSYf8uWLRg7dizs7e1Rr149rF+/HgUFBQgMDJTKJxaLYWpqKjwMDAzevnJvgQNeIiIiIiIiBZednY20tDSpR3Z2dol5c3JycPnyZTg7OwtpSkpKcHZ2xrlz5yp0vczMTOTm5sLQ0FAqPSgoCFWrVkXdunXx7bffIjk5+d0bVQEc8BIREREREclJZQV458+fDz09PanH/PnzS6xTUlIS8vPzYWJiIpVuYmKCuLi4CrXLy8sL1apVkxo0d+nSBZs3b0ZgYCAWLFiAU6dOwdXVFfn5+RUq813wtkREREREREQKbvr06Zg0aZJUmlgslsm1fv75Z2zfvh1BQUFQV1cX0gcOHCj8v52dHRo1agRra2sEBQXByclJJnVhhJeIiIiIiEheKinEKxaLoaurK/UobcBrZGQEZWVlxMfHS6XHx8fD1NS0zOYsWrQIP//8M44fP45GjRqVmbdWrVowMjLCvXv3ysz3PjjgJSIiIiIiIoGamhqaNm0qteFU0QZUrVu3LvW8hQsXws/PD0ePHkWzZs3Kvc7jx4+RnJwMMzOzD1LvknBKMxERERERkZyI3mEH5cowadIkDB06FM2aNUOLFi2wbNkyZGRkYPjw4QAADw8PmJubC+uAFyxYgNmzZ2Pr1q2wsrIS1vpqa2tDW1sb6enp8PX1RZ8+fWBqaor79+9j2rRpsLGxgYuLi8zawQEvERERERERSRkwYAASExMxe/ZsxMXFwd7eHkePHhU2soqJiYGS0usJw6tXr0ZOTg769u0rVY63tzd8fHygrKyM69evY9OmTUhNTUW1atXQuXNn+Pn5yWwtMcABLxEREREREZXA09MTnp6eJR4LCgqSeh4dHV1mWRoaGjh27NgHqlnFcQ0vERERERERKSRGeImIiIiIiOTkY13DqygY4SUiIiIiIiKFxAEvERERERERKSQOeImIiIiIiEghcQ0vERERERGRnHANr2wxwktEREREREQKiQNeIiIiIiIiUkgc8NJHIzo6GiKRCGFhYfKuChERERFR5RBV0uMzxTW89ElzdHSEvb09li1bJu+qfDYG2reCc+2G0FQTIzLhKdaeP4nYF6ml5nepaweXOo1grK0DAHiUmoKd1y/g6pOHQh5flz5oaFpd6rxjkeFYe/6ETNqgKIZ82RRjureEsZ42ImLi4b3pOK7djy0xb9/2dlj0jZtUWnZOHuoOWyg8XzSmO/p2aCSV59S1+xi6YMeHr/xnqqlDLQzzcER92+qoaqyHCZM24kTQDXlXS2Gxv/p4DHFpilE9WsNYXxsRD+Phs+EYrt97Wmp+HU0xpgzqCJeWdaGnrYGnic/h538cQVfvAwCa29bA6B6t0LCWGUwMdTBm4d8IuHinsprzyRvYrw2GDXGEURUdRN6Nxfxf/sGNm49KzKuirISRw53Qo3tTVDXWQ/TDRCxdeQgh5yKFPEf3/wjzaobFzt3+dwjmLvxHZu0gqoiPdsCbk5MDNTW1j75Mos9Jz4ZN0dXWHiuDjyMhPQ0D7Vth1pc9MWHvn8gtyC/xnOSMdPx1JQSxaamACOhobQuvjm6YenArHqWmCPkC7oRj+9XzwvPs/DxZN+eT1r2VLWb+zwkzNxzF1XtPMcK1OTb/MBCdJq9BclpmieekZWbBafIa4blEUjxPUNh9TF1zUHienVfy+0rvRkNdDXfuPMU/+0KxfPFweVdHobG/+nh0a1MfPw79ErPWHkHYvScY3q0FNs0YBOcJq0vsr1RVlPDnrMFITsvAuMW7EZfyAubGekjLyBLyaIpVEfEwATtPXsPvU/tVZnM+eS5fNsbU73vAb/5uXL8RgyGD2mHNylFw67MQKc/Si+X/bqwrurk6wHfuTkRFJ6BNq7pY9sswDPl6JW5HFv5oMchjOZSUX08crW1tinW/jcGxwOuV1q5PmehzDr9Wgree0rxr1y7Y2dlBQ0MDVapUgbOzMzIyMgAAGzZsQIMGDSAWi2FmZgZPT0/hvJiYGLi7u0NbWxu6urro378/4uPjheM+Pj6wt7fH+vXrUbNmTairqwMAUlNTMXLkSBgbG0NXVxedOnXCtWvXKlTXdy3z2rVr6NixI3R0dKCrq4umTZvi0qVLAAB/f3/o6+tj7969qF27NtTV1eHi4oJHj6R/FVu9ejWsra2hpqaGunXr4s8//5Q6LhKJsH79evTq1QuampqoXbs29u/fLxx/9uwZBg8eDGNjY2hoaKB27drYuHGjcPzRo0fo378/9PX1YWhoCHd3d0RHR1fodQE+zHu1YcMG1KhRA9ra2hg7dizy8/OxcOFCmJqaomrVqpg7d26xNq9evRqurq7Q0NBArVq1sGvXrjLreePGDbi6ukJbWxsmJiYYMmQIkpKSAADDhg3DqVOnsHz5cohEIohEIuE1KOs8oDAyPH78eEybNg2GhoYwNTWFj4+P1LXf5+/k4cOHcHNzg4GBAbS0tNCgQQMcPny4wu/Px6q7bRPsuh6Ki48e4OGzJKwMPg4DTS20qGFd6jmXHkfhypNoxL5IRWxaKrZePYesvFzUMTKTypedl4fUrEzh8TI3R9bN+aSN7NoC20+GYeep67j3JAkz/jiCl9l56N+hceknSYDE5xnCIykto1iWnLw8qTxvfsGk9xd89jZW/nYUJ04yqitr7K8+Hl93b4kdgVexK+ga7j1Owsy1h/EyJxf9OtmXmL9fR3voaWtgzMKduBz5GE8SnyP0VgxuP0wQ8pwKu48l24NwPDSyxDKodB6DO2D33gvYe+AiHkTFY8783XiZlYtePZqXmL97Vwes3xiIMyG38fhJCv7efQ5nzkZg6OAOQp5nqRlITn4hPNp/YYuYR0m4dPl+ZTWLqFRvNeCNjY3FoEGDMGLECERERCAoKAi9e/eGRCLB6tWrMW7cOIwePRrh4eHYv38/bGxsAAAFBQVwd3dHSkoKTp06hYCAADx48AADBgyQKv/evXvYvXs39uzZI6zj7NevHxISEnDkyBFcvnwZDg4OcHJyQkpKyn+rV6J3KXPw4MGoXr06Ll68iMuXL+OHH36AqqqqUGZmZibmzp2LzZs3IyQkBKmpqRg4cKBw/J9//sGECRMwefJk3LhxA2PGjMHw4cNx8uRJqbr5+vqif//+uH79Orp27YrBgwcLdZg1axZu3bqFI0eOICIiAqtXr4aRkREAIDc3Fy4uLtDR0cGZM2cQEhICbW1tdOnSBTk55f+j+yHeq/v37+PIkSM4evQotm3bhj/++APdunXD48ePcerUKSxYsAAzZ87EhQsXpM6bNWsW+vTpg2vXrmHw4MEYOHAgIiIiSqxnamoqOnXqhCZNmuDSpUs4evQo4uPj0b9/fwDA8uXL0bp1a4waNQqxsbGIjY2FhYVFuecV2bRpE7S0tHDhwgUsXLgQc+bMQUBAgHD8ff5Oxo0bh+zsbJw+fRrh4eFYsGABtLW1y31vPmYm2row0NTC9acxQlpmbg7uJsahrrFphcpQEonQ1qoO1FVUEJkoPfW2Xa262DhgNJb2GIzBDm2gpvzRTkCRO1VlJTSsaYaQG9FCmkQChNyIgkNt81LP01RXQ/DycTi70hPrJvVFbXOjYnla2Vri0uoJCFw0Bj+N6AJ9bQ1ZNIFIpthffTxUVZTQsJYZQq5HCWkSCRByPRpN6pTcXzk3q4Ordx7Dd2QXhK6biCOLR2Nsr7ZQUmIU7H2pqCijfj1znL/wevq3RCLB+dC7aNzIssRz1FRVkJ0jPYshOysXTexrlnqN7l2b4p/9oR+u4oqOa3hl6q166NjYWOTl5aF3796wtCz8UNjZ2QEAfvrpJ0yePBkTJkwQ8jdvXvhLUWBgIMLDwxEVFQULCwsAwObNm9GgQQNcvHhRyJeTk4PNmzfD2NgYABAcHIzQ0FAkJCRALBYDABYtWoS9e/di165dGD16dLl1fpcyY2JiMHXqVNSrVw8AULt2bakyc3NzsWrVKrRs2RJA4cDJ1tYWoaGhaNGiBRYtWoRhw4Zh7NixAIBJkybh/PnzWLRoETp27CiUM2zYMAwaNAgAMG/ePKxYsQKhoaHo0qULYmJi0KRJEzRr1gwAYGVlJZy3Y8cOFBQUYP369RC9unHXxo0boa+vj6CgIHTu3LnM1+RDvFcFBQXYsGEDdHR0UL9+fXTs2BGRkZE4fPgwlJSUULduXSxYsAAnT54UXiegcBA5cuRIAICfnx8CAgKwcuVK/Pbbb8XquWrVKjRp0gTz5s0T0jZs2AALCwvcuXMHderUgZqaGjQ1NWFqavpW5wFAo0aN4O3tDaDwPV61ahUCAwPx5ZdfvvffSUxMDPr06SN8PmrVqlXme/Ip0NfQAgCkZklPP3uelSkcK00N/SqY17U/1JRVkJWXi4UnD+Hx89c/WgU/iERiRhpSMjNgaWCEIU3bopquAX4JOvThG6IADHQ0oaKshKTn0hHaxOcZsK5WpcRzHsSmYNrag7gdkwAdDXWM6t4Su3090HnaOsSlvAAAnLr+AEcvRuJRYiosTQwwtb8j/L0GoPfsTSgoaf4z0UeK/dXHo7T+Kul5OqzNS+6vLEz00bqhFfYF38CI+dthaWqIOSO7QEVZCSt2namMaissA30tqKgoIzlFeupycsoL1LSqWuI5Z89HwuOr9rh85QEePU5GqxY2cOpkB2WlkuNmTo4NoaOtjn0HLn3w+hO9i7ca8DZu3BhOTk6ws7ODi4sLOnfujL59+yI3NxdPnz6Fk5NTiedFRETAwsJCGEABQP369aGvr4+IiAhhEGVpaSkMTIHCKaPp6emoUkW6Q3z58iXu36/YFIl3KXPSpEkYOXIk/vzzTzg7O6Nfv36wtn49BUpFRUWoMwDUq1dPaEuLFi0QERFRbDDetm1bLF++XCqtUaPXm8NoaWlBV1cXCQmF03W+/fZb9OnTB1euXEHnzp3Rs2dPtGnTRmjDvXv3oKOjI1VeVlZWua9LQkLCB3mvrKyspK5vYmICZWVlKL3R+ZmYmAjtKdK6detiz0vblfnatWs4efJkiZHR+/fvCwPXdz3vzdcfAMzMzIT6vu/fyfjx4/Htt9/i+PHjcHZ2Rp8+fYpdr0h2djays7Ol0ooG2fLUrmZdjGndSXg+L3B/GbnL9jTtGaYc2ApNVTFaW9nA84svMfvobuFLZMDd19M7Y1KT8exlBnxd+sBERw/xL56/eyNIcOXuE1y5+0R4fvnuY/z7y2h85dQES3aeBgAcOHdLOB75KBERMQk4s2wsWtW3xNmb0ZVdZaIKY3+lWJREIiSnZeDHNYdQUCDBjQdxMDXUwagerTjglYOfF+2Dz8x+2L9rGiQSCR49Sca+/RfRs0eLEvP3cm+B4LORSExKq+Safro+4+BrpXirAa+ysjICAgJw9uxZHD9+HCtXrsSMGTMQGBj4QSqjpSX9q2t6ejrMzMwQFBRULK++vr7MyvTx8cFXX32FQ4cO4ciRI/D29sb27dvRq1evCl2zot6cJg0UrnEtKCgAALi6uuLhw4c4fPgwAgIC4OTkhHHjxmHRokVIT09H06ZNsWXLlmJlvjm4L4mGxoeZnlhS3ctqz7tIT0+Hm5sbFixYUOyYmZlZCWe83Xll1fd9/05GjhwJFxcXHDp0CMePH8f8+fOxePFifPfdd8XKmz9/Pnx9faXSvL29gZoGpbaxMlx89AB3k+KE56rKygAAfXVNpL58HTXRU9dEdEpimWXlFRQg7tUXwQcpCbCpYoJutvZYU8qupkXXNeMXyBI9e5GJvPwCGOlJ92/GelpITC2+LrckefkFuPkwHlYmpf+dPUpIRXJaJqxMDDjgpY8a+6uPV2n9lZGeNhJTi2+QBAAJqenIyytAQcHrmSX3HiehqoEOVFWUkJv37t8tPnfPUjOQl5ePKobSQYEqhjpITi55gPosNQMTpvhDTU0F+nqaSEhMw/ffdcPjJ8nF8pqZGqBVi9r4ftommdSf6F289aZVIpEIbdu2ha+vL65evQo1NTUEBATAysqq1IGvra0tHj16JLWx061bt5Camor69euXei0HBwfExcVBRUUFNjY2Uo+i9axvq6Jl1qlTB99//z2OHz+O3r17S20YlZeXJ2xOBACRkZFITU2Fra2t0N6QkBCp64aEhJTZ1pIYGxtj6NCh+Ouvv7Bs2TKsXbtWaMPdu3dRtWrVYm3Q09Mrs0wdHR2ZvFcVdf78+WLPi163/3JwcMDNmzdhZWVVrJ1FP2SoqakhPz//rc8rz4f4O7GwsMA333yDPXv2YPLkyVi3bl2J15o+fTqeP38u9Zg+fXqF6ilLWXm5iHvxXHg8Sk3Bs8wM2Jm9jv5rqKqhtrEpIhPjyiipOJFIJHwhLYmVQeEPN89elrzb8OcuN78AN6Ji0aaBlZAmEgFtGlhJRXHLoiQSoZ5FVSSU8oUTAEwNdWCgrVFmHqKPAfurj1duXgFuPIhFG7vX6z1FIqCNnRWu3im5v7p8+zEsTQ0geiPsVbOaIeJTXnCw+57y8vJx6/YTtGzxehmWSCRCq+Y2uHb9YRlnAjk5eUhITIOKshKcO9nh5KmbxfL07NEcKc/ScTq45P1ZqGQiUeU8PldvNeC9cOEC5s2bh0uXLiEmJgZ79uxBYmIibG1t4ePjg8WLF2PFihW4e/curly5gpUrVwIAnJ2dYWdnh8GDB+PKlSsIDQ2Fh4cHOnToIKxRLYmzszNat26Nnj174vjx44iOjsbZs2cxY8YMqQHn2yivzJcvX8LT0xNBQUF4+PAhQkJCcPHiRalBmaqqKr777jtcuHABly9fxrBhw9CqVSu0aFE4tWPq1Knw9/fH6tWrcffuXSxZsgR79uzBlClTKlzP2bNnY9++fbh37x5u3ryJgwcPCnUYPHgwjIyM4O7ujjNnziAqKgpBQUEYP348Hj9+XG7ZsnivKmrnzp3YsGED7ty5A29vb4SGhkrtEP2mcePGISUlBYMGDcLFixdx//59HDt2DMOHDxcGuVZWVrhw4QKio6ORlJSEgoKCCp1Xnvf9O5k4cSKOHTuGqKgoXLlyBSdPnix1YC8Wi6Grqyv1+BimNJfkYMRV9G3UAs0saqKGfhWM/6IznmVmIDTm9VR678694Vrv9fTtwQ5tUN+kGoy1dFBDvwoGO7RBA9PqOP2gcGdNEx099G3UArUMq8JYSwfNLGpifLvOuBn3GA+fJRWrAxVafzgUgzrao087O1hXq4K5I1yhqa6KnacKbwGx+Fs3TBvgKOQf3+sLtLOrCYuq+mhgZYJl43rA3EgX208W7jyuKVbF9K86oYlNNVQ30kObBlZYN7kvouNTcPr6A3k0USFpaKihbp1qqFunGgDA3NwQdetUg6mpvnwrpoDYX308/jh4AQOdmqB3h0awNq8Cv1FdoSlWxa5X/c8izx6Y+tXrPU62HL8MPW0NzB7ugppmhujoYIOxvdriz2Ovv/tpqqvC1soEtlYmAACLqvqwtTJBNSPdym3cJ2jzllPo07MlenRrhppWVTFrem9oaKhh74GLAIC5vgMxYZyrkN+uQQ04dWyI6uaGcLCvidUrR0FJJMLGzdKbsYpEIvR0a479By8hP58/TNDH462mNOvq6uL06dNYtmwZ0tLSYGlpicWLF8PVtfBDkZWVhaVLl2LKlCkwMjJC3759ARR+APbt24fvvvsO7du3h5KSErp06SIMskojEolw+PBhzJgxA8OHD0diYiJMTU3Rvn17mJiYvFODyytTWVkZycnJ8PDwQHx8PIyMjNC7d2+pKaeamprw8vLCV199hSdPnqBdu3b4448/hOM9e/bE8uXLsWjRIkyYMAE1a9bExo0b4ejoWOF6qqmpYfr06YiOjoaGhgbatWuH7du3C9c/ffo0vLy80Lt3b7x48QLm5uZwcnKCrm75Hf3QoUM/+HtVUb6+vti+fTvGjh0LMzMzbNu2rdTIcbVq1RASEgIvLy907twZ2dnZsLS0RJcuXYS1wlOmTMHQoUNRv359vHz5ElFRUbCysir3vPK8799Jfn4+xo0bh8ePH0NXVxddunTB0qVLP8hrKE97b1yGuooqvmntBC01MW7HP4Xfv3ul7mlpqqMHHfHrqfN66pr47gsXGGhoIjMnBw+fJcEvYC+uxxbunpqXn49GZhbobmsPsaoqkjPScf7hPey6frHS2/cpOXg+Aoa6mvi+b3sY62sh4mE8hv68Q7jVkHkVXUjemA6op6WO+SO7wlhfC2kZWQiPikMf782496TwS3p+gQS2NaqiTzs76GqpI+HZC5wOj8KSv08jh/fi/WAa1LfAxnVjhefTJrsDAPbtv4iZPtvlVS2FxP7q43Ho7K3C/mpABxjpayEiOh7D5m4TNrKqZqQntTFebHIahs3diplDv8ThRaMRl/IC/ocv4vd9Z4U8drWqYZvvEOH5zGGFG3buCrqGab8eqKSWfZqOBVyDoYE2xn3jAqMqOrh95ym++W69sJGVmamB1L8fYrEKvvvWFdXNDZH5MgdnQiLw4+xteJEufdu6Vi1qo5qZAXdnfhefcfS1MogkEm69+Tb8/f0xceJEpKamyrsqnxyRSIR//vkHPXv2lHdVPgl9Ni0vPxNVit1DJ8Dqq3nlZ6RKEb31R9g5TJZ3NeiV8CuL2V99RHYPnYBa/X6SdzXolQc7Z8KuWcVn+JFshV9aJO8qlKjejMWVcp3bcz/Pfzt54zgiIiIiIiI5YYBXtt5606qPSYMGDaCtrV3io6QdjD8Xpb0m2traOHOG2/kTEREREdHn4ZOO8B4+fBi5ubklHnvXNb7lGTZsGIYNGyaTsj+U0u5rCwDm5uaVV5H/4Ox5IiIiIqL/YIhXpj7pAa+lpaW8q/BRsrGxkXcViIiIiIiI5O6THvASERERERF9yhjgla1Peg0vERERERERUWkY4SUiIiIiIpITEUO8MsUILxERERERESkkRniJiIiIiIjkhRFemWKEl4iIiIiIiBQSI7xERERERERywgCvbDHCS0RERERERAqJEV4iIiIiIiI54S7NssUILxERERERESkkDniJiIiIiIhIIXHAS0RERERERAqJa3iJiIiIiIjkhGt4ZYsRXiIiIiIiIlJIjPASERERERHJCyO8MsUILxERERERESkkDniJiIiIiIhIIXFKMxERERERkZyIOKdZphjhJSIiIiIiIoXECC8REREREZGc8LZEssUILxERERERESkkDniJiIiIiIhIIXHAS0RERERERAqJa3iJiIiIiIjkhGt4ZYsRXiIiIiIiIlJIjPASERERERHJCQO8ssUILxERERERESkkRniJiIiIiIjkhSFemWKEl4iIiIiIiBQSI7xERERERERywl2aZYsRXiIiIiIiIlJIHPASERERERHJiaiSHu/i119/hZWVFdTV1dGyZUuEhoaWmX/nzp2oV68e1NXVYWdnh8OHD0sdl0gkmD17NszMzKChoQFnZ2fcvXv3HWtXMRzwEhERERERkZQdO3Zg0qRJ8Pb2xpUrV9C4cWO4uLggISGhxPxnz57FoEGD8PXXX+Pq1avo2bMnevbsiRs3bgh5Fi5ciBUrVuD333/HhQsXoKWlBRcXF2RlZcmsHRzwEhERERERyctHGuJdsmQJRo0aheHDh6N+/fr4/fffoampiQ0bNpSYf/ny5ejSpQumTp0KW1tb+Pn5wcHBAatWrQJQGN1dtmwZZs6cCXd3dzRq1AibN2/G06dPsXfv3revYAVxwEtERERERKTgsrOzkZaWJvXIzs4uMW9OTg4uX74MZ2dnIU1JSQnOzs44d+5cieecO3dOKj8AuLi4CPmjoqIQFxcnlUdPTw8tW7YstcwPgbs0E32kdg+dIO8q0Buit/4o7yrQG8KvLJZ3FegN7K8+Lg92zpR3FegN4ZcWybsK9JGrrE2a58+fD19fX6k0b29v+Pj4FMublJSE/Px8mJiYSKWbmJjg9u3bJZYfFxdXYv64uDjheFFaaXlkgQNeoo+UncNkeVeBXgm/shgWoxbIuxr0yqN1Xuizabm8q0Gv7B46gf3VRyT8ymJYjF4o72rQK4/WTkP3dcvkXQ165eCoifKuglxNnz4dkyZNkkoTi8Vyqk3l4YCXiIiIiIhITirrPrxisbjCA1wjIyMoKysjPj5eKj0+Ph6mpqYlnmNqalpm/qL/xsfHw8zMTCqPvb19RZvx1riGl4iIiIiIiARqampo2rQpAgMDhbSCggIEBgaidevWJZ7TunVrqfwAEBAQIOSvWbMmTE1NpfKkpaXhwoULpZb5ITDCS0REREREJC+VtYj3LU2aNAlDhw5Fs2bN0KJFCyxbtgwZGRkYPnw4AMDDwwPm5uaYP38+AGDChAno0KEDFi9ejG7dumH79u24dOkS1q5dCwAQiUSYOHEifvrpJ9SuXRs1a9bErFmzUK1aNfTs2VNm7eCAl4iIiIiIiKQMGDAAiYmJmD17NuLi4mBvb4+jR48Km07FxMRASen1hOE2bdpg69atmDlzJn788UfUrl0be/fuRcOGDYU806ZNQ0ZGBkaPHo3U1FR88cUXOHr0KNTV1WXWDg54iYiIiIiI5OQjDfACADw9PeHp6VnisaCgoGJp/fr1Q79+/UotTyQSYc6cOZgzZ86HqmK5uIaXiIiIiIiIFBIjvERERERERHJSWbs0f64Y4SUiIiIiIiKFxAgvERERERGR3DDEK0uM8BIREREREZFCYoSXiIiIiIhITriGV7YY4SUiIiIiIiKFxAgvERERERGRvDDCK1OM8BIREREREZFC4oCXiIiIiIiIFBKnNBMREREREckJZzTLFiO8REREREREpJAY4SUiIiIiIpIT3pZIthjhJSIiIiIiIoXEAS8REREREREpJA54iYiIiIiISCFxDS8REREREZGccA2vbDHCS0RERERERAqJEV4iIiIiIiI5YYBXthjhJSIiIiIiIoXECC8REREREZG8MMQrU4zwEhERERERkUJihJeIiIiIiEhOuEuzbDHCS0RERERERAqJEV4iIiIiIiI5YYBXthjhJSIiIiIiIoXECC8REREREZG8MMQrU4zwEhERERERkUJihJeIiIiIiEhOGOCVLUZ4iYiIiIiISCFxwEufHSsrKyxbtuyD5yUiIiIielsiUeU8Plec0vyZsbKywsSJEzFx4sRPolxZuHjxIrS0tD54XirU1KEWhnk4or5tdVQ11sOESRtxIuiGvKulkIY6NsEYl5Yw1tNCxKMEzN72L8KiY8s9r0dzW/w6ugeOXb2Dkb/9AwBQUVbC1J7t0KmhNWoY6+HFy2yciXiIn3efQvzzdFk3RWEMtG8F59oNoakmRmTCU6w9fxKxL1JLze9S1w4udRrBWFsHAPAoNQU7r1/A1ScPhTy+Ln3Q0LS61HnHIsOx9vwJmbThc8L+qvIMdWyCMZ1bFPZXj4v6q7hyz+vRvB5+HdUDx8LuCv0VAHRpUhtDOtjDroYpDLQ14DLHH7ceJ8iyCQpncNNWcKlnBy01MSLin+K34BN4mpZaav5+jZujdU1rVNczRE5+HiLiY+EfGownz58JefQ1NDGiZTs0Ma8BDVU1PH7+DH9fDcXZ6HuV0CKikjHCS5+MnJycD1KOsbExNDU1P3heKqShroY7d55i7s975F0VhebWrB5m9e+EZQdC0NWv8IvenxP7o4pO2X+v1avoYma/jrhw55FUuoaaChrWMMXyQ2fh6rcJo1bvhbWJITZ49pZlMxRKz4ZN0dXWHmvOn8D0wzuQlZeLWV/2hKqScqnnJGek468rIZh2cDumHdqOG3GP4NXRDRb6hlL5Au6E4+sd64THn5eDZd2czwL7q8rh1qweZvXriGUHQ9D1p0249SgRf06oYH/Vt3h/BQCaYlWE3n2CeXtOyaraCq1P42Zwa9AEvwYHYvK+7cjKzcUc115QVS69v2poZo5DN69jyv7tmHV4D1SUlODn2gtildfxs0mOLqiuZwC/4/sxbvefOBd9D15OXVGrinFlNOvTxRCvTHHA+5EpKCjAwoULYWNjA7FYjBo1amDu3LkAgPDwcHTq1AkaGhqoUqUKRo8ejfT015GXYcOGoWfPnli0aBHMzMxQpUoVjBs3Drm5uQAAR0dHPHz4EN9//z1EIhFEb/zhBwcHo127dtDQ0ICFhQXGjx+PjIwMAMDmzZuhra2Nu3fvCvnHjh2LevXqITMzs8xyS+Pv7w99fX3s3bsXtWvXhrq6OlxcXPDo0et/1Hx8fGBvb4/169ejZs2aUFdXBwCkpqZi5MiRMDY2hq6uLjp16oRr165JlX/gwAE0b94c6urqMDIyQq9evYRjb05Tlkgk8PHxQY0aNSAWi1GtWjWMHz++xLwAEBMTA3d3d2hra0NXVxf9+/dHfHx8sTr/+eefsLKygp6eHgYOHIgXL16U+5ooiuCzt7Hyt6M4cZJRElka9WVzbDtzDX+fDcfd2GRM/+sYsnJyMaCtXannKIlEWDHSDYv3ByMmKVXq2IuXORi8dAcOXrqNB/EpuPrgKWZtC0AjKzNUM9SRcWsUQ3fbJth1PRQXHz3Aw2dJWBl8HAaaWmhRw7rUcy49jsKVJ9GIfZGK2LRUbL16Dll5uahjZCaVLzsvD6lZmcLjZe6H+QHwc8f+qnKM+rIZtgVfx99nbxT2V1sq2F993b3E/goA9py/heWHziI4Ilp2FVdg7g2bYMfVC7jw8AGiU5KwJOgYDDW10Nqy9P7K++heBN69hZhnKYhKScLSU8dRVUcXNkYmQh5bEzMcuBmGO4nxiH+Rhh1XQ5GRkw0bo6qV0SyiEnHA+5GZPn06fv75Z8yaNQu3bt3C1q1bYWJigoyMDLi4uMDAwAAXL17Ezp078e+//8LT01Pq/JMnT+L+/fs4efIkNm3aBH9/f/j7+wMA9uzZg+rVq2POnDmIjY1FbGzh1Mf79++jS5cu6NOnD65fv44dO3YgODhYKNvDwwNdu3bF4MGDkZeXh0OHDmH9+vXYsmULNDU1Sy23PJmZmZg7dy42b96MkJAQpKamYuDAgVJ57t27h927d2PPnj0ICwsDAPTr1w8JCQk4cuQILl++DAcHBzg5OSElJQUAcOjQIfTq1Qtdu3bF1atXERgYiBYtWpRYh927d2Pp0qVYs2YN7t69i71798LOruR/gAsKCuDu7o6UlBScOnUKAQEBePDgAQYMGCCV7/79+9i7dy8OHjyIgwcP4tSpU/j5558r9JoQVYSqshLsLE0RHPF62qtEApyJiEZTa/NSz5vo1hbJLzKxI/h6ha6joyFGQYEEaZnZ711nRWeirQsDTS1cfxojpGXm5uBuYhzqGptWqAwlkQhtrepAXUUFkYnS/Wi7WnWxccBoLO0xGIMd2kBNmSuS6NOgqqwEuxqmUgPTwv7qIZrWqlbqeRO7tynsr0LCK6GWnxcTHV0Yamoh7MnrIENmbg4iE+NQz8SsjDOlaampAQDSs7OEtIj4WLSzrgNtsRgiAO1r1YGasgrCYx9/sPorIlElPT5X/BfzI/LixQssX74cq1atwtChQwEA1tbW+OKLL7Bu3TpkZWVh8+bNwprSVatWwc3NDQsWLICJSeGvawYGBli1ahWUlZVRr149dOvWDYGBgRg1ahQMDQ2hrKwMHR0dmJq+/gI2f/58DB48WFh/W7t2baxYsQIdOnTA6tWroa6ujjVr1qBRo0YYP3489uzZAx8fHzRt2hQASi23PLm5uVi1ahVatmwJANi0aRNsbW0RGhoqDFBzcnKwefNmGBsXToUJDg5GaGgoEhISIBaLAQCLFi3C3r17sWvXLowePRpz587FwIED4evrK1yrcePGJdYhJiYGpqamcHZ2hqqqKmrUqFHq4DgwMBDh4eGIioqChYUFgMLod4MGDXDx4kU0b94cQOHA2N/fHzo6hVGxIUOGIDAwUIjUE70vQ21NqCgrITEtQyo9KS0TNqZVSjynuY05Bn7RCC5zNlboGmIVZUzv44h9F28hPYvRxPLoaxT2y6lZmVLpz7MyhWOlqaFfBfO69oeasgqy8nKx8OQhPH6eIhwPfhCJxIw0pGRmwNLACEOatkU1XQP8EnTowzeE6AN73V9JfzaSXmTAxsywxHOE/srPvxJq+PkxKOqvXkr/G5L6svz+qogIwKjWHXAz7gkePksW0hcEHoaXU1ds9/gWeQX5yM7Lw9yAA4hNe/7B6k/0tjjg/YhEREQgOzsbTk5OJR5r3Lix1AZKbdu2RUFBASIjI4UBb4MGDaD8xvoLMzMzhIeX/evotWvXcP36dWzZskVIk0gkKCgoQFRUFGxtbWFgYIA//vgDLi4uaNOmDX744Yf3bS5UVFSEQSIA1KtXD/r6+oiIiBAGnZaWlsJgt6iu6enpqFJF+kv9y5cvcf/+fQBAWFgYRo0aVaE69OvXD8uWLUOtWrXQpUsXdO3aFW5ublBRKf7RiIiIgIWFhTDYBYD69esLdS5qi5WVlTDYBQrfg4SE0jfSyM7ORna2dAStaDBP9CFoidWw7OvumLb5KJ6lvyw3v4qyElaPcYcIwI9/HZd9BT9B7WrWxZjWnYTn8wL3v3NZT9OeYcqBrdBUFaO1lQ08v/gSs4/uFga9AXdfT7eNSU3Gs5cZ8HXpAxMdPcS/4JdIUixaYjUsG9EN0/6sWH9F5XO0rotx7V5/t/Q9uu+9y/y2bSdYGhhh2oG/pdL/16w1tNTEmHFoN9KyXqKVlTW8nLrB68DfUgNj+o/POfxaCTjg/YhoaGi8dxmqqqpSz0UiEQoKCso8Jz09HWPGjJFau1qkRo0awv+fPn0aysrKiI2NRUZGhtSgTlb+u0Nyeno6zMzMEBQUVCyvvr4+gLd7HS0sLBAZGYl///0XAQEBGDt2LH755RecOnWq2GtZUW/7HsyfP18qGg0A3t7e73Rt+jykpGciL78AxrrSnw8jXc1iUV8AsKyqjxpG+tjo2UdIU3q11j7q96lwnLUODxNTAbwe7JpX0cOAxdsY3S3FxUcPcDfp9Q6zRRu96KtrIvXl60iWnromolMSyywrr6AAca8Grg9SEmBTxQTdXm1+VZKi65pxwEufgNf9lfQGVUY6Wkh8XkJ/ZfyqvxpXQn+1egocZ68X+iuqmAsxDxC5p4T+SkMLz97or/Q1NBGVXHZ/BQDftHFE8xo18cPBnUjOeL2XjKmOHtwa2GPsrs2IeVb4g11UShIamJqje4PG+DWYO8uTfHDA+xGpXbs2NDQ0EBgYiJEjR0ods7W1hb+/PzIyMoRBYEhICJSUlFC3bt0KX0NNTQ35+flSaQ4ODrh16xZsbGxKPe/s2bNYsGABDhw4AC8vL3h6emLTpk1llluevLw8XLp0SYjmRkZGIjU1Fba2tqWe4+DggLi4OKioqMDKyqrEPI0aNUJgYCCGDx9eoXpoaGjAzc0Nbm5uGDduHOrVq4fw8HA4ODhI5bO1tcWjR4/w6NEjIcp769YtpKamon79+hW6VkmmT5+OSZMmSaWJxWLs3v/jO5dJii03vwDhD+PQ1tYSx8IKN5MTiYAvbK3gf+Jysfz3Y5Ph7P2HVNrUnu2gpa4Gn+2BeJqSBuD1YLdmVQP0X7QNqRlZxcqiQll5ucIgtcizzAzYmVkg+lkSAEBDVQ21jU1xLPLt1iCKRKIyd0q1Miic9fLmF1Wij1VufgHCY+LQtp4ljoUV3pqmsL+yhP/JK8Xy349LhrPPBqm0qT3bQUusBp8dr/srqriXubl4mSvdX6VkZsDe3AJRr36Q01BVQ11jUxy5VfYeD9+0cURrKxtMP7gL8S+k34ui3ZoLJBKp9AKJBCKGMMvEV0e2OOD9iKirq8PLywvTpk2Dmpoa2rZti8TERNy8eRODBw+Gt7c3hg4dCh8fHyQmJuK7777DkCFDhOnMFWFlZYXTp09j4MCBEIvFMDIygpeXF1q1agVPT0+MHDkSWlpauHXrFgICArBq1Sq8ePECQ4YMwfjx4+Hq6orq1aujefPmcHNzQ9++fUsttzyqqqr47rvvsGLFCqioqMDT0xOtWrUqdQ0tADg7O6N169bo2bMnFi5ciDp16uDp06fCRlXNmjWDt7c3nJycYG1tjYEDByIvLw+HDx+Gl5dXsfL8/f2Rn5+Pli1bQlNTE3/99Rc0NDRgaWlZ4rXt7OwwePBgLFu2DHl5eRg7diw6dOiAZs2aVfg9+C+xWKxQU5g1NNRQw+L1+29uboi6darheVom4uJS5VcxBbMu4CKWjOiG69FxCIuKxdfOzaChpoq/X23wsnREN8Q9e4EF/5xGdl4+Ip8mSZ2f9rJwGn1RuoqyEtZ80xMNa5hg2MpdUFZSEiLIqRkvkZtf9kwRAg5GXEXfRi0Q+yIVCS/SMKhJazzLzEBozH0hj3fn3giNuYcjtwu/VA52aIOrT6KRmP4CGqpqaFerLhqYVodfwF4AgImOHtrVrIsrj6PxIvslLP/P3n1HRXG1YQB/lt6bgiDSMQqCCvaOgoqo2GIlscQeEWssX+zG3o2JXazYTWILdlDR2Kg2RKoiiIKIgCJlvz/QTTaAEQUGd5/fOXtO9s7M7rMShr3z3nvHoCqGNGqNO8mPEf/ieXExqBR4vqoYm8/cxMohHgiPL+F8NcQDyemZJZ+vsgsvvv2zXU9DDdUNdFBNTwsAYGNcOB/4WUZWsSNdSNoft0PQ16kxEl+m4+mrl/imYXOkZWfhavzf56sFHj1xNS4ax+8W3gljdIu2aGNTGz+dPors3LfQUy+s2me/zcHb/Hw8Tn+BJy9fwLulK7Zdu4SMN2/QzNIG9U3NMe/U5w+jJvpU7PBWMjNnzoSSkhJmzZqFJ0+ewMTEBKNGjYKGhgZOnTqFcePGoVGjRtDQ0ECvXr2wcuXKUr3+vHnzMHLkSNjY2CAnJwdisRh169ZFYGAgfvzxR7Rq1QpisRg2NjaS1YfHjRsHTU1NLFy4EADg6OiIhQsXYuTIkWjWrBlMTU2Lfd3/oqGhgalTp2LAgAFITExEq1atsHXr1g8eIxKJcPLkSfz4448YMmQInj17BmNjY7Ru3VrS8XdxccHBgwcxf/58LF68GDo6OmjdunWxr6enp4fFixdj4sSJyM/Ph6OjI44dO1ZkjvD79/7jjz8wduxYtG7dGgoKCnB3d8fPP//8n59VntSxN4Pv5u8lz6dM6gYA+OPoDcyYs0+oWDLn2M37MNDWwKRuLWGoo4m7j1Lw7ZoDeP6qsOpnaqDzUb+H7xnraaFD/ZoAgNOzv5Pa1nuZH/4q5j6YJO3327egpqSMUc1coamiivtPn2D+2d+RW/D36BdjbV1oq/497UJXTQNjW3aEvroGst++RfyL55h/5neEJxWu9pyXn4+6JmboYlcfqsrKSM3KxF/xD3Eo/EaFfz5ZxPNVxSg8X6ljkue789XjFHy79uAnn68AoH09W6wc4iF5/usITwDAymNBWHUsqOzCy6jDYTehpqSEsa0Kz1d3nz7BLP/fkPuP0XrGOnrQUfv7fNXZvnAB0MVde0u91qqA0zgXdRf54gLM8f8Dgxq3wMwOnlBXVkFSRjpWBZzCzUdxFfK5vlRyfIvcCiESl/YMQ1QGtm/fjvHjxyM9PV3oKJWWo/MkoSPQOxHBK2A2fInQMeidR5unoteONULHoHcODxrH81UlEhG8AmYjlgodg955tGkKumxeLXQMeuf48PFCRyiW27rVFfI+Z73HV8j7VDa8Dy8RERERERHJJHZ4qVx06tQJWlpaxT7eD40mIiIiIpJ7ogp6yCnO4aVysWXLFrx+Xfz98wwMDGBgYIDBgwdXbCgiIiIiIpIr7PBSuTA1NRU6AhERERFRpSfHxdcKwSHNREREREREJJNY4SUiIiIiIhIIb0tUvljhJSIiIiIiIpnEDi8RERERERHJJHZ4iYiIiIiISCZxDi8REREREZFAOIe3fLHCS0RERERERDKJFV4iIiIiIiKBsMJbvljhJSIiIiIiok+SlpYGLy8v6OjoQE9PD0OHDkVmZuYH9x87dixq1aoFdXV1mJubw8fHBy9fvpTaTyQSFXns27ev1PlY4SUiIiIiIqJP4uXlhaSkJJw5cwa5ubkYMmQIRowYAT8/v2L3f/LkCZ48eYLly5fD3t4e8fHxGDVqFJ48eYJDhw5J7evr6wt3d3fJcz09vVLnY4eXiIiIiIiISu3evXvw9/fHjRs30LBhQwDAzz//DA8PDyxfvhzVq1cvcoyDgwMOHz4seW5jY4MFCxbgm2++QV5eHpSU/u6i6unpwdjY+LMyckgzERERERGRQESiinmUh6tXr0JPT0/S2QUANzc3KCgo4Nq1ax/9Oi9fvoSOjo5UZxcAxowZg6pVq6Jx48bYtm0bxGJxqTOywktERERERCTjcnJykJOTI9WmqqoKVVXVT37N5ORkGBkZSbUpKSnBwMAAycnJH/Uaz58/x/z58zFixAip9nnz5qFdu3bQ0NDA6dOn8f333yMzMxM+Pj6lysgKLxERERERkUBEFfRYtGgRdHV1pR6LFi0qNtO0adOKXTTqn4/79+9/9mfPyMhA586dYW9vjzlz5khtmzlzJlq0aAEnJydMnToVU6ZMwbJly0r9HqzwEhERERERybjp06dj4sSJUm0lVXcnTZqEwYMHf/D1rK2tYWxsjJSUFKn2vLw8pKWl/efc21evXsHd3R3a2tr47bffoKys/MH9mzRpgvnz5yMnJ6dUVWl2eImIiIiIiIRSQffhLc3wZUNDQxgaGv7nfs2aNUN6ejpu3bqFBg0aAADOnz+PgoICNGnSpMTjMjIy0LFjR6iqquLo0aNQU1P7z/cKDQ2Fvr5+qYdgs8NLREREREREpWZnZwd3d3cMHz4cGzZsQG5uLry9vdGvXz/JCs2JiYlwdXXFzp070bhxY2RkZKBDhw7Izs7G7t27kZGRgYyMDACFHW1FRUUcO3YMT58+RdOmTaGmpoYzZ85g4cKFmDx5cqkzssNLREREREQkkPJaQbmi7NmzB97e3nB1dYWCggJ69eqFtWvXSrbn5uYiMjIS2dnZAIDg4GDJCs62trZSrxUbGwtLS0soKyvjl19+wYQJEyAWi2Fra4uVK1di+PDhpc7HDi8RERERERF9EgMDA/j5+ZW43dLSUup2Qi4uLv95eyF3d3e4u7uXST52eImIiIiIiATyhRd4Kz3eloiIiIiIiIhkEiu8REREREREQvnSJ/FWcqzwEhERERERkUxihZeIiIiIiEggrO+WL1Z4iYiIiIiISCaxwktERERERCQQTuEtX6zwEhERERERkUxihZeIiIiIiEggrPCWL1Z4iYiIiIiISCaxw0tEREREREQyiR1eIiIiIiIikkns8BIREREREZFM4qJVREREREREAuGiVeWLFV4iIiIiIiKSSazwEhERERERCYQF3vIlEovFYqFDEBERERERyaMevmsq5H1+GzKuQt6nsmGFl6iSMhuxVOgI9M6jTVPg6DxJ6Bj0TkTwClj3/knoGPROzMEZPF9VIjxfVS4RwStgOWCh0DHonTi//wkdoXgs8ZYrzuElIiIiIiIimcQKLxERERERkUBY4C1frPASERERERGRTGKFl4iIiIiISCC8D2/5YoWXiIiIiIiIZBIrvERERERERAJhhbd8scJLREREREREMokdXiIiIiIiIpJJ7PASERERERGRTOIcXiIiIiIiIoFwDm/5YoWXiIiIiIiIZBIrvERERERERAJhgbd8scJLREREREREMokVXiIiIiIiIoFwDm/5YoWXiIiIiIiIZBIrvERERERERAJhhbd8scJLREREREREMokdXiIiIiIiIpJJ7PASERERERGRTOIcXiIiIiIiIoFwDm/5YoWXiIiIiIiIZBIrvERERERERAJhgbd8scJLREREREREMokVXiIiIiIiIoFwDm/5YoWXiIiIiIiIZBIrvERERERERAJhgbd8scJLREREREREMokVXiIiIiIiIqGwxFuuWOElIiIiIiIimcQOLxEREREREckkDmkmIiIiIiISCG9LVL5Y4SUiIiIiIiKZxAovERERERGRQFjgLV+s8BIREREREZFMYoWXiIiIiIhIIJzDW75Y4aVSE4vFGDFiBAwMDCASiRAaGvrB/ePi4j5qPxcXF4wfP/6D+yQnJ6N9+/bQ1NSEnp7eR+UNCAiASCRCenr6R+1PRERERESygRVeKjV/f39s374dAQEBsLa2RtWqVT+4v5mZGZKSkiT7BQQEoG3btnjx4sVHd1rfW7VqFZKSkhAaGgpdXd1P/Qj0iQa5OGFkh8Yw1NXEvccpmLX3LELjkv/zOM9GtfHLcE+cCo3CsF9/k7S7O9XEt23qw9HcGPpa6ug4bzvuPk4pz48gU/r1aYHBA11QtYo2Ih88waKlv+H2nUfF7qukpIBhQ1zh2aUhjIx0ERf/DKvWHkfQlUjJPhoaqvD+3h2ubR1goK+N+5GJWLzsd9y5W/xrkrRvOzbAcM9mMNTTwr34p5iz7RTCHz4pcX9tDVVM7t8WHZvUgq6WOp48e4n5208jICQaANDIzhwjPJvCwdoE1Qy0MXLpAZy58aCiPs4Xj+erL08DZ2sMHugCe7saMDLUxbiJvjgfcFvoWDLp2/YNMLJLExjqauFewlPM3nEaYdFJxe77dWtHLB/VVaot520eag1eKtVmU70KpvVviyZ25lBSUEBU4nOMXn0ET1Izyu1zyAoWeMsXK7xUatHR0TAxMUHz5s1hbGwMJaUPXzdRVFT8qP0+9r0bNGiAmjVrwsjI6LNfjz5e14a1MbN3W6w+HgSPn3bg7qNn2DWuD6poa3zwuBpVdDDj67a49qBop0lDVRnXoxKx8EhgecWWWR071McPEz2xYdNp9BmwCg+inmDjLyNgoK9V7P5jv++Er3s1w6Klv6H710tx4NAVrF4+BLVrmUr2mTurD5o1+Qr/m7kXPfsuw5W/IrF5/UgYGepU1Mf6YnVubo//DWqPtQcvoevULbgX/xQ7fuyPKjrF/34oKylg10wv1DDSxZgVh+E2bj2mbzyB5LRXkn00VJVxLz4Fs7f6V9THkBk8X32Z1NVU8ODBEyxYfEToKDKtS1M7zPjGFWuOXEbnH7fhbkIKdk7rV+L5CgAyst+g0eg1kkcLn1+ktpsb6eHQ7G8R/SQV/efvgfu0Lfj5tyDk5OaV98ehSiAtLQ1eXl7Q0dGBnp4ehg4diszMzA8e4+LiApFIJPUYNWqU1D4JCQno3LkzNDQ0YGRkhB9++AF5eaX/f4odXiqVwYMHY+zYsUhISIBIJIKlpSX8/f3RsmVL6OnpoUqVKujSpQuio6Mlx/xzSHNcXBzatm0LANDX14dIJMLgwYMl+xYUFGDKlCkwMDCAsbEx5syZI9lmaWmJw4cPY+fOnZLjihsunZ6eDpFIhICAgGI/w/bt26Gnp4dTp07Bzs4OWlpacHd3R1KS9JXNLVu2wM7ODmpqaqhduzZ+/fVXyba3b9/C29sbJiYmUFNTg4WFBRYtWgSgcMj3nDlzYG5uDlVVVVSvXh0+Pj6f+C9eeQxv3xB7L4fjwJXbiEpKxfQ9p/DmbS76tnAs8RgFkQhrh3bBiqOXkfA8vcj2I3/dxZoTV3D5Xlz5BZdRA71a4/Bvf+H3ozcQE/sU8xYcxus3uejRrXGx+3fp3ABbtp3DpaD7eJyYhgOHruJS0D0M+rYNAEBVVQlu7Ryxcs1x3AqOwaNHqVi/8TQePX6Ovr2bV+RH+yIN7dIE+8+F4FBAGB4+fo4Zm07i9dtc9G5Xv9j9e7etD10tdYxcehC3Ih8j8dlLXL+bgPvxf1cMA0OjsXJfAE5fjyz2NahkPF99mS5fuY+ff/XH+Qus6panYR6Nse9CKA4GhuNh4nP8uPVPvM7JQ5829Uo+SAw8e5kleTzPyJLa/ENfF1wIjcbivRdwJ/4pElLScTY4CqkZ2eX8aWSDSFQxj/Li5eWFO3fu4MyZMzh+/DguXryIESNG/Odxw4cPR1JSkuSxdOnfowby8/PRuXNnvH37FleuXMGOHTuwfft2zJo1q9T52OGlUlmzZg3mzZuHGjVqICkpCTdu3EBWVhYmTpyImzdv4ty5c1BQUECPHj1QUFBQ5HgzMzMcPnwYABAZGYmkpCSsWbNGsn3Hjh3Q1NTEtWvXsHTpUsybNw9nzpwBANy4cQPu7u7o06dPkeNKKzs7G8uXL8euXbtw8eJFJCQkYPLkyZLte/bswaxZs7BgwQLcu3cPCxcuxMyZM7Fjxw4AwNq1a3H06FEcOHAAkZGR2LNnDywtLQEAhw8fxqpVq7Bx40ZERUXh999/h6NjyV+yvgTKigpwNDeW+qInFgOX7sWjgXX1Eo8b36U5Ul9lY39QRAWklB9KSoqwt6uBv65FSdrEYjH+uvYA9epaFHuMirIScnJypdpycnLhVN8KQOFIDCUlRbx9K33l9M2bPMk+VDxlJQU4WJsgKDxW0iYWA0HhcXD6yrTYY9wafoWQB48xd5g7rm8ejz9XjMD3PVpAQYED2z4Xz1dEJVNWVICDlQmCbsdJ2sRiIOh2LJxrFn++AgANNRVcXjMGV372xuaJX6Om6d/T2UQioG19G8Qmp2HntH64uX4cfp83CB0aflWeH4UqiXv37sHf3x9btmxBkyZN0LJlS/z888/Yt28fnjwpeVoPAGhoaMDY2Fjy0NH5e0TZ6dOncffuXezevRv169dHp06dMH/+fPzyyy94+/ZtqTKyw0uloqurC21tbckwZUNDQ/Tq1Qs9e/aEra0t6tevj23btiEiIgJ3794tcryioiIMDAwAAEZGRjA2Npaai1u3bl3Mnj0bNWvWxMCBA9GwYUOcO3cOAGBoaAhVVVWoq6sXOa60cnNzsWHDBjRs2BDOzs7w9vaWvA8AzJ49GytWrEDPnj1hZWWFnj17YsKECdi4cSOAwiEWNWvWRMuWLWFhYYGWLVuif//+km3GxsZwc3ODubk5GjdujOHDh39y1srAQEsDSooKePavK7XPX2XBUFez2GMa2ZqiX8u6mLLrVEVElCv6eppQUlJE6j+GvwJAalomqlTRLvaYK1cjMfCbNjA3qwqRSIRmTb6Ca1tHGFYt/OOSnZ2D0LA4jBzmBsOqOlBQEKGLhzPq1bVA1aoc0vwh+tqFvx/PX0pXPJ6/zIShXvFDzM2q6aFTUzsoKijgu0X7sO7wZQzt2gTePVtWRGSZxvMVUclKOl89e5kFQ73ifz9iktIwZdNxjFh5EBN+OQqRggiH5w6EsUHh35uqOprQUlfF6K7NEBgWjYGL9+LUjQfYML4XmtQ2L/fPJAtEFfQoD1evXoWenh4aNmwoaXNzc4OCggKuXbv2wWP37NmDqlWrwsHBAdOnT0d29t/n7atXr8LR0RHVqlWTtHXs2BEZGRm4c+dOqTJy0Sr6bFFRUZg1axauXbuG58+fSyq7CQkJcHBwKNVr1a1bV+q5iYkJUlLKflEQDQ0N2NjYFPs+WVlZiI6OxtChQ6U6qnl5eZJO9uDBg9G+fXvUqlUL7u7u6NKlCzp06AAA6N27N1avXg1ra2u4u7vDw8MDXbt2LXEOc05ODnJycqTaVFVVy/TzVjRNVRWs/q4zpuzyx4vM10LHIQCLl/2OOTP74OiRqRCLxXj0OBV/HLuB7p5/D4GePtMP82f3xfnTs5GXl4979xPx56kQ2NvVEDC5bFIQiZCakYX/bTyBggIxbsckw9hAG8M9m2LtoUtCx5MrPF8RfVhwVCKCoxIlz29FPcbZZSMwwNUJKw9ehOjdWNkzt6Kw9c8bAIC78Slw/soUXm5OuHY/QZDcVFRJ3zk/53tncnJykXV1lJSUYGBggOTkkhcKHDBgACwsLFC9enWEh4dj6tSpiIyMxJEjRySv+8/OLgDJ8w+9bnHY4aXP1rVrV1hYWGDz5s2oXr06CgoK4ODgUOrhBgCgrKws9VwkEhU7NPo9BYXCQQpisVjSlpubW9LuH3yf96/xfpL95s2b0aRJE6n9FBUVAQDOzs6IjY3Fn3/+ibNnz6JPnz5wc3PDoUOHYGZmhsjISJw9exZnzpzB999/j2XLliEwMLDI+wLAokWLMHfuXKm22bNnA/jw4ioVKS0zG3n5BTD814IWVbU18exfV4kBwMJQD+ZV9eA7ppekTeHdH8TY9ZPhMmsL4p+ll2tmWfYiPQt5efmoYiBdza1ioIXU1FclHjNuki9UVJSgp6uBlGcZmODTGY8TUyX7PH6ciiHDf4W6mgo0tVTx/PkrLFv8LR4/Ti32NanQi1eFvx9V/1U9rKqrhWfpxS/akZKeiby8AhQU/H3uevj4OYz0taGspIDcvJLPe/RhPF8Rlayk85WhriaepRf9/ShOXn4B7sQ/hWU1fclr5ublIyrxudR+0YmpaFiLF0w/RkXdh7ek75z/XDPnvWnTpmHJkiUffL179+59cpZ/zvF1dHSEiYkJXF1dER0dLVWUKgvs8NJnSU1NRWRkJDZv3oxWrVoBAC5fvvzBY1RUVAAUTkb/XIaGhgCApKQkODk5AcB/3u/3v1SrVg3Vq1dHTEwMvLy8StxPR0cHffv2Rd++ffH111/D3d0daWlpMDAwgLq6Orp27YquXbtizJgxqF27NiIiIuDs7FzkdaZPn46JEydKtamqqmLr2E+fo1zWcvMLEJGQjBa1LXAq9CGAwpNzSzsLbL8QXGT/6ORUuM3ZJtX2Q/dW0FRVwZz95/Akjbco+Bx5efm4e+8xmjSuKbllh0gkQtPGNbF3f9AHj337Ng8pzzKgpKQAN9e6OHUmtMg+r9+8xes3b6GjrY7mzWph1Zrj5fExZEZuXgFuxyShuaOV5LZBIhHQ3NESu/xvFnvMrfuP4dmyDkSiwvlzAGBV3QBP016xs/uZeL4iKllufgFuxyaheR1LnL75j/NVHUvsPH3ro15DQSRCbTMjXHj3+5WbX4DwmCRYmxhI7WdlYoDE5/z9qUxK+s5ZnEmTJkktLFsca2trGBsbFxmNmZeXh7S0NBgbG390tvdFpocPH8LGxgbGxsa4fv261D5Pnz4FgFK9LsAOL30mfX19VKlSBZs2bYKJiQkSEhIwbdq0Dx5jYWEBkUiE48ePw8PDA+rq6tDSKn6e239RV1dH06ZNsXjxYlhZWSElJQUzZsz4pNf6p7lz58LHxwe6urpwd3dHTk4Obt68iRcvXmDixIlYuXIlTExM4OTkBAUFBRw8eBDGxsbQ09PD9u3bkZ+fjyZNmkBDQwO7d++Guro6LCyKX0zoc4eSVJTNZ25i5RAPhMcnIzQ2CUPdGkJdRRkH3i3wsmqIB5LTM7Hkt4vIyctH5BPpK70Z2W8AQKpdT0MN1Q10UO3dPEcb48I/ls8ysvAs4+OuNMurnXsuYsHcfrhz9xEi7iTg2wGtoa6ugt+PFv5xWDCvP1JSXmLNupMAAEcHcxgZ6SIyMhFGRroYPbIjFEQi+G6/IHnN5s1qQSQC4uKewdysKiaO74LYuBTJa1LJth6/huVjPBERnYSwh4kY0rkJNFSVcehCGABgubcnnqa9wjK/wn/vPadv4Vv3hpg1pCN2/nkDliYG+L5HC2x/NxwQADTUlGFh/PcXSDMjPdhZVsPLzNd4wi+RH8Tz1ZdJXV0F5mZ/L4ZkamqAWl9Vx8uMbCQnpwsXTMZsOXkdK0Z1RURMEkKjn2Bop8bQUFPGwcBwAMCK0V3xNO0Vlu4PAAD49GiJkIeJiHv6AjoaqhjZpSlMq+pg37vzGwBsOv4Xfvbpgev3H+Hq3Xi0qWcNV+ea6PfTbiE+4pengiq8pfnOaWhoKCksfUizZs2Qnp6OW7duoUGDBgCA8+fPo6CgoMhIyQ95X7AyMTGRvO6CBQuQkpIiGTJ95swZ6OjowN7e/qNfF2CHlz6TgoIC9u3bBx8fHzg4OKBWrVpYu3YtXFxcSjzG1NQUc+fOxbRp0zBkyBAMHDgQ27dv/+QM27Ztw9ChQ9GgQQPUqlULS5culcyn/VTDhg2DhoYGli1bhh9++AGamppwdHTE+PHjAQDa2tpYunQpoqKioKioiEaNGuHkyZNQUFCAnp4eFi9ejIkTJyI/Px+Ojo44duwYqlSp8lmZhHbs5n0YaKtjkmdLGOpo4u7jFHy79iCevypcYMDUQEdqaPnHaF/PFiuHeEie/zrCEwCw8lgQVh37cKVS3p06HQoDfU2MGd0RVavo4H5kIkZ5b0ZqWuEQWhNjPYj/MVxWVUUJY793Rw3TKsjOfotLQffwvxl+eJX5RrKPtpYaxnl7oFo1Pbx8mY2z58Ox9pc/kceK4386ceUuDHQ0MKFvG1TV08S9uKcYvGCvZGGY6lV1UfCP34+k1AwMXuCHGYPa4+TyEUhOe4XtJ29gwx9XJPs4WlfH3rnfSp7PGFx4XjsUEIYpvxyroE/2ZeL56stUx94Mvpu/lzyfMqkbAOCPozcwY84+oWLJnON/3Ss8X33dGoZ6mrgX/xSDFu+X3GrItIqO1N8PXU01LBrmAUM9TWRkvUFEbDJ6zd6Jh/8Ywnzq5gP8uPVPfN+tOeYMao+YJ2kYvfowbkY+rvDPRxXLzs4O7u7uGD58ODZs2IDc3Fx4e3ujX79+qF69cGX8xMREuLq6YufOnWjcuDGio6Ph5+cHDw8PVKlSBeHh4ZgwYQJat24tWc+nQ4cOsLe3x7fffoulS5ciOTkZM2bMwJgxY0pdKBKJS3vGJ6IKYTZi6X/vRBXi0aYpcHSeJHQMeicieAWse/8kdAx6J+bgDJ6vKhGeryqXiOAVsBywUOgY9E6c3/+EjlCsYYcrZhrbll7jyuV109LS4O3tjWPHjkFBQQG9evXC2rVrJSM44+LiYGVlhQsXLsDFxQWPHj3CN998g9u3byMrKwtmZmbo0aMHZsyYIXVrovj4eIwePRoBAQHQ1NTEoEGDsHjx4hIXgi0JK7xERERERET0SQwMDODn51fidktLS6lRNWZmZggMDPzP17WwsMDJkyc/Ox87vERERERERAKpqFWa5ZWC0AGIiIiIiIiIygMrvERERERERAJhgbd8scJLREREREREMokVXiIiIiIiIoFwDm/5YoWXiIiIiIiIZBIrvERERERERAJhgbd8scJLREREREREMokVXiIiIiIiIoFwDm/5YoWXiIiIiIiIZBIrvERERERERAJhhbd8scJLREREREREMokVXiIiIiIiIoGwwFu+WOElIiIiIiIimcQOLxEREREREckkDmkmIiIiIiISCBetKl+s8BIREREREZFMYoWXiIiIiIhIICzwli9WeImIiIiIiEgmscJLREREREQkEM7hLV+s8BIREREREZFMYoWXiIiIiIhIICzwli9WeImIiIiIiEgmscJLREREREQkEM7hLV+s8BIREREREZFMYoWXiIiIiIhIICzwli9WeImIiIiIiEgmscJLREREREQkEM7hLV+s8BIREREREZFMYoWXiIiIiIhIICzwli9WeImIiIiIiEgmscJLREREREQkEM7hLV+s8BIREREREZFMYoWXiIiIiIhIIKzwli9WeImIiIiIiEgmscJLREREREQkEBZ4yxcrvERERERERCSTWOElIiIiIiISiIiTeMuVSCwWi4UOQUREREREJI+m+q+tkPdZ4u5TIe9T2bDCS1RJddm8WugI9M7x4eNhPnix0DHonYTt0+DYcLLQMeidiJvLeb6qRI4PHw/LAQuFjkHvxPn9D47Ok4SOQe9EBK8QOkKxWN8tX5zDS0RERERERDKJFV4iIiIiIiKBcApv+WKFl4iIiIiIiGQSK7xEREREREQCYYG3fLHCS0RERERERDKJFV4iIiIiIiKBKLDEW65Y4SUiIiIiIiKZxAovERERERGRQFjgLV+s8BIREREREZFMYoeXiIiIiIiIZBKHNBMREREREQlExDHN5YoVXiIiIiIiIpJJrPASEREREREJhAXe8sUKLxEREREREckkVniJiIiIiIgEwjm85YsVXiIiIiIiIvokaWlp8PLygo6ODvT09DB06FBkZmaWuH9cXBxEIlGxj4MHD0r2K277vn37Sp2PFV4iIiIiIiKBfOkFXi8vLyQlJeHMmTPIzc3FkCFDMGLECPj5+RW7v5mZGZKSkqTaNm3ahGXLlqFTp05S7b6+vnB3d5c819PTK3U+dniJiIiIiIio1O7duwd/f3/cuHEDDRs2BAD8/PPP8PDwwPLly1G9evUixygqKsLY2Fiq7bfffkOfPn2gpaUl1a6np1dk39LikGYiIiIiIiKBiEQV8ygPV69ehZ6enqSzCwBubm5QUFDAtWvXPuo1bt26hdDQUAwdOrTItjFjxqBq1apo3Lgxtm3bBrFYXOqMrPASERERERHJuJycHOTk5Ei1qaqqQlVV9ZNfMzk5GUZGRlJtSkpKMDAwQHJy8ke9xtatW2FnZ4fmzZtLtc+bNw/t2rWDhoYGTp8+je+//x6ZmZnw8fEpVUZWeImIiIiIiAQiqqDHokWLoKurK/VYtGhRsZmmTZtW4sJS7x/379//7M/++vVr+Pn5FVvdnTlzJlq0aAEnJydMnToVU6ZMwbJly0r9HqzwEhERERERybjp06dj4sSJUm0lVXcnTZqEwYMHf/D1rK2tYWxsjJSUFKn2vLw8pKWlfdTc20OHDiE7OxsDBw78z32bNGmC+fPnIycnp1RVaXZ4iYiIiIiIBKJQQcs0l2b4sqGhIQwNDf9zv2bNmiE9PR23bt1CgwYNAADnz59HQUEBmjRp8p/Hb926FZ6enh/1XqGhodDX1y/1EGx2eImIiIiIiKjU7Ozs4O7ujuHDh2PDhg3Izc2Ft7c3+vXrJ1mhOTExEa6urti5cycaN24sOfbhw4e4ePEiTp48WeR1jx07hqdPn6Jp06ZQU1PDmTNnsHDhQkyePLnUGdnhJSIiIiIiEsiXfh/ePXv2wNvbG66urlBQUECvXr2wdu1ayfbc3FxERkYiOztb6rht27ahRo0a6NChQ5HXVFZWxi+//IIJEyZALBbD1tYWK1euxPDhw0udjx1eIiIiIiIi+iQGBgbw8/MrcbulpWWxtxNauHAhFi5cWOwx7u7ucHd3L5N87PASEREREREJpLzukUuFeFsiIiIiIiIikkms8BIREREREQmEBd7yxQovERERERERySRWeImIiIiIiATCObzlixVeIiIiIiIikkms8BIREREREQmEBd7yxQovERERERERySRWeImIiIiIiATCObzlixVeqrQGDx6M7t27Cx2DiIiIiIi+UKzwElGpeDVoio61HaGpoop7T5/g18vn8SQjvcT9e9drhGZWNqiha4C3+Xm49zQJ269fRuLLF5J99NQ18F2TVnAyNYe6sgoev3yBAyHXcSXuYQV8oi/XQFdnjOzUBIa6mriXkIJZu88gLDbpP4/r2sQOv4zuhlPBDzB87RFJu4aqMqb1dkFH55rQ11LHo2cv4Xv2JnZfCC3HTyE7+vVujsHfuqBqFW1ERiVh0bLfcPvOo2L3VVJUwLAhrvDs0gBGhrqIi3+GVT+fQNDVSMk+/kf/B9PqBkWO3XcgCAuW/lZun0OW8HxVeXzbvgFGdmkCQ10t3Et4itk7TiMsuvjz1detHbF8VFeptpy3eag1eKlUm031KpjWvy2a2JlDSUEBUYnPMXr1ETxJzSi3zyFPGjhbY/BAF9jb1YCRoS7GTfTF+YDbQseSSazwli92eOmz5OfnQyQSQUHh4wcLvH37FioqKuWYispLr3oN0bWOE1YFnsLTVxn4pkEzzOvUA6MP7URufn6xxziYmOLEnXBEPU+GokgBAxu1wPx3x+Tk5QEAJrp0hJaKKuafPoqXb17DxbY2prp6YMLvexGT+qwiP+IXo2vj2pjZrx3+t+MUQmOeYGiHRtg9uS9cpm1C6qvsEo+rUVUXM/q2xbXIoh2xWf1d0dzOAuM2Hcfj5y/Ruo4lfhrYEU9fZOJMKL/Mf0jH9vXwwwRPzF90GOG3E/Bt/1bY+PNwdO21FGkvMovsP/b7TujcyRlzFxxEbFwKmjethdXLBuPboT/jfuQTAED/gWugoPj3ubWmjTE2/zoSp86FV9jn+pLxfFV5dGlqhxnfuGLGNn+EPHyC7zo1ws5p/dBu0kakZhR/vsrIfgPXSRslz8Vi6e3mRno4NPtb7A8Iw+pDl/DqdQ6+qmGInNy88vwockVdTQUPHjzBb39cx5oVQ4SOQ/TJOKS5EvD390fLli2hp6eHKlWqoEuXLoiOjgYAxMXFQSQS4ciRI2jbti00NDRQr149XL16VXJ8fHw8unbtCn19fWhqaqJOnTo4efIkAKBhw4ZYvny5ZN/u3btDWVkZmZmFX8AeP34MkUiEhw8Lv8zm5ORg8uTJMDU1haamJpo0aYKAgADJ8du3b4eenh6OHj0Ke3t7qKqqIiEh4YOf7/3Q5AULFqB69eqoVasWAODRo0fo06cP9PT0YGBggG7duiEuLq7E1ykoKMCiRYtgZWUFdXV11KtXD4cOHZJsq1GjBtavXy91TEhICBQUFBAfHw8AWLlyJRwdHaGpqQkzMzN8//33kn+Lf36+U6dOwc7ODlpaWnB3d0dSkvRV6G3btqFOnTpQVVWFiYkJvL29AQDfffcdunTpIrVvbm4ujIyMsHXr1g/+O30Jujk4YX/INVyLj0Fc2nOsDDgFAw1NNLOwKfGY2f6/41zUXSS8SENs2nOsCjwNI20d2FatJtnHrpoJjt0JxYNnT/H0VQb2h1xH1tsc2FY1qoiP9UUa1rEx9gaG4eDlCEQ9ScX0Hf54/TYXfVvXLfEYBZEIa0d2xcrfLyPhWXqR7Q1sTXEoKAJ/3U/A4+cv4RcYhnuPUlDP2qQcP4lsGOjVBod/v4bfj91ATOxTzFt0GK/f5KKHZ6Ni9+/i4YwtvudwKeg+Hiem4cDhq7h05R4GebWR7PMiPQupqa8kj9Yt7ZDw6Dlu3oquqI/1ReP5qvIY5tEY+y6E4mBgOB4mPsePW//E65w89GlTr+SDxMCzl1mSx/OMLKnNP/R1wYXQaCzeewF34p8iISUdZ4OjSuxAU+ldvnIfP//qj/MXWNUtbwoV9JBX8vzZK42srCxMnDgRN2/exLlz56CgoIAePXqgoKBAss+PP/6IyZMnIzQ0FF999RX69++PvHdXm8eMGYOcnBxcvHgRERERWLJkCbS0tAAAbdq0kXRYxWIxLl26BD09PVy+fBkAEBgYCFNTU9ja2gIAvL29cfXqVezbtw/h4eHo3bs33N3dERUVJcmSnZ2NJUuWYMuWLbhz5w6MjP77j/y5c+cQGRmJM2fO4Pjx48jNzUXHjh2hra2NS5cuISgoSNK5fPv2bbGvsWjRIuzcuRMbNmzAnTt3MGHCBHzzzTcIDAyEgoIC+vfvDz8/P6lj9uzZgxYtWsDCwgIAoKCggLVr1+LOnTvYsWMHzp8/jylTpkgdk52djeXLl2PXrl24ePEiEhISMHnyZMn29evXY8yYMRgxYgQiIiJw9OhRyb/fsGHD4O/vL9VBPn78OLKzs9G3b9///HeqzKpp68BAQxOhiX9XBrNz3yLyWTJqV/v4DpHmu+p+Zs4bSdu9p0loZfMVtFRVIQLQ2vorqCgqISLpcZnllyXKigpwtDTG5btxkjaxGLh8Jw7ONqYlHje+Wws8z8jG/ovFVwhvPUxE+/o1UU2v8PzRrLY5rKrp4+LtuGL3p0JKSoqwr22Kv649kLSJxWL8dT0K9epaFHuMirISct5KV6Jy3uTCqb5Vie/RxaMBfjt6veyCyzCeryoPZUUFOFiZIOgf5xGxGAi6HQvnmiWfrzTUVHB5zRhc+dkbmyd+jZqmVSXbRCKgbX0bxCanYee0fri5fhx+nzcIHRp+VZ4fhYi+UBzSXAn06tVL6vm2bdtgaGiIu3fvSjqukydPRufOnQEAc+fORZ06dfDw4UPUrl0bCQkJ6NWrFxwdHQEA1tbWktdycXHB1q1bkZ+fj9u3b0NFRQV9+/ZFQEAA3N3dERAQgDZtCisKCQkJ8PX1RUJCAqpXry55X39/f/j6+mLhwoUACiuWv/76K+rV+8CV2X/R1NTEli1bJEOZd+/ejYKCAmzZsgWidxMXfH19oaenh4CAAHTo0EHq+JycHCxcuBBnz55Fs2bNJJ/z8uXL2LhxI9q0aQMvLy+sWLECCQkJMDc3R0FBAfbt24cZM2ZIXmf8+PGS/7a0tMRPP/2EUaNG4ddff5W05+bmYsOGDbCxKawCeHt7Y968eZLtP/30EyZNmoRx48ZJ2ho1KqziNG/eHLVq1cKuXbskHWlfX1/07t1b8rP8UumrawIA0l9LX2VPf50NvXfb/osIwPBmbXAnORHxL1Il7UvOncRUVw/sGzgaeQX5yMnLw4Izx5CU8bLM8ssSA20NKCkq4PlL6Z/F84ws2JhUKfaYRjVroG/runCf5Vvi687afQaLB7vjxmpv5Oblo0AsxjRff1x/UPw8VCqkr6cJJSVFpKZJD11OTXsFK8viLwhe+SsSAwe0xq3gGDx6nIqmjW3h2s4RiiVMD3F1cYC2lhr+OHazzPPLIp6vKg/9Es5Xz15mwaZ68eermKQ0TNl0HPcTUqCtrobhXZrg8NyB6DBlM5LTXqGqjia01FUxumszrDgYiMV7z6NNXRtsGN8L/X/ag2v3PzzyjKiy4Rze8sUObyUQFRWFWbNm4dq1a3j+/LmkspuQkAB7e3sAQN26fw9TNDEpvDqdkpKC2rVrw8fHB6NHj8bp06fh5uaGXr16SfZv1aoVXr16hZCQEFy5cgVt2rSBi4sLFi9eDKCwwvvDDz8AACIiIpCfn4+vvpK+QpqTk4MqVf7+o6SioiKV52M4OjpKzdsNCwvDw4cPoa2tLbXfmzdvJMO5/+nhw4fIzs5G+/btpdrfvn0LJycnAED9+vVhZ2cHPz8/TJs2DYGBgUhJSUHv3r0l+589exaLFi3C/fv3kZGRgby8PLx58wbZ2dnQ0NAAAGhoaEg6u0Dhv3dKSgqAwn/zJ0+ewNXVtcTPOmzYMGzatAlTpkzB06dP8eeff+L8+fMl7p+Tk4OcnBypNlVV1RL3ryguNrUwptXfn3Ou/x+f/ZqjW7SDhX5VTDl2QKr9m4bNoKmiih9PHEbGm9doammDqa6dMfXYAakvmvRpNNVUsGpEF0z19ceLzNcl7jfYrQGcbKrju9WH8Pj5SzSpZYb537bH0/RXuHw3vgITy77Fy//AnBm9cfTQFIjFYjxKTMUfR2+gu2fjYvfv0a0xLl+JxLPnXIynODxfyZbgqEQERyVKnt+Keoyzy0ZggKsTVh68KLlQfuZWFLb+eQMAcDc+Bc5fmcLLzYkdXiKSwg5vJdC1a1dYWFhg8+bNqF69OgoKCuDg4CA1tFdZWVny3+9P9O87xsOGDUPHjh1x4sQJnD59GosWLcKKFSswduxY6OnpoV69eggICMDVq1fRvn17tG7dGn379sWDBw8QFRUlqfBmZmZCUVERt27dgqKiolTGf1Yn1dXVJRk+lqam9BX1zMxMNGjQAHv27Cmyr6GhYZG29/NsT5w4AVNT6SFQ/+wcenl5STq8fn5+cHd3l3TW4+Li0KVLF4wePRoLFiyAgYEBLl++jKFDh+Lt27eSDu8//62Bwn9v8bvVMtTV1f/zsw4cOBDTpk3D1atXceXKFVhZWaFVq1Yl7r9o0SLMnTtXqm327NmAqd5/vld5upYQg8gjyZLnyu/+n9BT18SL13/PkdJT10DsRyzUMqq5CxqZW2Ha8YNIzfq7EmasrYuuderj+0M7kfAiDQAQm/YcdYxN0aVOPfxyueSLBfIq7VU28vILUFVX+veqqo4mnv2rigIAFkZ6MDfUw7bxX0vaFN79DsdsnYK20zYhOT0TU75ugxE/H8H5sMKLTvcfP4O9eTWM6NSEHd4PeJGehby8fFQxkB7FUcVAG6klrBb7Ij0L4yZvh4qKEvR0NZDyLAMTxnbG48SiHSYTY300bVwTE6bsKJf8soDnq8rrRQnnK0NdTTxLL3q+Kk5efgHuxD+FZTV9yWvm5uUjKvG51H7RialoWKtG2QQnIpnBDq/AUlNTERkZic2bN0s6Re/n15aGmZkZRo0ahVGjRmH69OnYvHkzxo4dC6BwHu+FCxdw/fp1SUfPzs4OCxYsgImJiaSi6+TkhPz8fKSkpHywg1YWnJ2dsX//fhgZGUFHR+c/9//nAlnvO+jFGTBgAGbMmIFbt27h0KFD2LBhg2TbrVu3UFBQgBUrVkhWlT5w4EBJL1UsbW1tWFpa4ty5c2jbtm2x+1SpUgXdu3eHr68vrl69iiFDPryy4fTp0zFx4kSpNlVVVfTaub6EIyrG69xcvM6VHqKXlp2F+qZmiE0r/MKorqyCWobG+PPuh1eNHdXcBc0sbTH9+CE8fSXdAVBVKjwNFfxrCc4CsRgicIxPcXLzCxARl4wW9pY4HVw4v14kAlrYW2DHueAi+0cnpcLtxy1SbT/0ag0tNRXM3nMWT9IyoKqsBBUlRRQU/OvnUFAg6RxT8fLy8nH3fiKaNK6J84F3ABReKGvayBZ7DwR98Ni3b/OQ8iwDSooKcGvniFNnwors092zEdJeZOLi5Xvlkl8W8HxVeeXmF+B2bBKa17HE6ZuF89xFIqB5HUvsPH3ro15DQSRCbTMjXHi3WnxufgHCY5JgbSJ92y4rEwMkchQEfYF49ihf7PAKTF9fH1WqVMGmTZtgYmKChIQETJs2rVSvMX78eHTq1AlfffUVXrx4gQsXLsDOzk6y3cXFBT///DMMDQ1Ru3ZtSdu6deukhvt+9dVX8PLywsCBA7FixQo4OTnh2bNnOHfuHOrWrSuZQ1wWvLy8sGzZMnTr1g3z5s1DjRo1EB8fjyNHjmDKlCmoUUP6Cq22tjYmT56MCRMmoKCgAC1btsTLly8RFBQEHR0dDBo0CEDhvNzmzZtj6NChyM/Ph6enp+Q1bG1tkZubi59//hldu3ZFUFCQVIf4Y82ZMwejRo2CkZEROnXqhFevXiEoKEhygQEorLp36dIF+fn5kmwlUVVVrRRDmD/GH7dD0NepMRJfpuPpq5f4pmFzpGVn4Wr838PQF3j0xNW4aBy/W/jFfXSLtmhjUxs/nT6K7Ny30FMvrKRnv83B2/x8PE5/gScvX8C7pSu2XbuEjDdv0MzSBvVNzTHv1OcPS5RVW05dx4rhXRARm4TQmCQM7dAQGqoqOHCp8Mv8quFdkPziFZYcCkRObj4e/KsSkpFdOIz+fXtu/ltcvZ+AH/u2xZvcPCQ+f4kmtc3Rq4UD5u1l1eq/7NwTiAVz+uHO3ceIuJOAbwe0grq6Cn4/VjjccsHcfkhJeYk1v/wJAHCsYw4jIx1EPngCI0NdjB7RAQoiEXx3XpB6XZFIhO5dG+Ho8ZvIzy8o8r5UMp6vKo8tJ69jxaiuiIhJQmj0Ewzt1Bgaaso4GFh4vloxuiuepr3C0v0BAACfHi0R8jARcU9fQEdDFSO7NIVpVR3su/D3BaFNx//Czz49cP3+I1y9G4829azh6lwT/X7aLcRHlEnq6iowN/t7sTBTUwPU+qo6XmZkIzk5XbhgRKXEDq/AFBQUsG/fPvj4+MDBwQG1atXC2rVr4eLi8tGvkZ+fjzFjxuDx48fQ0dGBu7s7Vq1aJdneqlUrFBQUSFVGXVxcsGbNmiLv4+vrK1mUKTExEVWrVkXTpk2L3Grnc2loaODixYuYOnUqevbsiVevXsHU1BSurq4lVnznz58PQ0NDLFq0CDExMdDT04OzszP+97//Se3n5eWF77//HgMHDpQaglyvXj2sXLkSS5YswfTp09G6dWssWrQIAwcOLFX2QYMG4c2bN1i1ahUmT56MqlWr4uuvv5bax83NDSYmJqhTp45kATBZcDjsJtSUlDC2lSs0VVRx9+kTzPL/TeqelsY6etBR+/vfvbN94eJmi7v2lnqtVQGncS7qLvLFBZjj/wcGNW6BmR08oa6sgqSMdKwKOIWbj+Iq5HN9iY5dvw8DbQ1M7NEKhrqauJuQgm9X7Mfzd7fkqF5Fp0gV6r94r/8DU79ug7Uju0JPUw2PUzOw9PBF7L4QUh4fQaacOhMGA30tjBnVEVWraOP+gycYNXaLZCErE2N9iP9RPVdVVcLY0Z1Qw9QA2a/f4lLQPfxv1l68ynwj9bpNG9dEdRN9rs78CXi+qjyO/3UPBjoamPB1axjqaeJe/FMMWrxfcqsh0yo6Ur8fuppqWDTMA4Z6msjIeoOI2GT0mr0TD/9x4e7UzQf4ceuf+L5bc8wZ1B4xT9IwevVh3IzkatllpY69GXw3fy95PmVSNwDAH0dvYMacfULFkkkcSFW+RGJxKb8REdF/yszMhKmpKXx9fdGzZ89Peo0um1eXbSj6ZMeHj4f54MVCx6B3ErZPg2PDyf+9I1WIiJvLeb6qRI4PHw/LAQuFjkHvxPn9D47Ok4SOQe9EBK8QOkKx1lxeWyHvM66lT4W8T2XDCi9RGSooKMDz58+xYsUK6OnpSQ2pJiIiIiL6NxZ4yxc7vPTZPnR/2T///LPcF8CqTBISEmBlZYUaNWpg+/btUFLirxgRERERkVD4bZw+W2hoaInb/n0LIVlnaWkJzhIgIiIioo/FObzlix1e+my2trZCRyAiIiIiIiqCHV4iIiIiIiKBsMBbvhSEDkBERERERERUHljhJSIiIiIiEgjn8JYvVniJiIiIiIhIJrHCS0REREREJBAWeMsXK7xEREREREQkk1jhJSIiIiIiEgjn8JYvVniJiIiIiIhIJrHCS0REREREJBBWIMsX/32JiIiIiIhIJrHCS0REREREJBDO4S1frPASERERERGRTGKFl4iIiIiISCAs8JYvVniJiIiIiIhIJrHCS0REREREJBDO4S1frPASERERERGRTGKFl4iIiIiISCAs8JYvVniJiIiIiIhIJrHCS0REREREJBDO4S1frPASERERERGRTGKFl4iIiIiISCCs8JYvVniJiIiIiIhIJrHCS0REREREJBAWeMsXK7xEREREREQkk1jhJSIiIiIiEgjn8JYvVniJiIiIiIhIJrHDS0RERERERDKJQ5qJiIiIiIgEwgpk+eK/LxEREREREckkVniJiIiIiIgEwkWryhcrvERERERERPRJFixYgObNm0NDQwN6enofdYxYLMasWbNgYmICdXV1uLm5ISoqSmqftLQ0eHl5QUdHB3p6ehg6dCgyMzNLnY8dXiIiIiIiIoGIIK6QR3l5+/YtevfujdGjR3/0MUuXLsXatWuxYcMGXLt2DZqamujYsSPevHkj2cfLywt37tzBmTNncPz4cVy8eBEjRowodT4OaSYiIiIiIqJPMnfuXADA9u3bP2p/sViM1atXY8aMGejWrRsAYOfOnahWrRp+//139OvXD/fu3YO/vz9u3LiBhg0bAgB+/vlneHh4YPny5ahevfpH52OFl4iIiIiISCAiUcU8KovY2FgkJyfDzc1N0qarq4smTZrg6tWrAICrV69CT09P0tkFADc3NygoKODatWulej9WeImIiIiIiGRcTk4OcnJypNpUVVWhqqpaoTmSk5MBANWqVZNqr1atmmRbcnIyjIyMpLYrKSnBwMBAss/HYoeXqJI6Pny80BE+S05ODhYtWoTp06dX+Im0PCRsnyZ0hM8iaz+PiJvLhY7wWWTt58HzVeUS5/c/oSN8Fln7eUQErxA6wmeRtZ9HZTTAeVyFvM+cOXMkw4/fmz17NubMmVNk32nTpmHJkiUffL179+6hdu3aZRmxXIjEYnH5zWAmIrmVkZEBXV1dvHz5Ejo6OkLHkXv8eVQu/HlULvx5VC78eVQu/HnIjtJUeJ89e4bU1NQPvp61tTVUVFQkz7dv347x48cjPT39g8fFxMTAxsYGISEhqF+/vqS9TZs2qF+/PtasWYNt27Zh0qRJePHihWR7Xl4e1NTUcPDgQfTo0eOD7/FPrPASERERERHJuNIMXzY0NIShoWG55LCysoKxsTHOnTsn6fBmZGTg2rVrkpWemzVrhvT0dNy6dQsNGjQAAJw/fx4FBQVo0qRJqd6Pi1YRERERERHRJ0lISEBoaCgSEhKQn5+P0NBQhIaGSt0zt3bt2vjtt98AACKRCOPHj8dPP/2Eo0ePIiIiAgMHDkT16tXRvXt3AICdnR3c3d0xfPhwXL9+HUFBQfD29ka/fv1KtUIzwAovERERERERfaJZs2Zhx44dkudOTk4AgAsXLsDFxQUAEBkZiZcvX0r2mTJlCrKysjBixAikp6ejZcuW8Pf3h5qammSfPXv2wNvbG66urlBQUECvXr2wdu3aUudjh5eIyoWqqipmz57NBS4qCf48Khf+PCoX/jwqF/48Khf+POi/bN++/T/vwfvvZaNEIhHmzZuHefPmlXiMgYEB/Pz8PjsfF60iIiIiIiIimcQ5vERERERERCST2OElIiIiIiIimcQOLxEREREREckkdniJiIiIiIhIJrHDS0Tl4s2bN0JHICKiL9D7+3i+ePFC6ChEJAPY4SWiMlNQUID58+fD1NQUWlpaiImJAQDMnDkTW7duFTid/Jk9ezbi4+OFjkHv+Pv74/Lly5Lnv/zyC+rXr48BAwbwiz3JtfHjx0v+RuTn56NNmzZwdnaGmZkZAgIChA0np3x9fZGdnS10DKIywQ4vEZWZn376Cdu3b8fSpUuhoqIiaXdwcMCWLVsETCaf/vjjD9jY2MDV1RV+fn7IyckROpJc++GHH5CRkQEAiIiIwKRJk+Dh4YHY2FhMnDhR4HTyJysrCzNnzkTz5s1ha2sLa2trqQdVnEOHDqFevXoAgGPHjiE2Nhb379/HhAkT8OOPPwqcTj5NmzYNxsbGGDp0KK5cuSJ0HKLPwvvwElGZsbW1xcaNG+Hq6gptbW2EhYXB2toa9+/fR7NmzVjFEkBISAh8fX2xd+9e5OXloV+/fvjuu+/QqFEjoaPJHS0tLdy+fRuWlpaYM2cObt++jUOHDiE4OBgeHh5ITk4WOqJc6d+/PwIDA/Htt9/CxMQEIpFIavu4ceMESiZ/1NTU8PDhQ9SoUQMjRoyAhoYGVq9ejdjYWNSrV09yoYgqTl5eHo4dO4bt27fjzz//hLW1NYYMGYJBgwbB2NhY6HhEpaIkdAAikh2JiYmwtbUt0l5QUIDc3FwBEpGTkxOcnJywYsUKHDt2DL6+vmjRogVq166NoUOHYvDgwdDV1RU6plxQUVGRDBE8e/YsBg4cCAAwMDDgF3oB/Pnnnzhx4gRatGghdBS5V61aNdy9excmJibw9/fH+vXrAQDZ2dlQVFQUOJ18UlJSQo8ePdCjRw88ffoUu3fvxo4dOzBz5ky4u7tj6NCh6Nq1KxQUOFiUKj/+X0pEZcbe3h6XLl0q0n7o0CE4OTkJkIjeE4vFyM3Nxdu3byEWi6Gvr49169bBzMwM+/fvFzqeXGjZsiUmTpyI+fPn4/r16+jcuTMA4MGDB6hRo4bA6eSPvr4+DAwMhI5BAIYMGYI+ffrAwcEBIpEIbm5uAIBr166hdu3aAqejatWqoWXLlmjWrBkUFBQQERGBQYMGwcbGhnOs6YvADi8RlZlZs2bB29sbS5YsQUFBAY4cOYLhw4djwYIFmDVrltDx5NKtW7fg7e0NExMTTJgwAU5OTrh37x4CAwMRFRWFBQsWwMfHR+iYcmHdunVQUlLCoUOHsH79epiamgIorDS6u7sLnE7+zJ8/H7NmzeLCPJXAnDlzsGXLFowYMQJBQUFQVVUFACgqKmLatGkCp5NfT58+xfLly1GnTh24uLggIyMDx48fR2xsLBITE9GnTx8MGjRI6JhE/4lzeImoTF26dAnz5s1DWFgYMjMz4ezsjFmzZqFDhw5CR5M7jo6OuH//Pjp06IDhw4eja9euRYYHPn/+HEZGRigoKBAoJZEwnJycEB0dDbFYDEtLSygrK0ttDw4OFigZAUB6ejr09PSEjiG3unbtilOnTuGrr77CsGHDMHDgwCIjIlJSUmBsbMy/H1TpcQ4vEZWpVq1a4cyZM0LHIAB9+vTBd999J6kkFqdq1ar8slJBgoODoaysDEdHRwCFq2j7+vrC3t4ec+bMkVrZnMpf9+7dhY5A7yxZsgSWlpbo27cvgMJz1+HDh2FiYoKTJ0+ibt26AieUP0ZGRggMDESzZs1K3MfQ0BCxsbEVmIro07DCS0Rl5saNGygoKECTJk2k2q9duwZFRUU0bNhQoGREwmvUqBGmTZuGXr16ISYmBnXq1EGPHj1w48YNdO7cGatXrxY6IpEgrKyssGfPHjRv3hxnzpxBnz59sH//fhw4cAAJCQk4ffq00BGJ6AvGObxEVGbGjBmDR48eFWlPTEzEmDFjBEgk33r16oUlS5YUaV+6dCl69+4tQCL59uDBA9SvXx8AcPDgQbRu3Rp+fn7Yvn07Dh8+LGw4OXbr1i3s3r0bu3fvRkhIiNBx5FJycjLMzMwAAMePH0efPn3QoUMHTJkyBTdu3BA4nXzy8fHB2rVri7SvW7cO48ePr/hARJ+BHV4iKjN3796Fs7NzkXYnJyfcvXtXgETy7eLFi/Dw8CjS3qlTJ1y8eFGARPJNLBZLho+fPXtW8rMxMzPD8+fPhYwml1JSUtCuXTs0atQIPj4+8PHxQYMGDeDq6opnz54JHU+u6OvrSy6W+vv7S1ZpFovFyM/PFzKa3Dp8+HCxt+xq3rw5Dh06JEAiok/HDi8RlRlVVVU8ffq0SHtSUhKUlLhkQEXLzMwsdl6osrIy7/sqgIYNG+Knn37Crl27EBgYKLktUWxsLKpVqyZwOvkzduxYvHr1Cnfu3EFaWhrS0tJw+/ZtZGRkcOXyCtazZ08MGDAA7du3R2pqKjp16gQACAkJKfbe7lT+UlNTi71Hu46ODi/Q0ReHHV4iKjMdOnTA9OnT8fLlS0lbeno6/ve//6F9+/YCJpNPjo6Oxd5jd9++fbC3txcgkXxbvXo1goOD4e3tjR9//FHyRf7QoUNo3ry5wOnkj7+/P3799VfY2dlJ2uzt7fHLL7/gzz//FDCZ/Fm1ahW8vb1hb2+PM2fOQEtLC0DhxdLvv/9e4HTyydbWFv7+/kXa//zzT1hbWwuQiOjTcdEqIioziYmJaN26NVJTU+Hk5AQACA0NRbVq1XDmzBnJHC2qGMeOHZNUTtq1awcAOHfuHPbu3YuDBw9yldpK4s2bN1BUVCxyWxwqX9ra2rh06ZJkXvV7ISEhaNOmDUdBkFzbtm0bvL298cMPP0j9/VixYgVWr16N4cOHC5yQ6OOxw0tEZSorKwt79uxBWFgY1NXVUbduXfTv359f5gVy4sQJLFy4EKGhoZKfx+zZs9GmTRuho8ml9PR0HDp0CNHR0fjhhx9gYGCA4OBgVKtW7YO3j6Ky161bN6Snp2Pv3r2oXr06gMKLdl5eXtDX18dvv/0mcEL5smvXLmzcuBExMTG4evUqLCwssHr1alhZWaFbt25Cx5NL69evx4IFC/DkyRMAgKWlJebMmYOBAwcKnIyodNjhJSIiqgDh4eFwdXWFnp4e4uLiEBkZCWtra8yYMQMJCQnYuXOn0BHlyqNHj+Dp6Yk7d+5IRp88evQIDg4OOHr0KGrUqCFwQvmxfv16zJo1C+PHj8eCBQtw+/ZtWFtbY/v27dixYwcuXLggdES59uzZM6irq0uGmhN9adjhJaIyFRUVhQsXLiAlJUWyIu17s2bNEigVkfDc3Nzg7OyMpUuXQltbG2FhYbC2tsaVK1cwYMAAxMXFCR1R7ojFYpw9exb3798HANjZ2UlWCKaKY29vj4ULF6J79+5Svxu3b9+Gi4sLF0kios/CZVOJqMxs3rwZo0ePRtWqVWFsbAyRSCTZJhKJ2OGtYPn5+Vi1ahUOHDiAhIQEvH37Vmp7WlqaQMnk040bN7Bx48Yi7aampkhOThYgEYlEIrRv356L6gksNjZWsu7DP6mqqiIrK0uARPT06VNMnjwZ586dQ0pKCv5dH+PtouhLwg4vEZWZn376CQsWLMDUqVOFjkIA5s6diy1btmDSpEmYMWMGfvzxR8TFxeH333/nxQcBqKqqFrsQ0oMHD2BoaChAIvmzdu1ajBgxAmpqali7du0H9+WtiSqOlZUVQkNDYWFhIdXu7+8vtYo2VZzBgwcjISEBM2fOhImJidQFbKIvDYc0E1GZ0dHRQWhoKG9ZUEnY2Nhg7dq16Ny5M7S1tREaGipp++uvv+Dn5yd0RLkybNgwpKam4sCBAzAwMEB4eDgUFRXRvXt3tG7dGqtXrxY6osyzsrLCzZs3UaVKFVhZWZW4n0gkQkxMTAUmk29btmzBnDlzsGLFCgwdOhRbtmxBdHQ0Fi1ahC1btqBfv35CR5Q7Ja1iTvQlYoeXiMrM0KFD0ahRI4waNUroKARAU1MT9+7dg7m5OUxMTHDixAk4OzsjJiYGTk5OUvdLpvL38uVLfP3117h58yZevXqF6tWrIzk5Gc2aNcPJkyehqakpdEQiwezZswdz5sxBdHQ0AKB69eqYO3cuhg4dKnAy+WRvb489e/YUO9Sc6EvDIc1EVGZsbW0xc+ZM/PXXX3B0dCxyKyIOEaxYNWrUQFJSEszNzWFjY4PTp0/D2dkZN27cgKqqqtDx5I6uri7OnDmDy5cvIzw8HJmZmXB2duYiSZVEfn4+IiIiYGFhAX19faHjyB0vLy94eXkhOzsbmZmZMDIyEjqSXFu9ejWmTZuGjRs3wtLSUug4RJ+FFV4iKjMcIli5TJs2DTo6Ovjf//6H/fv345tvvoGlpSUSEhIwYcIELF68WOiIRIIZP348HB0dMXToUOTn56N169a4evUqNDQ0cPz4cbi4uAgdkUgw+vr6yM7ORl5eHjQ0NIpcwOaih/QlYYeXiEhO/PXXX7hy5Qpq1qyJrl27Ch1HLp07d06y6um/b9u1bds2gVLJpxo1auD3339Hw4YN8fvvv2PMmDG4cOECdu3ahfPnzyMoKEjoiHKDKwJXPjt27Pjg9kGDBlVQEqLPxw4vEZEMys3NxciRIzFz5swPVt6p4sydOxfz5s1Dw4YNi1319LfffhMomXxSU1PDw4cPUaNGDYwYMQIaGhpYvXo1YmNjUa9evWJX1Kby0alTJyQkJMDb27vY341u3boJlIyIZAHn8BJRmXr8+DGOHj1a7H1fV65cKVAq+aOsrIzDhw9j5syZQkehdzZs2IDt27fj22+/FToKAahWrRru3r0LExMT+Pv7Y/369QCA7OxsKCoqCpxOvly+fJkrAldib968KfL3XEdHR6A0RKXHDi8RlZlz587B09MT1tbWuH//PhwcHBAXFwexWAxnZ2eh48md7t274/fff8eECROEjkIA3r59i+bNmwsdg94ZMmQI+vTpI6kovl887Nq1a6hdu7bA6eSLmZlZkWHMJKysrCxMnToVBw4cQGpqapHtHGZOXxJ2eImozEyfPh2TJ0/G3Llzoa2tjcOHD8PIyAheXl5wd3cXOp7cqVmzJubNm4egoCA0aNCgyG1vuGp2xRo2bBj8/PxYda8k5syZAwcHBzx69Ai9e/eWrFyuqKiIadOmCZxOvnBF4MpnypQpuHDhAtavX49vv/0Wv/zyCxITE7Fx40YueEhfHM7hJaIyo62tjdDQUNjY2EBfXx+XL19GnTp1EBYWhm7duiEuLk7oiHKFq2ZXLuPGjcPOnTtRt25d1K1bt8iqpxzyT/KKKwJXPubm5ti5cydcXFygo6OD4OBg2NraYteuXdi7dy9OnjwpdESij8YKLxGVGU1NTck8HxMTE0RHR6NOnToAgOfPnwsZTS7FxsYKHYH+ITw8XDJH8fbt21Lb/r1ID5WPtWvXYsSIEVBTU8PatWs/uC9HQFSc1atXCx2B/iUtLQ3W1tYACufrvr/o0LJlS4wePVrIaESlxg4vEZWZpk2b4vLly7Czs4OHhwcmTZqEiIgIHDlyBE2bNhU6HpGgLly4IHQEubdq1Sp4eXlBTU0Nq1atKnE/kUjEDm8F4i1uKh9ra2vExsbC3NwctWvXxoEDB9C4cWMcO3YMenp6QscjKhUOaSaiMhMTE4PMzEzUrVsXWVlZmDRpkuS+rytXroSFhYXQEeXKd99998HtvO+rMB4+fIjo6Gi0bt0a6urqEIvFrPCS3CnNbZ+4InDFW7VqFRQVFeHj44OzZ8+ia9euEIvFyM3NxcqVKzFu3DihIxJ9NHZ4iYhkVI8ePaSe5+bm4vbt20hPT0e7du1w5MgRgZLJp9TUVPTp0wcXLlyASCRCVFQUrK2t8d1330FfXx8rVqwQOiJRhVFQUPjPCz3vLwZxRWDhxcfH49atW7C1tUXdunWFjkNUKhzSTERlZtiwYfjmm2/g4uIidBQC8NtvvxVpKygowOjRo2FjYyNAIvk2YcIEKCsrIyEhAXZ2dpL2vn37YuLEiezwVrBevXqhcePGmDp1qlT70qVLcePGDRw8eFCgZPKBQ/wrt0ePHsHMzEzy3MLCgqO06IvFCi8RlZlu3brh1KlTMDQ0RL9+/fDNN9+gXr16Qseif4mMjISLiwuSkpKEjiJXjI2NcerUKdSrVw/a2toICwuDtbU1YmJiULduXWRmZgodUa4YGhri/PnzcHR0lGqPiIiAm5sbnj59KlAyIuEpKiqiZcuW+Oabb/D1119DX19f6EhEn4wVXiIqM3/88QdevHiBgwcPws/PDytXrkTt2rXh5eWFAQMG8P6KlUR0dDTy8vKEjiF3srKyoKGhUaQ9LS1Ncg9YqjiZmZlQUVEp0q6srFyq+aX0+S5evPjB7a1bt66gJPTezZs34efnh3nz5mHs2LFwd3fHN998g65du/J8RV8cVniJqNw8fvwYe/fuxbZt2xAVFcVOVgWbOHGi1HOxWIykpCScOHECgwYNwrp16wRKJp88PDzQoEEDzJ8/H9ra2ggPD4eFhQX69euHgoICHDp0SOiIcqVx48bo0qULZs2aJdU+Z84cHDt2DLdu3RIomfxRUFAo0vbP+b2cwyscsViMgIAA+Pn54fDhwygoKEDPnj256CF9UdjhJaJykZubixMnTmD37t04ceIEDAwMkJiYKHQsudK2bVup5woKCjA0NES7du3w3XffQUmJg3wq0u3bt+Hq6gpnZ2ecP38enp6euHPnDtLS0hAUFMR51RXs2LFj6NmzJwYMGIB27doBAM6dO4e9e/fi4MGD6N69u7AB5cjLly+lnufm5iIkJAQzZ87EggUL4OrqKlAy+qfg4GAMHToU4eHhvAhBXxR2eImoTF24cKHIlWAvLy+0a9eOt14huffy5UusW7cOYWFhyMzMhLOzM8aMGQMTExOho8mlEydOYOHChQgNDYW6ujrq1q2L2bNno02bNkJHIwCBgYGYOHEiq+0Cevz4Mfz8/ODn54fbt2+jWbNm8PLywqhRo4SORvTR2OElojJjamqKtLQ0uLu7w8vLi3N9BBYbG4u8vDzUrFlTqj0qKgrKysqcU13BEhISYGZmVuyFn4SEBJibmwuQiqjyun//Pho2bMgF3QSwceNG+Pn5ISgoSGotDq7UTF8idniJqMxs3rwZvXv3hp6entBRCECbNm3w3XffYdCgQVLtu3fvxpYtWxAQECBMMDmlqKiIpKQkGBkZSbWnpqbCyMiIQwQFkJ6ejkOHDiEmJgaTJ0+GgYEBgoODUa1aNZiamgodT26Eh4dLPX+/3sDixYuRl5eHy5cvC5RMfpmZmaF///7w8vLi3Rboi8cOLxGVuYcPHyI6OhqtW7eGuro6xGIxhzMLQEdHB8HBwbC1tZVqf/jwIRo2bIj09HRhgskpBQUFPH36FIaGhlLt8fHxsLe3R1ZWlkDJ5FN4eDjc3Nygq6uLuLg4REZGwtraGjNmzEBCQgJ27twpdES5oaCgAJFIhH9/JW3atCm2bduG2rVrC5RMfvHvNskSrlhCRGUmNTUVffr0wYULFyASiRAVFQVra2sMHToU+vr6WLFihdAR5YpIJMKrV6+KtL98+ZLVxAr0frVskUiEmTNnSt2aKD8/H9euXUP9+vUFSie/Jk6ciMGDB2Pp0qXQ1taWtHt4eGDAgAECJpM/sbGxUs/fL7CnpqYmUCISiUS4dOkSNm7ciOjoaBw6dAimpqbYtWsXrKys0LJlS6EjEn20ouvAExF9ogkTJkBZWRkJCQlSX+r79u0Lf39/AZPJp9atW2PRokVSndv8/HwsWrSIX1YqUEhICEJCQiAWixERESF5HhISgvv376NevXrYvn270DHlzo0bNzBy5Mgi7aampkhOThYgkXwxMDDA8+fPAQBz586FgYEBLCwsYGFhATMzM3Z2BXb48GF07NgR6urqCAkJQU5ODoDCC6YLFy4UOB1R6bDCS0Rl5vTp0zh16hRq1Kgh1V6zZk3Ex8cLlEp+LVmyBK1bt0atWrXQqlUrAMClS5eQkZGB8+fPC5xOfly4cAEAMGTIEKxZswY6OjoCJyIAUFVVRUZGRpH2Bw8eFBl2TmXv7du3yMjIQNWqVbFjxw4sWbJEqtJOwvrpp5+wYcMGDBw4EPv27ZO0t2jRAj/99JOAyYhKjx1eIiozWVlZUpXd99LS0rhaswDs7e0RHh4uuQ2Ouro6Bg4cCG9vbxgYGAgdT+74+voC4Bz3ysLT0xPz5s3DgQMHABQO4UxISMDUqVPRq1cvgdPJvmbNmqF79+5o0KABxGIxfHx8oK6uXuy+27Ztq+B0FBkZidatWxdp19XV5foP9MVhh5eIykyrVq2wc+dOzJ8/H0DhF8iCggIsXboUbdu2FTidfKpevTqHn1USaWlp6N27N+e4VxIrVqzA119/DSMjI7x+/Rpt2rRBcnIymjVrhgULFggdT+bt3r0bq1atQnR0NEQiEV6+fIk3b94IHYveMTY2xsOHD4vcvu7y5cuwtrYWJhTRJ+IqzURUZm7fvg1XV1c4Ozvj/Pnz8PT0xJ07d5CWloagoCDY2NgIHVGu+Pr6QktLC71795ZqP3jwILKzs4vcrojK18CBA5GSkoItW7bAzs4OYWFhsLa2xqlTpzBx4kTcuXNH6IhyKSgoCGFhYcjMzISzszPc3NyEjiR3rKyscPPmTVSpUkXoKPTOokWLsHv3bmzbtg3t27fHyZMnER8fjwkTJmDmzJkYO3as0BGJPho7vERUpl6+fCkZQvv+C+SYMWNgYmIidDS589VXX2Hjxo1FquuBgYEYMWIEIiMjBUomn4yNjXHq1CnUq1cP2trakg5vTEwM6tati8zMTKEjyo3c3Fyoq6sjNDQUDg4OQschqnTEYjEWLlyIRYsWITs7G0DhvPfJkydLRnERfSk4pJmIypSuri5+/PFHoWMQgISEBFhZWRVpt7CwQEJCggCJ5BvnuFceysrKMDc35+25KpFz587h3LlzSElJQUFBgdQ2zuGteCKRCD/++CN++OEHPHz4EJmZmbC3t4eWlpbQ0YhKjR1eIvos4eHhH71v3bp1yzEJ/ZuRkRHCw8OLzMEKCwvj0EEBcI575fLjjz/if//7H3bt2sVF3AQ2d+5czJs3Dw0bNoSJiQkXcatEVFRUYG9vL3QMos/CIc1E9FkUFBQgEonwX6cSkUjEakoFmzp1Kvbv3w9fX1/JapuBgYH47rvv8PXXX2P58uUCJ5QvnONeuTg5OeHhw4fIzc2FhYUFNDU1pbYHBwcLlEz+mJiYYOnSpfj222+FjiLXevbs+dH7HjlypByTEJUtVniJ6LPExsYKHYFKMH/+fMTFxcHV1RVKSoWn+4KCAgwcOJArNwvAwcEBDx48wLp166CtrY3MzEz07NmTc9wF0r17d6Ej0Dtv375F8+bNhY4h93R1dYWOQFQuWOElIpJxDx48kNyH19HRERYWFkJHIiKSmDp1KrS0tDBz5kyhoxCRDGKHl4jK1K5du7BhwwbExsbi6tWrsLCwwOrVq2FlZYVu3boJHY+oQnGOe+V38+ZN3Lt3DwBgb2+PBg0aCJxIPkycOFHy3wUFBdixYwfq1q2LunXrQllZWWrflStXVnQ8ApCXl4eAgABER0djwIAB0NbWxpMnT6Cjo8PFq+iLwiHNRFRm1q9fj1mzZmH8+PFYsGCBZM6unp4eVq9ezQ6vAB4/foyjR48iISEBb9++ldrGL5Hlr379+pzjXkk9fvwY/fv3R1BQEPT09AAA6enpaN68Ofbt24caNWoIG1DGhYSESD2vX78+gMK57iS8+Ph4uLu7IyEhATk5OWjfvj20tbWxZMkS5OTkYMOGDUJHJPporPASUZmxt7fHwoUL0b17d6n7jN6+fRsuLi54/vy50BHlyrlz5+Dp6Qlra2vcv38fDg4OiIuLg1gsliycROUrPj7+o/flUPOK5e7ujvT0dOzYsQO1atUCAERGRmLIkCHQ0dGBv7+/wAmJhPP+7/jWrVtRpUoVyd/zgIAADB8+HFFRUUJHJPporPASUZmJjY2Fk5NTkXZVVVVkZWUJkEi+TZ8+HZMnT8bcuXOhra2Nw4cPw8jICF5eXnB3dxc6nlxgJ7byCgwMxJUrVySdXQCoVasWfv75Z7Rq1UrAZPLnu+++w5o1a6CtrS3VnpWVhbFjx/I+vAK4dOkSrly5AhUVFal2S0tLJCYmCpSK6NMoCB2AiGSHlZUVQkNDi7T7+/vDzs6u4gPJuXv37mHgwIEAACUlJbx+/RpaWlqYN28elixZInA6+RQZGQlvb2+4urrC1dUV3t7eiIyMFDqWXDIzM0Nubm6R9vz8fFSvXl2ARPJrx44deP36dZH2169fY+fOnQIkooKCgmKnWTx+/LjIhQmiyo4dXiIqMxMnTsSYMWOwf/9+iMViXL9+HQsWLMD06dMxZcoUoePJHU1NTcm8XRMTE0RHR0u2cXh5xTt8+DAcHBxw69Yt1KtXD/Xq1UNwcDAcHBxw+PBhoePJnWXLlmHs2LG4efOmpO3mzZsYN24c71FdQTIyMvDy5UuIxWK8evUKGRkZkseLFy9w8uRJGBkZCR1TLnXo0AGrV6+WPBeJRMjMzMTs2bPh4eEhXDCiT8A5vERUpvbs2YM5c+ZIOlfVq1fH3LlzMXToUIGTyZ/u3bujc+fOGD58OCZPnow//vgDgwcPxpEjR6Cvr4+zZ88KHVGu2NjYwMvLC/PmzZNqnz17Nnbv3i11QYLKn76+PrKzs5GXlye5T/X7/9bU1JTaNy0tTYiIMk9BQQEikajE7SKRCHPnzsWPP/5YgakIAB49egR3d3eIxWJERUWhYcOGiIqKQtWqVXHx4kVeiKAvCju8RFQm8vLy4Ofnh44dO6JatWrIzs5GZmYm/ygKKCYmBpmZmahbty6ysrIwadIkXLlyBTVr1sTKlSs5v7SCaWhoIDw8HLa2tlLtUVFRqFevHrKzswVKJp927Njx0fsOGjSoHJPIr8DAQIjFYrRr1w6HDx+GgYGBZJuKigosLCw4vFxAeXl52L9/P8LCwpCZmQlnZ2d4eXlBXV1d6GhEpcIOLxGVGQ0NDdy7d48dqS/M3r174enpWaSqRWXLw8MDvXv3xpAhQ6TafX19sW/fPpw6dUqgZPQhixcvxqhRoyS3LqKyFx8fD3Nz8w9We6ni5Obmonbt2jh+/DjX3yCZwFWaiajMNG7cGCEhIezwfmFGjhyJJk2awNraWugoMs3T0xNTp07FrVu30LRpUwDAX3/9hYMHD2Lu3Lk4evSo1L5UOSxcuBB9+vRhh7eMhYeHw8HBAQoKCnj58iUiIiJK3Ldu3boVmIyUlZXx5s0boWMQlRlWeImozBw4cADTp0/HhAkT0KBBgyIVQ35pqZz+ec9kKj8KCh+3TqRIJCp2dVQSBn8/yoeCggKSk5NhZGQkmctb3FdS/j4IY+HChXjw4AG2bNkimeNO9KVih5eIykxxX+jff4nhl5bKi1/oiUrG34/y8c9hzPHx8R/cl6OGKl6PHj1w7tw5aGlpwdHRscgF7CNHjgiUjKj0eMmGiMpMbGys0BGIiOgL8M9OLDu0lY+enh569eoldAyiMsEOLxGVmY/90tK5c2ds2bIFJiYm5ZyIqHK5ceMGLly4gJSUFBQUFEhtW7lypUCpiCqHu3fvIiEhQXL/8Pc4p73i+fr6ftR+QUFBaNiwIVRVVcs5EdGnY4eXiCrcxYsX8fr1a6FjEFWohQsXYsaMGahVqxaqVasmtSItV6cleRYTE4MePXogIiJCai7v+98LToepvDp16oTQ0FAO+adKjR1eIiI5Z2FhAWVlZaFjyLw1a9Zg27ZtGDx4sNBRqBRatWrF+46Ws3HjxsHKygrnzp2DlZUVrl+/jtTUVEyaNAnLly8XOh59AJcCoi8BO7xERHLu9u3bQkeQCwoKCmjRooXQMegdRUVFJCUlwcjISKo9NTUVRkZGkqriyZMnhYgnV65evYrz58+jatWqUFBQgIKCAlq2bIlFixbBx8cHISEhQkckoi8YO7xERDJEX1//o4fHpqWllXMa+qcJEybgl19+werVq4WOQii5MpWTkwMVFZUKTiPf8vPzoa2tDQCoWrUqnjx5glq1asHCwgKRkZECpyOiLx07vEREMoSdqcpr8uTJ6Ny5M2xsbGBvb19kGDlv81Ex1q5dC6BwfuiWLVugpaUl2Zafn4+LFy+idu3aQsWTSw4ODggLC4OVlRWaNGmCpUuXQkVFBZs2beLcUCL6bOzwEhHJkEGDBgkdgUrg4+ODCxcuoG3btqhSpQoXqhLIqlWrABRWeDds2ABFRUXJNhUVFVhaWmLDhg1CxZMb4eHhcHBwgIKCAmbMmIHs7GwAwLx589ClSxe0atUKVapUwf79+wVOSh/C8xh9CURizjYnojJy8eJFNG/eHEpK0tfS8vLycOXKFbRu3RoAsGjRIowePRp6enoCpJRPb968KXKrDx0dHYHSyCdtbW3s27cPnTt3FjoKAWjbti2OHDkCfX19oaPIpX/Ooba2tsaNGzdQpUoVyfa0tLRSTdGgsiMWi/Ho0SMYGRlBTU3tg/tqa2sjLCyMlXiq1NjhJaIy87GLwFDFyMrKwtSpU3HgwAGkpqYW2c6fR8WysLDAqVOnOFy2knjz5k2JX+aTkpJ4n/ByVqVKFZw8eRJNmjSBgoICnj59CkNDQ6FjEYCCggKoqanhzp07qFmzptBxiD6bgtABiEh2iMXiYq/Gp6amQlNTU4BE8m3KlCk4f/481q9fD1VVVWzZsgVz585F9erVsXPnTqHjyZ05c+Zg9uzZkqGbJCxnZ2eEhoYWaT98+DDq1q1b8YHkTK9evdCmTRtYWVlBJBKhYcOGsLa2LvZBFUtBQQE1a9Ys9kIp0ZeIc3iJ6LP17NkTQOFcnsGDB0NVVVWyLT8/H+Hh4WjevLlQ8eTWsWPHsHPnTri4uGDIkCFo1aoVbG1tYWFhgT179sDLy0voiHJl7dq1iI6ORrVq1WBpaVlk0arg4GCBksknFxcXNG3aFHPnzsXUqVORlZWFMWPG4MCBA1iwYIHQ8WTepk2b0LNnTzx8+BA+Pj4YPny4ZKVmEt7ixYvxww8/YP369XBwcBA6DtFnYYeXiD6brq4ugMIKr7a2NtTV1SXbVFRU0LRpUwwfPlyoeHIrLS1NUh3R0dGR3IaoZcuWGD16tJDR5FL37t2FjkD/8Ouvv6Jz584YNmwYjh8/jqSkJGhpaeH69ev8gl9B3N3dAQC3bt3CuHHj2OGtRAYOHIjs7GzUq1cPKioqUn/XAd7Wjr4s7PAS0Wfz9fUFAFhaWmLy5MkcvlxJWFtbIzY2Fubm5qhduzYOHDiAxo0b49ixY1wwTACzZ88WOgL9S6dOndCzZ0+sX78eSkpKOHbsGDu7Anj/N4QqD97ijmQJF60iojJz//79EhfkOXXqFDp27FjBieTbqlWroKioCB8fH5w9exZdu3aFWCxGbm4uVq5ciXHjxgkdUS7dunUL9+7dAwDUqVMHTk5OAieST9HR0RgwYACSk5OxZcsWBAYGYtmyZRg3bhwWLFhQZMg5ERF9mdjhJaIyo6GhgWXLlmHMmDGStpycHEyaNAlbtmzBmzdvBExH8fHxuHXrFmxtbbkojwBSUlLQr18/BAQESCrs6enpaNu2Lfbt28cVaiuYtrY2OnfujA0bNkh+HleuXMHAgQOhra2NkJAQYQMSCSw6Ohq+vr6Ijo7GmjVrYGRkhD///BPm5uaoU6eO0PGIPhpXaSaiMrN9+3bMmjULHh4eePr0KUJDQ+Hk5ISzZ8/i0qVLQseTexYWFujZsyc7uwIZO3YsXr16hTt37iAtLQ1paWm4ffs2MjIy4OPjI3Q8ufPrr79i3759UsP7mzdvjpCQEDg7OwsXjKgSCAwMhKOjI65du4YjR44gMzMTABAWFsbpGfTFYYWXiMrU48ePMWTIEISEhCArKwuDBw/GihUroKGhIXQ0uTNv3rwPbp81a1YFJSGgcHG3s2fPolGjRlLt169fR4cOHZCeni5MMDn39u1bxMbGwsbGBkpKXNqECACaNWuG3r17Y+LEidDW1kZYWBisra1x/fp19OzZE48fPxY6ItFH45mdiMrc27dvkZ+fj/z8fJiYmEBNTU3oSHLpt99+k3qem5uL2NhYKCkpwcbGhh3eClZQUFDsvFBlZWUUFBQIkEi+vX79Gt7e3tixYwcA4MGDB7C2tsbYsWNRo0YNTJ06VeCERMKJiIiAn59fkXYjIyM8f/5cgEREn45DmomozOzbtw+Ojo7Q1dXFgwcPcOLECWzatAmtWrVCTEyM0PHkTkhIiNTj9u3bSEpKgqurKyZMmCB0PLnTrl07jBs3Dk+ePJG0JSYmYsKECXB1dRUwmXyaNm0awsLCEBAQIHVRzs3NDfv27RMwGZHw9PT0kJSUVKQ9JCQEpqamAiQi+nTs8BJRmRk6dCgWLlyIo0ePwtDQEO3bt0dERARMTU1Rv359oeMRCu/HO3fuXMycOVPoKHJn3bp1yMjIgKWlJWxsbGBjYwMrKytkZGTg559/Fjqe3Pn999+xbt06tGzZEiKRSNJep04dREdHC5iMSHj9+vXD1KlTkZycDJFIhIKCAgQFBWHy5MkYOHCg0PGISoVDmomozAQHB6NWrVpSbfr6+jhw4AB27dolUCr6t5cvX+Lly5dCx5A7ZmZmCA4OxtmzZ3H//n0AgJ2dHdzc3AROJp+ePXsGIyOjIu1ZWVlSHWAiebRw4UKMGTMGZmZmyM/Ph729PfLz8zFgwADMmDFD6HhEpcJFq4ioTOXl5SEgIEByj0ttbW08efIEOjo60NLSEjqeXFm7dq3Uc7FYjKSkJOzatQtt2rQpdn4Wkbxo3bo1evfujbFjx0JbWxvh4eGwsrLC2LFjERUVBX9/f6EjEgkuISEBt2/fRmZmJpycnFCzZk2hIxGVGju8RFRm4uPj4e7ujoSEBOTk5EgWgRk3bhxycnKwYcMGoSPKFSsrK6nnCgoKMDQ0RLt27TB9+nRoa2sLlEw++fj4wNbWtsgtiNatW4eHDx9i9erVwgSTU5cvX0anTp3wzTffYPv27Rg5ciTu3r2LK1euIDAwEA0aNBA6IpFgYmJiYG1tLXQMojLBDi8RlZnu3btDW1sbW7duRZUqVSS3MQgICMDw4cMRFRUldEQiwZiamuLo0aNFOlLBwcHw9PTkbT4EEB0djcWLFyMsLAyZmZlwdnbG1KlT4ejoKHQ0IkEpKCigRo0aaNOmDVxcXNCmTRvY2toKHYvok7DDS0RlpkqVKrhy5Qpq1aoldd++uLg42NvbIzs7W+iIcuW7777DmjVrilRys7KyMHbsWGzbtk2gZPJJTU0Nt2/fLvKl8eHDh3BwcMCbN28ESkZEJC0xMREBAQEIDAxEYGAgoqKiUL16dbRp0wZt27bFsGHDhI5I9NG4SjMRlZmCggLk5+cXaX/8+DGHzwpgx44deP36dZH2169fY+fOnQIkkm+2trbFzgv9888/OXRQAIqKikhJSSnSnpqaCkVFRQESEVUepqam8PLywqZNmxAZGYnIyEi4ubnhwIEDGDlypNDxiEqFqzQTUZnp0KEDVq9ejU2bNgEARCIRMjMzMXv2bHh4eAicTn5kZGRALBZDLBbj1atXUvcYzc/Px8mTJ4tdnZbK18SJE+Ht7Y1nz56hXbt2AIBz585hxYoVnL8rgJIGuOXk5EBFRaWC0xBVLtnZ2bh8+TICAgIQEBCAkJAQ1K5dG97e3nBxcRE6HlGpcEgzEZWZx48fo2PHjhCLxYiKikLDhg0RFRWFqlWr4uLFi+xkVRAFBYUP3lZFJBJh7ty5+PHHHyswFQHA+vXrsWDBAjx58gQAYGlpiTlz5vC+lhXo/erlEyZMwPz586VWj8/Pz8fFixcRFxeHkJAQoSISCU5FRQX6+vrw8vKCi4sLWrVqBX19faFjEX0SdniJqEzl5eVh//79UovAeHl5QV1dXehociMwMBBisRjt2rXD4cOHYWBgINmmoqICCwsLVK9eXcCE9OzZM6irqxd7q66goCA0bNgQqqqqAiSTfe9XL4+Pj0eNGjWkhi+rqKjA0tIS8+bNQ5MmTYSKSCS47t274/Lly1BRUYGLi4vk8dVXXwkdjajU2OElojJz8eJFNG/eHEpK0rMl8vLycOXKFbRu3VqgZPIpPj4e5ubmH6z2UuWjo6OD0NBQzustZ23btsWRI0dYtSL6gPDwcMnCVZcuXYKSkhJcXFywZ88eoaMRfTR2eImozCgqKiIpKanI0OXU1FQYGRkVu6AVlR9fX19oaWmhd+/eUu0HDx5EdnY2Bg0aJFAy+pB/rnBORCQksViMkJAQXLhwARcuXMCpU6cgFouRl5cndDSij8ZFq4iozIjF4mKriampqdDU1BQgkXxbtGgRNm7cWKTdyMgII0aMYIeX5Fp+fj62b9+Oc+fOISUlBQUFBVLbz58/L1AyIuGtXLkSAQEBuHz5Ml69eoV69eqhdevWGDFiBFq1aiV0PKJSYYeXiD5bz549ARQuhjR48GCpuYf5+fkIDw9H8+bNhYontxISEiTzFf/JwsICCQkJAiQiqjzGjRuH7du3o3PnznBwcODQf6J/2Lt3L9q0aSPp4Orq6godieiTscNLRJ/t/R9CsVgMbW1tqQWqVFRU0LRpUwwfPlyoeHLLyMgI4eHhsLS0lGoPCwtDlSpVhAlFVEns27cPBw4c4C3TiIpx48YNoSMQlRl2eInos/n6+gIovMXK5MmTOXy5kujfvz98fHygra0tWTAsMDAQ48aNQ79+/QRORyVhpbFiqKiowNbWVugYRJWSv78/tLS00LJlSwDAL7/8gs2bN8Pe3h6//PILF3ujLwoXrSIiklFv377Ft99+i4MHD0pWzi4oKMDAgQOxYcMGqKioCJyQisNFqyrGihUrEBMTg3Xr1vEiA9G/ODo6YsmSJfDw8EBERAQaNWqEiRMn4sKFC6hdu7bkQjfRl4AdXiIqM0+fPsXkyZMli8D8+/TCVZqF8eDBA4SFhUFdXR2Ojo6wsLAQOpLcysvLQ0BAAKKjozFgwABoa2vjyZMn0NHRKfaevFR+evTogQsXLsDAwAB16tSBsrKy1PYjR44IlIxIeFpaWrh9+zYsLS0xZ84c3L59G4cOHUJwcDA8PDyQnJwsdESij8YhzURUZgYPHoyEhATMnDkTJiYmrJpUEl999RW++uoroWPIvfj4eLi7uyMhIQE5OTlo3749tLW1sWTJEuTk5GDDhg1CR5Qrenp66NGjh9AxiColFRUVZGdnAwDOnj2LgQMHAgAMDAyQkZEhZDSiUmOHl4jKzOXLl3Hp0iXUr19f6Cj0zuPHj3H06FEkJCTg7du3UttWrlwpUCr5NG7cODRs2LDIomE9evTgom4C4JBMopK1bNkSEydORIsWLXD9+nXs378fQOGIoRo1agicjqh02OElojJjZmZWZBgzCefcuXPw9PSEtbU17t+/DwcHB8TFxUEsFsPZ2VnoeHLn0qVLuHLlSpG505aWlkhMTBQoFT179gyRkZEAgFq1asHQ0FDgRETCW7duHb7//nscOnQI69evh6mpKQDgzz//hLu7u8DpiEqHHV4iKjOrV6/GtGnTsHHjxiK3wqGKN336dEyePBlz586FtrY2Dh8+DCMjI3h5efELiwAKCgqKncf++PFjaGtrC5BIvmVlZWHs2LHYuXMnCgoKAACKiooYOHAgfv75Z2hoaAickEg45ubmOH78eJH2VatWCZCG6PNw0SoiKjP6+vrIzs5GXl4eNDQ0iiwCk5aWJlAy+aStrY3Q0FDY2NhAX18fly9fRp06dRAWFoZu3bohLi5O6IhypW/fvtDV1cWmTZugra2N8PBwGBoaolu3bjA3N+cQ2wo2cuRInD17FuvWrUOLFi0AFE7L8PHxQfv27bF+/XqBExIJq6CgAA8fPkRKSorkotB77291R/QlYIWXiMrM6tWrhY5A/6CpqSmZt2tiYoLo6GjUqVMHAPD8+XMho8mlFStWoGPHjrC3t8ebN28wYMAAREVFoWrVqti7d6/Q8eTO4cOHcejQIbi4uEjaPDw8oK6ujj59+rDDS3Ltr7/+woABAxAfH19kqpJIJOJdF+iLwg4vEZWZQYMGCR2B/qFp06a4fPky7Ozs4OHhgUmTJiEiIgJHjhxB06ZNhY4nd2rUqIGwsDDs378fYWFhyMzMxNChQ+Hl5QV1dXWh48md7OxsVKtWrUi7kZGRZHVaInk1atQoNGzYECdOnOBdF+iLxyHNRFSm8vPz8fvvv+PevXsAgDp16sDT0xOKiooCJ5M/MTExyMzMRN26dZGVlYVJkybhypUrqFmzJlauXMn78ZJcc3V1RZUqVbBz506oqakBAF6/fo1BgwYhLS0NZ8+eFTghkXA0NTURFhYGW1tboaMQfTZ2eImozDx8+BAeHh5ITExErVq1AACRkZEwMzPDiRMnYGNjI3BC2bd27VqMGDECampqSEhIgJmZGa/MVxI7duxA1apV0blzZwDAlClTsGnTJtjb22Pv3r28AFHBIiIi4O7ujpycHNSrVw8AEBYWBlVVVZw+fVoy/J9IHrVr1w5TpkzhAockE9jhJaIy4+HhAbFYjD179sDAwAAAkJqaim+++QYKCgo4ceKEwAlln5KSEp48eQIjIyMoKioiKSkJRkZGQsciFN7yZv369WjXrh2uXr0KV1dXrF69GsePH4eSkhKOHDkidES5k52djT179uD+/fsAADs7Ow4xJwLw22+/YcaMGfjhhx/g6OhYZBHKunXrCpSMqPTY4SWiMqOpqYm//voLjo6OUu1hYWFo0aIFMjMzBUomP8zNzTF9+nR4eHjAysoKN2/eRNWqVUvclyqOhoYG7t+/D3Nzc0ydOhVJSUnYuXMn7ty5AxcXFzx79kzoiHJl0aJFqFatGr777jup9m3btuHZs2eYOnWqQMmIhKegoFDiNi5aRV8aLlpFRGVGVVUVr169KtKemZkJFRUVARLJnxkzZmDs2LHw9vaGSCRCo0aNiuwjFov5hUUAWlpaSE1Nhbm5OU6fPo2JEycCANTU1PD69WuB08mfjRs3ws/Pr0h7nTp10K9fP3Z4Sa7FxsYKHYGozLDDS0RlpkuXLhgxYgS2bt2Kxo0bAwCuXbuGUaNGwdPTU+B08mHEiBHo378/4uPjUbduXZw9exZVqlQROhYBaN++PYYNGwYnJyc8ePAAHh4eAIA7d+7A0tJS2HByKDk5GSYmJkXaDQ0NkZSUJEAiosrj/ZoCd+/eRUJCguQWd0BhhZdrDtCXhB1eIioza9euxaBBg9CsWTPJfJ+8vDx4enpizZo1AqeTH9ra2nBwcICvry9atGgBVVXVD+6/d+9eeHp6QlNTs4ISyqdffvkFM2bMwKNHj3D48GHJhYhbt26hf//+AqeTP2ZmZggKCoKVlZVUe1BQEKpXry5QKqLKISYmBj169EBERAREIpHkXrzvF0HkCCH6knAOLxGVuYcPH0puS2RnZ8fbGlRyOjo6CA0NhbW1tdBRiCrM0qVLsXTpUixbtgzt2rUDAJw7dw5TpkzBpEmTMH36dIETEgmna9euUFRUxJYtW2BlZYVr164hLS0NkyZNwvLly9GqVSuhIxJ9NHZ4iYjknLa2NsLCwtjhrQDp6em4fv06UlJSUFBQIGkXiUT49ttvBUwmf8RiMaZNm4a1a9dKhmuqqalh6tSpmDVrlsDpiIRVtWpVnD9/HnXr1oWuri6uX7+OWrVq4fz585g0aRJCQkKEjkj00TikmYjKTK9evdC4ceMii70sXboUN27cwMGDBwVKRiS8Y8eOwcvLC5mZmdDR0ZG6PzI7vBVPJBJhyZIlmDlzJu7duwd1dXXUrFnzP6cAEMmD/Px8aGtrAyjs/D558gS1atWChYUFIiMjBU5HVDolrzlORFRKFy9elCzE80+dOnXCxYsXBUhEVHlMmjQJ3333HTIzM5Geno4XL15IHmlpaULHk1taWlpo1KgRHBwc2NklesfBwQFhYWEAgCZNmmDp0qUICgrCvHnzOBqIvjis8BJRmSnp9kPKysrIyMgQIBFR5ZGYmAgfHx9oaGgIHYWI6INmzJiBrKwsAMC8efPQpUsXtGrVClWqVMH+/fsFTkdUOqzwElGZcXR0LPYP4b59+2Bvby9AIqLKo2PHjrh586bQMYiI/lPHjh3Rs2dPAICtrS3u37+P58+fIyUlRbLIG9GXghVeIiozM2fORM+ePREdHS216unevXs5f7cSs7CwkNxGispP586d8cMPP+Du3btwdHQs8m/Oe1UTUWVmYGAgdASiT8JVmomoTJ04cQILFy5EaGgo1NXVUbduXcyePRtt2rQROppcSk9Px6FDhxAdHY0ffvgBBgYGCA4ORrVq1WBqaip0PLmioFDyoCqRSMT7WhIREZUDdniJqMLt3bsXnp6e0NTUFDqKTAsPD4ebmxt0dXURFxeHyMhIWFtbY8aMGUhISMDOnTuFjkhERERUrjiHl4gq3MiRI/H06VOhY8i8iRMnYvDgwYiKioKampqk3cPDg6tmExERkVxgh5eIKhwHllSMGzduYOTIkUXaTU1NkZycLEAiCgwMRNeuXWFrawtbW1t4enri0qVLQsciIiKSWezwEhHJKFVV1WJvB/XgwQMYGhoKkEi+7d69G25ubtDQ0ICPjw98fHygrq4OV1dX+Pn5CR2PiIhIJnEOLxFVOG1tbYSFhfHm9eVs2LBhSE1NxYEDB2BgYIDw8HAoKiqie/fuaN26NVavXi10RLliZ2eHESNGYMKECVLtK1euxObNm3Hv3j2BkhEREckuVniJiGTUihUrkJmZCSMjI7x+/Rpt2rSBra0ttLW1sWDBAqHjyZ2YmBh07dq1SLunpydiY2MFSERERCT7eB9eIiIZpaurizNnziAoKAhhYWHIzMyEs7Mz3NzchI4ml8zMzHDu3DnY2tpKtZ89exZmZmYCpSIiIpJt7PASUYWzsLCAsrKy0DFkWm5uLtTV1REaGooWLVqgRYsWQkeSe5MmTYKPjw9CQ0PRvHlzAEBQUBC2b9+ONWvWCJyOiIhINrHDS0RlKj09HYcOHUJ0dDR++OEHGBgYIDg4GNWqVYOpqSkA4Pbt2wKnlH3KysowNzdHfn6+0FHondGjR8PY2BgrVqzAgQMHABTO692/fz+6desmcDoiIiLZxEWriKjMhIeHw83NDbq6uoiLi0NkZCSsra0xY8YMJCQkYOfOnUJHlCtbt27FkSNHsGvXLhgYGAgd0BmRNQAADrZJREFUh4iIiKjCscNLRGXGzc0Nzs7OWLp0qdRKzFeuXMGAAQMQFxcndES54uTkhIcPHyI3NxcWFhbQ1NSU2h4cHCxQMvl28+ZNyYrM9vb2aNCggcCJiIiIZBeHNBNRmblx4wY2btxYpN3U1BTJyckCJJJv3bt3FzoC/cPjx4/Rv39/BAUFQU9PD0DhFIDmzZtj3759qFGjhrABiYiIZBA7vERUZlRVVZGRkVGk/cGDBzA0NBQgkXybPXu20BHoH4YNG4bc3Fzcu3cPtWrVAgBERkZiyJAhGDZsGPz9/QVOSEREJHs4pJmIysywYcOQmpqKAwcOwMDAAOHh4VBUVET37t3RunVrrF69WuiIcunWrVuSIbR16tSBk5OTwInkk7q6Oq5cuVLk3//WrVto1aoVsrOzBUpGREQku1jhJaIys2LFCnz99dcwMjLC69ev0aZNGyQnJ6NZs2ZYsGCB0PHkTkpKCvr164eAgACpIbRt27bFvn37WHWvYGZmZsjNzS3Snp+fj+rVqwuQiIiISPYpCB2AiGSHrq4uzpw5g+PHj2Pt2rXw9vbGyZMnERgYWGTBJCp/Y8eOxatXr3Dnzh2kpaUhLS0Nt2/fRkZGBnx8fISOJ3eWLVuGsWPH4ubNm5K2mzdvYty4cVi+fLmAyYiIiGQXhzQTUZnIzc2Furo6QkND4eDgIHQcQuEFiLNnz6JRo0ZS7devX0eHDh2Qnp4uTDA5pa+vj+zsbOTl5UFJqXCA1fv//vcFobS0NCEiEhERyRwOaSaiMqGsrAxzc3Pk5+cLHYXeKSgogLKycpF2ZWVlFBQUCJBIvnEOOxERUcVjhZeIyszWrVtx5MgR7Nq1CwYGBkLHkXvdunVDeno69u7dK5kjmpiYCC8vL+jr6+O3334TOCERERFR+WKHl4jKjJOTEx4+fIjc3FxYWFgUGaYZHBwsUDL59OjRI3h6euLOnTswMzOTtDk4OODo0aO872sFCw4OhrKyMhwdHQEAf/zxB3x9fWFvb485c+ZARUVF4IRERESyh0OaiajMdO/eXegI9A9mZmYIDg7G2bNncf/+fQCAnZ0d3NzcBE4mn0aOHIlp06bB0dERMTEx6Nu3L3r27ImDBw8iOzubQ56JiIjKASu8REREFUBXVxfBwcGwsbHBkiVLcP78eZw6dQpBQUHo168fHj16JHREIiIimcMKLxGVuVu3buHevXsAgDp16sDJyUngRPLJx8cHtra2RW5BtG7dOjx8+JAVxQomFosli4WdPXsWXbp0AVBYiX/+/LmQ0YiIiGQWK7xEVGZSUlLQr18/BAQEQE9PDwCQnp6Otm3bYt++fTA0NBQ2oJwxNTXF0aNH0aBBA6n24OBgeHp64vHjxwIlk0/t2rWDmZkZ3NzcMHToUNy9exe2trYIDAzEoEGDEBf3//buJiSus43D+D/TDvliZlJpOiG28SMDNYkgE0ijhlKqkwlkoWK6KC3YdhULE5tIQqAJCgF31tYozKbd2EW6GFvpoq1RoQ1kY9pJlGi+IaONjp9MR9HAEH0XQmiwm5dOzpOec/2Wt5tr6T3Pc855aDoRAADbcZkOAGAfJ06c0MLCgkZGRjQ/P6/5+XndvHlT6XR63Skjnr+5uTn5fL51c6/Xy4miAV999ZXi8bgikYjOnTunQCAgSYrFYiovLzdcBwCAPXHCCyBrfD6f+vv7deDAgWfmg4ODCofDSqVSZsIcqri4WPX19YpEIs/MOzo6FI1GNTo6aqgMf/f48WO99NJL//jNZAAA8O/wDC+ArFlZWfnHf9rdbvfTZxdhncbGRkUiEc3MzKiiokKSNDAwoNbWVrW3txuuc6ZUKqVYLKYHDx7ozJkzysnJ0ejoqPx+v3Jzc03nAQBgO5zwAsia6upqpVIpXbp0STt37pQkPXr0SB9++KFeeeUV/fDDD4YLnScajaqlpUUTExOSpIKCAjU3N6uurs5wmfMMDw+rsrJS27Zt08OHD3Xnzh0VFhbq/PnzGhsbU1dXl+lEAABsh2d4AWRNZ2en0um08vPztXv3bu3evVsFBQVKp9Pq6Ogwnec4y8vL+uijj/Tnn39qampKw8PDikQi8vv9ptMcqbGxUZ988onu3bunTZs2PZ0fPXpUV65cMVgGAIB9ccILIKtWV1fV39+v27dvS5L27NmjUChkuMqZwuGwamtrVV9fr1QqpaKiIrndbs3OzqqtrU2ffvqp6URH+ft3eD0ej4aGhlRYWKhEIqE333xTjx8/Np0IAIDt8AwvgKzasGGDDh8+rMOHD5tOcbx4PK4vv/xS0tqbgP1+v65fv67u7m41NTWx8Fps48aNSqfT6+Z3797lk10AADwnXGkGkDUNDQ26ePHiunlnZ6dOnjxpfZDDLS0tyePxSJIuX76s2tpauVwulZaWKpFIGK5znqqqKl24cEGZTEbS2o9DY2NjOnv2rI4dO2a4DgAAe2LhBZA13d3dOnTo0Lp5eXm5YrGYgSJnCwQC6unp0fj4uHp7exUOhyVJ09PT8nq9huuc54svvtDi4qJee+01LS8v65133lEgEJDH41FLS4vpPAAAbIkrzQCyZm5uTj6fb93c6/VqdnbWQJGzNTU16YMPPtCpU6dUWVmpsrIySWunvcFg0HCd8/h8PvX19enq1asaGhrS4uKi9u/fzzPuAAA8R7y0CkDWFBcXq76+XpFI5Jl5R0eHotGoRkdHDZU5VzKZ1OTkpEpKSuRyrV3qGRwclNfrVVFRkeE658hkMtq8ebNu3Lih4uJi0zkAADgGJ7wAsqaxsVGRSEQzMzOqqKiQJA0MDKi1tVXt7e2G65xpx44d2rFjxzOzt956y1CNc7ndbu3atUtPnjwxnQIAgKNwwgsgq6LRqFpaWjQxMSFJKigoUHNzs+rq6gyXAWZ98803+v777/Xtt98qJyfHdA4AAI7Awgsga5aXl7W6uqotW7ZoZmZGU1NT6uvr0969e3XkyBHTeYBRwWBQ9+/fVyaTUV5enrZu3frM3+PxuKEyAADsiyvNALKmurpatbW1qq+vl9vtVigUktvt1uzsrNra2vjuKxytpqbGdAIAAI7DCS+ArHn11Vf122+/ad++ffr666/V0dGh69evq7u7W01NTbp165bpROCFd+nSJVVVVa07AQYAAP8/vsMLIGuWlpbk8XgkrX36pra2Vi6XS6WlpUokEobrgP+G48ePa2pqynQGAAC2wMILIGsCgYB6eno0Pj6u3t5ehcNhSdL09LS8Xq/hOuC/gYtXAABkDwsvgKxpamrS6dOnlZ+fr4MHD6qsrEzS2mlvMBg0XAcAAACn4RleAFmVTCY1OTmpkpISuVxrv6kNDg7K6/WqqKjIcB3w4vN4PBoaGlJhYaHpFAAA/vNYeAEAeIGw8AIAkD1caQYAAAAA2BILLwAAL5C8vDy53W7TGQAA2AJXmgEAsEgqlVIsFtODBw905swZ5eTkKB6Py+/3Kzc313QeAAC2w8ILAIAFhoeHFQqF5PP59PDhQ925c0eFhYU6f/68xsbG1NXVZToRAADb4UozAAAWaGxs1Mcff6x79+5p06ZNT+dHjx7VlStXDJYBAGBfLLwAAFjg2rVrOn78+Lp5bm6uksmkgSIAAOyPhRcAAAts3LhR6XR63fzu3bvavn27gSIAAOyPhRcAAAtUVVXpwoULymQykqQNGzZobGxMZ8+e1bFjxwzXAQBgT7y0CgAAC/z1119677339Pvvv2thYUE7d+5UMplUWVmZfvrpJ23dutV0IgAAtsPCCwCAha5evaqhoSEtLi5q//79CoVCppMAALAtFl4AAJ6zTCajzZs368aNGyouLjadAwCAY/AMLwAAz5nb7dauXbv05MkT0ykAADgKCy8AABY4d+6cPv/8c83Pz5tOAQDAMbjSDACABYLBoO7fv69MJqO8vLx1L6mKx+OGygAAsK+XTQcAAOAENTU1phMAAHAcTngBAAAAALbECS8AABb6448/dOvWLUnSvn37FAwGDRcBAGBfLLwAAFhgenpa77//vn799Vdt27ZNkpRKpfTuu+/qu+++0/bt280GAgBgQ7ylGQAAC5w4cUILCwsaGRnR/Py85ufndfPmTaXTaTU0NJjOAwDAlniGFwAAC/h8PvX39+vAgQPPzAcHBxUOh5VKpcyEAQBgY5zwAgBggZWVFbnd7nVzt9utlZUVA0UAANgfCy8AABaoqKjQZ599pomJiaezR48e6dSpU6qsrDRYBgCAfXGlGQAAC4yPj6uqqkojIyN64403ns6Ki4v1448/6vXXXzdcCACA/bDwAgBgkdXVVfX39+v27duSpD179igUChmuAgDAvlh4AQAAAAC2xDO8AABYoKGhQRcvXlw37+zs1MmTJ60PAgDAAVh4AQCwQHd3tw4dOrRuXl5erlgsZqAIAAD7Y+EFAMACc3Nz8vl86+Zer1ezs7MGigAAsD8WXgAALBAIBPTLL7+sm//8888qLCw0UAQAgP29bDoAAAAnaGxsVCQS0czMjCoqKiRJAwMDam1tVXt7u+E6AADsibc0AwBgkWg0qpaWFk1MTEiSCgoK1NzcrLq6OsNlAADYEwsvAAAWWF5e1urqqrZs2aKZmRlNTU2pr69Pe/fu1ZEjR0znAQBgSzzDCwCABaqrq9XV1SVJcrvdCoVCamtrU01NjaLRqOE6AADsiYUXAAALxONxvf3225KkWCwmv9+vRCKhrq6uf/w+LwAA+PdYeAEAsMDS0pI8Ho8k6fLly6qtrZXL5VJpaakSiYThOgAA7ImFFwAACwQCAfX09Gh8fFy9vb0Kh8OSpOnpaXm9XsN1AADYEwsvAAAWaGpq0unTp5Wfn6+DBw+qrKxM0tppbzAYNFwHAIA98ZZmAAAskkwmNTk5qZKSErlca785Dw4Oyuv1qqioyHAdAAD2w8ILAAAAALAlrjQDAAAAAGyJhRcAAAAAYEssvAAAAAAAW2LhBQAAAADYEgsvAAAAAMCWWHgBAAAAALbEwgsAAAAAsCUWXgAAAACALf0PMpjVF8udFRIAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import matplotlib.pyplot as plt\n", + "import seaborn as sns\n", + "\n", + "corr_matrix = scores_df.corr()\n", + "\n", + "# Create a heatmap of the correlation matrix\n", + "plt.figure(figsize=(10, 8))\n", + "sns.heatmap(corr_matrix, annot=True, vmin=-1, vmax=1, center=0, linewidths=.5, linecolor='white', cmap='crest')\n", + "plt.title('Correlation Matrix of Six Scores')\n", + "plt.tight_layout()" + ] + }, + { + "attachments": { + "%7B283F9496-4034-464B-9F93-DEA587D37A5B%7D.png": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABgEAAAKnCAYAAACveu0QAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAAFiUAABYlAUlSJPAAAP+lSURBVHhe7N0HfBRl/sfxLxCkG5qhGkUEQQ0KCIjkBARRL1bEhu3E9sc7ezmx63nqnWI57uDubGfDUzmsqKiIJYggRYqAINKkRVqkxoTwn9/sTJgsu5tNJVk+79drkp2yszOzz8488/yeeZ5quxwCAAAAAAAAAAAJp7r3HwAAAAAAAAAAJBiCAAAAAAAAAAAAJCiCAAAAAAAAAAAAJCiCAAAAAAAAAAAAJCiCAAAAAAAAAAAAJCiCAAAAAAAAAAAAJCiCAAAAAAAAAAAAJCiCAAAAAAAAAAAAJKhquxzea+yjNmzarA0bf3FfN260vxo3bOC+BgAAAAAAAABUbQQB9lH2rX8wcYomT/9Oa7I2eFNDmqc0Vs+uR+iUvj1UrZo3EQAAAAAAAABQ5RAE2Af9sGSlXhgz3i38P7JDG3XqeIiaH9DYnbfm5w2aPf9HzV2wxA0GXDroJB3appU7DwAAAAAAAABQtRAE2MdYAGD4v19Xk4b7a/BZ/XR4+4O9OYXNW7hUo9+coPWbftHNV51LIAAAAAAAAAAAqiCCAPsQ+6bveew57crfpZuuPrfItv+tr4DH//W6qlWvpgduGULTQAAAAAAAAABQxVT3/mMfYH0AWBNA9gRAeABgzLjP9cZ7n3ljIbaMLWvvsfcCAAAAAAAAAKoWggD7EOsE2PoAiNYEUCS2rL3H3gsAAAAAAAAAqFoIAuwjrGkfq9FvnQBHMiijt845tY83Vpi9x95r6wAAAAAAAAAAVB0EAfYRGzb+4v5vfkBj9384aw7Ihkj89/jrAAAAAAAAAABUDQQB4Fq6Yo07AAAAAAAAAAASR5kFAXasX6SJrz+vW68epP69u6tGnea7h4N/o/6nDtKVdzyvV8fP0Zod3ptQYRo32t/9v+bnDe7/4vDf468DAAAAAAAAAFA1lD4IsDZTj1/6G7Vt/Rv1v3SYHn8xUxOnLvdmetYu0sQJmXruiWG66MwT1erysaLOecVq3LCBmqc01uz5P3pT4mfvsffaOgAAAAAAAAAAVUepggA7pj6p/j0G6dbXF1GoXwX07HqE5i5YonkLl3pTdjv4wObuEM6WtffYewEAAAAAAAAAVUvJgwDLxuqKcx/RxLXeOCq9U/r2cGv0j35zgjZs2uxNDRmU0dsdgmwZW9beY+8FAAAAAAAAAFQtJQwCZOvNh67Rq1ECAG1Oukx3PPS4xnw4Rp+89rgefWiohnRP9eZib6lWTbp00Elav+kXPf6v1yM+EeCzebaMLWvvsfcCAAAAAAAAAKqWarsc3uv4rR2niw6+XK96o7sdoz9NeEV3HJfsjYdZv0gfvPiIrp2WocxXBmrPxmdQEX5YslIvjBmvNVkbdGSHNurU8RA1P6CxO886AbY+AKwJIHsCwAIAh7Zp5c4DAAAAAAAAAFQtJQsCTH1SNXo/4o0EDHtPO+85xhuJITtbO5KTVdsbRcWzb/2DiVM0efp3bjAgyAr/rQ8AawKIJwAAAAAAAAAAoOraO0EAVCrW9v+Gjb+4rxs32l+NGzZwXwMAAAAAAAAAqraS9QmQpMhN+Tx8nx6amuONlEaO1swep+ceGKZBp56qQ+s0Vw1/OPJU9b9wmB5/fZrW5HmLR7Bj5TS9OvJ+XXnqIB158J7vv/vFCZq/3ls4oiy9emHgff5w4Vitcedna/LIYTr1mE7u9FZXj/OmF7ZpcaZefcLZj5N/o1b+Og7+TcE2LMn2Fowh5r6cepNufWK03vwujhVFYYX+1uSPDQQAAAAAAAAAACBxlOxJgOwJurb5hRrpjRZ2jK554WH9aWCaGiZ5k4ph01ej9IfrRunV77K8KdH96fM1uqO7N+Jbm6nHb7pJt45d7k2IJVWn3HivRjyQoTZ7bKsFATrporHeqG/gSK185RhNvPxUXTQ6sI3u9EA/B9mL9NxtF+rKF4vaDjteT+jRc9vt2TzSlkV69YFhumVEZsQAQyHhnw8AAAAAAAAA2OeV7EmA5HQNvDXFGwk3TSMvPVFNjr5Qt744TWt2eJOLlKOZIy7UEf3ujysAEMmmr55U/x6D4gwAmOX64InLlX7qk5q8xZsUh/nPDSscAAi3bJyu7PWbOAIAxo7X2Tr10WkqdKi2TNNDGb/RRfEEAAAAAAAAAAAAiKBkQQDVUt+rH9YFzbzRSBZP0ONXn6pWjbrr1DvGambMpnekJa/fqFNvm1DyAu/Zo3Rqv0c0ca03XgxrPn9Eg64fqyXeeEzZ/9PwByZ4IxFY4f0ll+u5xd54QJvu6erbzxmOCA+gZGniPffp8Rm7m1Ka/+J9unuqN1JIqnraOmzonupNAwAAAAAAAABgTyUMAjhaZeiZ8Y/HDgS4rLb9NTqmdXcNGjlHm7yphSwerWsv9dvaL6x578F69IVXlPntbK1fM1tzP39WI4akhzV7s1zP3XO/JntjQc17D9XTb32sH9Z8r/ULPtZ7L9yus9p6MwPWjL5Gt74exxMIEybog6iBhhxNHjFsz8L7toP19LTv9cPnY/TJe84wbbZ+eDa86Z5puvuB/3mBiOWa/P4091UhAx/XD5unKtPWYcPnU7Vz8zJnvY/rpoNqeQsBAAAAAAAAABBSsj4BgrLnaOQ1l+vaOJvgaT74cX3y1GB1rO9NUI4m3tNN/R8NL4BP0Sl/fUUvX5umht6UoE3fjdbEnME6q4szMvVJter9yB5BhM43vqJPHuq35/uzM3X3gEF6aLY37ut0r6ZNGarO7kiUPgFczrY9MFIjhqarje1HXo6WLMtWi4bf6NrWl+u50EKeNP3p8/d0R/fwQvrleu7M7rpyvDfqytDLPzyrC1pN00N1TtXd3tQC17yircP77dl3AAAAAAAAAAAAEZT8SQBfcpqueWWq1s99xe3ctqiOadeMvkn975yw+4mAHd/o/T0CAFLzq56IGgAwDY/wAgCOmZ8/F+EpgsG68+YIAQCTnK6b7xzsjQTMnqCZEZrxCdfznuc05lYvAGCSaqlN2xTt+DozLADg6HeZLtgjAGBS1bGH97LAOM1bZv9T1LyfO6GwkdZk0mhNXra72SAAAAAAAAAAAKIpfRDA07BtP930wpda+dOXeu+hgeoYo5mgNf++UcM/9wqyF87RxNCrQoacF6UAfw9ZWvBthGZ8BvdTzybe6wgaHpWus7zXu2VqSZF9CgzWzVcdE7E2/pJ547xXARNu0qF1mqtGhCH9AW+ZgPk/2b6kqvNJx4QmFJKliSNuUnqHg9TqmAt17cgJml9EXwsAAAAAAAAAgH1XmQUBCjRpp1NuHKm5s77Uy9eGt93vy9JD47/RDnu5I0cz3WlBGTr8IO9lSR3aLPZTCUne/zChQvgYTk/X0VGCCzvyinhvMXS+7D79qbs3EsGa7yZo5M0X6sjWndT/tnFakufNAAAAAAAAAADAU/ZBAF9yO13w11c05p5INdodi7O02ntZmdSOEhwo4Myv470sV/WP0R3jvtTLN/ZTG29SZPZ0wOVKP3+05ntTAAAAAAAAAAAwJQsCrM/e3aZ/TLXU85obdY03Vsg7yyO04+/7RktWei9Lak0R27hjR8T5h7dO8V6VkX43aMyHY/RJnMOdvZK9Nzrqt9MFD72iH6yJpX8N1QVHRN+2NeNu0q0vxtc5MwAAAAAAAABg31CyIMDi53XM1aM1P9sbj2VLduQa/6enhprraZYaoW3+LP3jrcxQc0FFSlGHoyMUjr/9jWbGWMGSSeMi9EUwUB1L0QxR82bp3quAuVLDHunq2zu+oXOrCJ0IWxNLl9yrl6fN1k63z4WMiE8HfDB9UZzBGQAAAAAAAADAvqDEzQEtefEmHdnrQt36+hxtitYefV6WPvjXc3rTGy2kbYpa2P+DjtFv+7lTClnzxDW6YnT0mu2bZozSczNCrzt2H7xn+/9rn9TdT0yLHEhYNlZ33zPBGwkY2F89Y3RoXJQ2x/RTZ+91AWc7/jG2DGvou30uPKt3n4oQcFiXHWfgBAAAAAAAAACwLyhdnwCLJ+jxS09UkwbdlX71/Xr8idF68/NMffD683r8jpuUfnQnnfroNG/hoBTdcVI31XZfp2rg0MsidOKbpVcv765DL7xfz72TqZnLsrUpe7lmjh+rhy7sria97tcaL/hQu3eGbo7Qie7kB07VkRc+qVfHz9GSbOf9y+Y42/akBmVco1fXegsVSNFNQzJidyZclE4ZuuYk73XAm5efqlPvGaeZa3O8KbvtsH1653lde+YoTfamSdP0uLvfznZv8SYF5WVpwXcLvZGAg1LU0HsJAAAAAAAAAEC1XQ7vdfymPqkavR/xRoqv+eCRynx2YKBJm+V69fJTddHoLG88Pn/6fI3u8Ar/dzjb1N/Zpt0F6cXT/KpX9N1T/QKF6Fl69cJOumisN+obOFIrXxkYNVhQ8u24XZnbb1BP9/U0PVTnVN3tvnY0a6e+R3qPKOSt1fzPF0XoTyFFd3z4jf7UO0JzQgAAAAAAAACAfVLpngQogea9b9eYp4IBAJOqC556RY9mlLxT3trdb9BLYy7zCtGLxw1KDA8GAErO3Y4XogcJSmTtIk2ckBkaIgYApJ73PKc7CQAAAAAAAAAAAAJKFgRo0k5Dehe3wD5VZz00RtPfu0E963uTguqn6ab/fqJPonR6uyfn85O8l542GQ/rvWkjdVO829asnS4Y/rG+s6cSwtZVGm3OHanvJtyrs9p6E+LRtpbXPFJxOcfV2Yf3hh1TwvcDAAAAAAAAABJVyZoD8uxYOUcTJ03TpxPGaeay8GZqUtWzX6o6duqnnsem67cD0tQ83lLq9Vbz/RONfXuCZs7K1OTF3nS3WZxu6vzbdA08I0M9W0Wv+b5m9ji9/1am3p86R99OmKYl3vTmR6SrY9c0Dc4YWMQ2law5oMKyteTzCXpzrLMt3zrHauruDoLd7Wie6u7LCenp6tsppVAh/qbvM/XBhEx95Rzf+d8v1MTvdjeV1KZ7uo4+2jpUzijecQUAAAAAAAAA7FNKFQQAAAAAAAAAAACVV4X3CQAAAAAAAAAAACoGQQAAAAAAAAAAABIUQQAAAAAAAAAAABIUQQAAAAAAAAAAABIUQQAAAAAAAAAAABIUQQAAAAAAAAAAABIUQQAAAAAAAAAAABIUQQAAAAAAAAAAABIUQQAAAAAAAAAAABIUQQAAAAAAAAAAABIUQQAAAAAAAAAAABIUQQAAAAAAAAAAABIUQQAAAAAAAAAAABIUQQAAAAAAAAAAABIUQQAAAAAAAAAAABIUQQAAAAAAAAAAABIUQQAAAAAAAAAAABIUQQAAAAAAAAAAABIUQQAAAAAAAAAAABIUQQAAAAAAAAAAABIUQQAAAAAAAAAAABIUQQAAAAAAAAAAABIUQQAAAAAAAAAAABIUQQAAAAAAAAAAABIUQQAAAAAAAAAAABIUQQAAAAAAAAAAABIUQQAAAAAAAAAAABIUQQAAAAAAAAAAABIUQQAAAAAAAAAAABIUQQAAAAAAAAAAABIUQQAAAAAAAAAAABIUQQAAAAAAAAAAABIUQQAAAAAAAAAAABIUQQAAAAAAAAAAABIUQQAAAAAAAAAAABIUQQAAAAAAAAAAABIUQQAAAAAAAAAAABIUQQAAAAAAAAAAABIUQQAAAAAAAAAAABIUQQAAAAAAAAAAABIUQQAAAAAAAAAAABJUtV0O73WJ7cjJ07YdudqRm6v8/F0q/RorVrVqUvXq1VS7Zk3VrV1TtWsleXPKVlU/TkA4fjuoCkinSDQVlaYBAAAAAImhVEGAX3N3atOWHbJV1K+zn2rVTFJSUtV8uCAvL185uXnasv1X5+a6mhrWr639atbw5pZOIh0nIBy/HVQFpFMkmvJM0wAAAACAxFLiIIDVeFyXvVWNGtRRvTr7eVMTw1bnhnrj5u1qmlyv1LXrEvk4AeH47aAqIJ0i0ZRlmgYAAAAAJJ4SBQGs1mPWxi1q2tC52dwvMW82d/yap3WbtiqlUf0S16zbF44TEI7fDqoC0ikSTVmkaQAAAABAYipRECBr41bVq10z4Ws9Ws26rTtynRvqet6U4tlXjhMQjt8OqoLKkE5L+DBembKmZJAYSpumAQAAAACJqdiNFlvTB1ZosS8Uztk+2r7aPhfXvnScgHD8dlAV7K10au+rrAOqttKkaQAAAABA4ir2kwAbsrer1n419pkCOqtVl/PrTjVOruNNic++dpyAcPx2UBVUZDr1L7f2f/PWHG3PyVNe/t4tfLenAJKqV1OdWklqUK9WwVMBPB1QdZU0TQMAAAAAElfxnwTIzVWtmvtO28e2r7bPxbWvHScgHL8dVAUVlU79gv5fc/OUtWGrftn2q3J35u/VAICxz7ftsO2x7bLt86ejaippmgYAAAAAJK5iBwHy83cpKanYb6uybF9tn4trXztOQDh+O6gKKjKd5ufna+MvO9xC98rItsu2z7YTVVdJ0zQAAAAAIHEVu6RtX6wcWJJ9phIlwG8HVUN5p1OrVW/DFq/2f2Vm22fb6W8zqia+OgAAAABAENVtAQAoZ1agbn0AVAW2nQQAAAAAAABIHAQBAAAoR36teusEuCrwOysmEAAAAAAAQGIgCAAAQDkJFqRXlUL1qrjNAAAAAAAgOoIAVdz6DRs14h/P6LSBFym1bWftV7+VO9hrm2bzbBkAwN5T1QrTKfwHAAAAACBx7PUgwAknDVSNOs3LdMg4c7C39sR2170Pq0Xqkbrhlrv0/gefaOWq1dq5c6c72GubZvNsGVsW2Jf94Ybb1TDl0IjnjHgGe6+tAwAAAAAAAKhKqu0qZnW/FWuzdWCzZG+s9I7s/BvNX7DIGysbHTu009yZX3pjpVeSfS7r4xQ0b/5C/e7yP2j6zNnu+OmnnaxBZ52q43p214GtW6patWpavmKlvpo8VWPefE/vvPuhu1zXzp30n2f/rsM7tnfHgfJWWX47Vng/6l//8cZKZ+jVv9Pfn3zEG0MiKM90apdYGyw4u2bDNm9q8axY8ZNWrlzljRVP+8PaqXGjRt5Y/Jo3rqsaNWq41xMbULWUZx4EAAAAAFD17PUggAUAjuv9W/3yy2YNGniaXnvlaW9O8Zx34ZUaM/Zd7b9/A331+ftuIKCslGcBUXFZAODkU89za/pbof6jf7lfvX/T05sb2edfTtatf7zXDRq0atlCH773WhUPBEzTQ3VO1YwXZmvMuSneNFRGleW3Y7X4N2/eoq8zP1S3rkd7Uwuz2v5m5/Y17v9w30z/Vsemn6wGDeprU9YP3lQkgvJMp2URBPjLX4Zr1Kh/e2PF889/jtDJJw/wxuJX1kGA+YuWa9GSn7yx4ul29GFqkdLEG9u7qsp+lFceBAAAAABQNe31IICxQuoTTxnkFpLce9ctuufOW7w58bn/wcf0wJ8fcwssPv5gTJGF4sVVngVExdX9uAFuYb7V/h/z6rPuPgdZ80rm0/Fj3f8+O7aDLrjcfSrAggdTv/rIm1OGtizXB08/qeGvfKKJ32VJbY/RWacP0Z/+OFAdizoUs0fpmB73a+Y972nnsGO8idEQBKgqKstvp6gCflNWy6DqKc90WhZBgER4EmDs+1/qg4lTvLHiGXrJGeqSVnaB/dKoKvtRXnkQAAAAAEDVVCmCAOY/L/5Xl199g/vangawpwLiYbX/7SkA8+y/ntTvLjnffV2WyrOAqDisXf+H//qUW4g/+csP9ggAmFiFlFYI1fM3p7hBhGG3Xa8H7x/mzSkLWXrz8k76w6yB+v1tZ6tns1rasTZT/7jtSX1w0O3KHHeDetb3Ft1Dll69sJMusrgFQYCEUll+O5UxCLD43VF6JDNZl943WOl1nAn5OVo97zO98dYczTnoJD19cVpoQbP9R40bPV7jFm5Vbr5Us3mqzrlgoPq2TPIWCJM/Xy/cN06ZTY7VY9enKznWuvOytXj6BL3w7o9Sn0v0QP8UZU96Xre8k6czb7xSGaFdTmjlmU7LIgiwN9AcUNVWHudRAAAAAEDVtdc7BvZZ4b0VTJtLhvzebXqjKLaMLWvu+OMN5RIAqCzWb9iovw7/u/vamgCKFAAoir3H3mtsXbbOstRw4Mf6btpI3XFuP/Xtna5Tzr1d771zr3pOfUTD38/yltrTpnFP6JafjlHZPr8BVGLLxuuZL7aq7eknKb1OtjKfH6Frho3QPS/M0Zxsbxlf/iqN++dYvbVgq5q2P0Q9jmyiulnLNfqplzQxfFlP7syZytwupaUfpjlR1/2j3nj0SWfe03pkzI9aneNNdiT3Ol2DD8rWW8+N1+J8byIAAAAAAACqpEoTBDBWM33gmacqJ+dXnXbmhVrxU/TmD2yeLWPL2nv+dN/t3pzENPrV/7k1Sa0ZoNI0d2TvtXXYumydZSdFfTPS1NAbK9Cpm37r/Htz8fLQeLj1E3T376dpyMM3usuh5OxpmqeffUlbtm71pkRny9iyL7z0mjcFFSdHUz6do3WN0nROT2sfPEfZv+xUiyOP1c2ntQwtEpCdOV5vOafCpsefqwcuH6grLr1Md2c478tfr7c+jtSp+npNzHTeUKed+nbeFWPdW5WdXUupPftp6PH1vGm+Ju7vuenGORo3MxAdKCWrEd+n/xnq0eskrc362ZsanS1jTaCdMOAsb8q+6atJk/Xkk38v0fDDD4u9tQAAAAAAgH1VpQoCmJf/M1I9exyjn9et129PP19btuxZoGnTbJ4tY8vaexLdRxM+c/8POutU939p+Ovw11kRmifV8l4FLdert92oyUMe1p3HlbDZgrWZevzqU3VoneaqcfBvdOodYzV/izcvyFlu5PWXK/1IZzlb9shTNej65zV5vTffs+b1y535T2qyN76bNVnkvO/had64sWaJmmvQ68u16atRuuiYTs57L9erK21ejua/86SuPPk3amWfV6e70q8epclRam6XBQuIrVq9Vs+/8Ko2b4l0EEJsni1jy+bklF0BL+KU/Y0+mic1Paqj2rpn4BRlXH+D7r44XR0ahzfvk60Zcy2RJiu9R2pokiO5czu1df5vW7xcq0OTdls1TRN/kup2Olxp1WOtO01XPDhUtw/srBZ1IjQrdFBHdWkkzcn8xtmKsrN581ZNmzFLv+l7mlavWetN3ZPNs2Ws+TLr1Hlf9mXmV3ryyRElGggCAAAAAACAShcEqFVrP7371itqd+ghmjd/oc4ZfIXy83e3R2GvbZrNs2VsWXtPops16zv3/3E9u7v/S8Nfh7/OcjX7G41VioZ0b+9N2G3J64/olh+GaMRNx6i2N61YFozWRRnPSxm36+kPx2jM71M184lr1P+hTO3wFjE7pj6p/j0G6c/fJ2vwQ2P0ibPse/f0lyYMU3rXa/TqMm/Bkpo0Sld82F6PfT1bO7c/qwtaSTNHnK0jr8tUw8H36WXn8z55bag6r12kpeVYlnnh4LPVqFGyNmzY5BbyR3oiwKbZPFvGlh18wdneHFSU3IXLtVy11OXI3YX60WVpudv9QLJaBLu/aNBMLawfgXXr9wgCzMmcr3Wqp/TjStsBaaq6pNWSflqkGZu9SaVkbcu//+6rOqTNQVr841Idf8LpEZ8IsGk2z5axZd97e7Q3Z980ePB5+u9/XyrR0L1HN28tAAAAAABgX1XpggCmUcNkffDuf9W4UUN99PFE3X7ng94c6Y93/Mmd1qRxI3cZW3ZfsGZtqE391ANbuf+LMuIfz0R8isIc2DrULIi/znKzZZoeuvZ+rR58n4b0LvwkgBXMX3zpcv3+0aExOgyO7c3nFirjf8/qptPT3T4Izrr1Ob18Y4rWPDFud1vpO6bp8Wsf0fx+I5X54eO6xlv2lHNv0Jiv39OfDhqrix4ap03e4iXx5tepuvOBfmpeUJl6jj4YPk0acrsevSTUP0Lf0y/TiLcedwME5aV+vXoa8rvBbuH+xo3Zeu4/owsFAuy1TbN5towta+9BxVq8zH53zZzfcmg8th3att3517SJWoQmeJLVtIH3MihnmiZOz5Nap2nAni0LFVvbNs2cv+u1eEVovCw0SzlAmZ+95xbu/7hkmdL7nFooEGCvbZrNs2VsWXvPvuzAA1vr2GO7l2ho3KiRt5a9a+z7X+rKWx8r0TBjTqRmrwAAAAAAQLwqZRDAtDk4VW+Pfcl9/dTf/+3+N0+O+Jf73+bZMvsaa1M7li5Hp7n/b7jlLh3crose/utTewQDrDZuuVs7QXdnnKp/1LldY54aqDbeZNeysbri3Od08AsjdUf3SM0ExWnIEF1wkPfaVUs9+1nN9ixt8mrc75g0TnfPTtPN14dtg6l/jIb8PkN6cZwmRm+VpGgZ3dTZexmSrOZHO/8mZJZr8z+RRAsEEACoPLZtz3OSSLKaFufsG+eyubMXak6+dQjczUmFZaBpEzV1/uWWcatR0QIBBAAS1wFNGqr9IQeWaGhQ3x57AQAAAAAAJVVpgwDmuGNDzRjk5eW5/43fNJD1BbAvad4s1BZIrM6SzcSP33I7WLYnJDZuytZd9z6sHukneXNDlq9wG60vWGdZW/LO/erf40ZN7veKpr93Q+Ga/vZ0wCXXaOnVz+mZc0sXxDnr0D23v3YDK/ocpyWhXdSm9dYhcbo679kakav5wRY0ydR8b/mS2HM7UjX4gYd11vpHlN68u069/nl98H3FRQOscP+ySy9QkyaNCgIBfgDAptk8AgB7Wa0k1fVexiUrvNmfbK3bo4me9Zr4ld8hcCmCa0HOFaKm82/1+rJ/asgK97/49B23WTcr9O/VO8Md7LVNs3kEAEISoWPg3/RI061DzyvR0K5Na28tAAAAAACgJCp1EAC7HXXUEe7/ryZPdf9HU79+PQ277XotXTTDDQZYs0l1aheuRemvw19n2cnW5EcHKf26hTph9Jf65J5gEzkha94fpbudj5/8wKmq53aY6w+n6m5bwJlu44Nej6PQMalEPQmUvQjbUbvTZRrz7fea9tplarNslE49+jAdevU4LfHml7cG9evr0ovPKwgE+AEAm2bzsJfl5Gmb9zK2lkp1m/XZquxgoX9OtrKtmaCWKSoIpXkdAjft0VlpZXVmz5dynX9Nk8un2bUWzZtp4sdvuoX+S5Yudwd7bdNsHkLoGBgAAAAAAJQGQYAqYkC/Pu7/MW++5/4vih8MyFo5X9O+/tibGuKvw19nWZk54kKlv9dOz3z+iu44LnKhYcNeN7gd8+45PKwhtsCQh93xO3uVTaFjwyZWRJqpmQtD4+HWLJ3j/M1Q57ah8ZCFWrNH80DLtWSS9zJeScnqfPpQjXhrqlaOGaqGL16uW+MJbpSRYCCgadPGBAAqiZpWtT47W+t293ceQxOltbenNrxa/p7sKXNkKTe1a5rbXI8JdQjcRH3Ty7CZtHXrnXVKdeuV0ZMFEfiBgPbt2uqw9m0JAERAx8AAAAAAAKA0CAJUEYMvOFs1atTQO+9+qM+/nOxNLT57r63D1mXrLDPrx2nkbdN0zR336ZRC7fQXVrtVWqij3D2GtFCb/a1D8zu3KptCx9q9+umOZnM0/Kmxe9bC3zJNz/1jnJpf1V89vZiDHzT4am7hRtB3TBinfxSn34DdLVi5mmdk6BTn/9K1pel8oPis0P8PQy/X7/9vCAGASiL1wCbO37VaHmdnu6knpKtLPWn1J6N1z7Nj9cwLz+tP49ZL9drpnHRbl8PvEPhw5/dThpX2Fy+x9NpEbePqxLjkrNB//uxJmjdrEgGACBKhY2AAAAAAALD3EASoIqxZn9tu/oP7+tY/3qudO3e6r4vD3mPvNbYuW2eZ+X6OnlO6Gm79RhM/z4wwzNGaHd6yFal2uu58/Xa1GX2N0k++SSPfCW3PB68/qUHHWhNEt2vMn/upob94r4H6U/csPX75hbr1xQnusm+OvEn9R0iDT/cWKtI0PXT0hbp25Dhv3yfoudsecY5PP13z21DHzdh3JbdLVQvlaM6iOJ8KqZOmodf3U3rrJK1b8KOmzMtWzfaddfsfz1AH7wzuPhmQn6T0nse4bfiXjSwtWJAjpaSqQwNvElBC6zZk6/vFK0o0bNlqbV9VDomyHwAAAACAfUu1XQ7vdVxWrM3Wgc3Kp33oSKx9ePPkYw+6HZomHxBqt2Xn9jXu/4pQkn0ur+PU/bgBmj5ztk4/7WSNefVZt0Z/PCwAMOiCy92nALp27qSpX33kzSkba16/XK0uHeeNRZKhl394Vhe08kb3ME0PWb8A97ynncOK6vQ5tOyMF2ZrzLlhnfJOfVI1ej+iP32+Rnd096Y5diyboJEPjdJz4zM1f63U/Ih+GjhkiG66pJ/ahFeQXz9Nj99xn0a+OE1LlKpTbrxdj96Rrm+v7qSLjgxuX7TtyNLEhx/Rn//3iSZ+lyU1a6e+Jw3WzXcM0SkHlV+zKpVRZfnt+OeRWOeNslqmaOs1ceTzGr0pTbfffpLaljoUu1xvPPS6PlKa7r7jpN19BJTWsvEa9vc5Sj7zMt3ey3viIEGVZzq1S6wNdg5esyG+niDCWcfAU7+Z7o0Vz6mnnqJDDy3U3llcmjeu615fqlWr5g6lNfb9L/XBxCneWPEMveQMdUlr543tXVVlP8orDwIAAAAAqJoqfRCgW88TNeNba/1aatQwWRs3Zbuv99UgwLz5C3Xyqedp5arVbmH+o3+5X71/09ObG5k1AWRPAFjwoFXLFvrwvdd0eMf23lyg/FSW307DlEO1efMWfZ35obp1PdqbWlhRBfzfTP9Wx6afrAYN6mtT1g/e1BJa+Lauf3qR2p47VNd1szb/S2GBs65nF6npaZfp7uPLqrC+rAMVlVt5ptOyCAL85S/DNWrUv72x4vnnP0fo5JMHeGPxK+sggNWgX7/xF2+seFo1b6r69Qp3cL+3VJX9KK88CAAAAACgaqr0QYAtW7bq76Oe1eNPjtL6DRu9qftuEMBYIOB3l//BLdQ39lTAoLNO1XE9uyv1wFZugdOKn1bpq8lT3U6Arfa/saDBf579OwEAVJjK8tv5ww23a9S//uONlc7Qq3+nvz/5iDdWcgvGjNDw2c10xbBz1aNylG8WyJ70vG55J09n3nilMkKxkYRWnum0LIIAK1b8pJUrd3cMXRztD2tXon4ByjoIgIpVnnkQAAAAAEDVU+mDAD4LBvzjn89p+BMj1bx5imZP/9ybU/7Ks4CoNO6692H9dfjf3cKlWKwgx/oAePD+Yd4UoGJUpt+OBQJeHj3GfSKgJOwJgIsGDyqTAAAql/JMp2URBNgbCAJUbRWRBwEAAAAAVB1VJgiwN5VnAVFp2dMRo1/9nz6a8JlmzfpOa9aGOhtt3ixFRx11hAb066PBF5xdtp0AA3GqzL8dwFee6ZQgAPYGzqMAAAAAgCCCAHEozwIiIJHx20FVUJ7plCAA9gbOowAAAACAoATv7hEAgMqhqhSmU+gPAAAAAEBiIQgAAEA5s4L1GlWkbN22k0AAAAAAAACJgyAAAADlJFiYXnu/Gt6ryi24nQQDAAAAAACo+oodBNgXywNKss+UmwD8dlA1lHc6tYJ0G+rVqamk6pU7gdv22Xb624yqia8OAAAAABBU7CBA9erVlJeX740lPttX2+fi2teOExCO3w6qgopKp1agXr16dSXX36/SBgJsu2z7bDsJAFRdJU3TAAAAAIDEVewgQO2aNZWTm+eNJT7bV9vn4trXjhMQjt8OqoKKSKd+rXobaibVUOP9a6lerRpuofveLmy3z3dr/zvbY9tl2xfcXlQ9JU3TAAAAAIDEVW2Xw3sdlx05ecreukPNGtf3piS2tRu2KLlebdWuleRNic++dpyAcPx2UBVUVDr1L7X5+fnua/9/MS/B5cIv8PefALD//nRUPSVN0wAAAACAxFX8JwGcm0orGNi6/VdvSuKyfbR9LcmN9L50nIBw/HZQFVRkOrVljRWw21CjRg13SEpKKni9N4bg5/vbZvztRdVSmjQNAAAAAEhcxX4SwPyau1NZG7eoacN6qr1fYt5o7vg1T+s2bVVKo/rar2YNb2rx7AvHCQjHbwdVwd5Mp8HLbmV5EsBH4X/VVRZpGgAAAACQmEoUBDDWFMK67K1q1KCO6tXZz5uaGKwm3cbN29U0uV6pa9Ml8nECwvHbQVVQmdJpZQsCoGoqyzQNAAAAAEg8JQ4CGKsFuWnLDrcQo36d/VSrZpKSkordwlClkJeX73amt8V7lL5h/dplVpMukY4TEI7fDqoC0ikSTXmmaQAAAABAYilVEMBnNSG37cjVjtxc5edbR4fejCrCKkFWr15NtWvWVN3aNcutFl1VP05AOH47qApIp0g0FZWmAQAAAACJoUyCAAAAAAAAAAAAoPKhvQIAAAAAAAAAABIUQQAAAAAAAAAAABIUQQAAAAAAAAAAABIUQQAAAAAAAAAAABIUQQAAAAAAAAAAABIUQQAAAAAAAAAAABIUQQAAAAAAAAAAABIUQQAAAAAAAAAAABIUQQAAAAAAAAAAABIUQQAAAAAAAAAAABIUQQAAAAAAAAAAABJUtV0O73WJ7cjJ07YdudqRm6v8/F0q/RoBAAAAAAAAAEBplSoI8GvuTm3askNJNapr/7q1VMP5X62aNxMAAAAAAAAAAOxVJQ4CWO3/ddlb1bxxAyUl0aoQAAAAAAAAAACVTYlK7+0JAAsAtGy6PwEAAAAAAAAAAAAqqRKV4FsTQPYEQPXqtP0DAAAAAAAAAEBlVewggDUDZH0A8AQAAAAAAAAAAACVW7FL8rftyHU7AQYAAAAAAAAAAJVb8Z8EyM1VjRo8BQAAAAAAAAAAQGVX7NL8/PxdqkZXAAAAAAAAAAAAVHrFDgLs2uW9AAAAAAAAAAAAlRrt+gAAAAAAAAAAkKAIAgAAAAAAAAAAkKAIAgAAAAAAAAAAkKAIAgAAAJSBDZs264clK93BXgMAAAAAUBlU2+XwXsdlxdpsHdgs2RsDKr/Vnzyte8ZnSymd9cCt/dTCm77Pyc/WgsxMzVBHnXn8IarrTQYAlJzloj6YOEWTp3+nNVkbvKkhzVMaq2fXI3RK3x6qVs2biMpl8yJ99PFCqXMfDWhTz5sIAAAAoGqao1G3jtcM51WXS2/R0CNDU1FBQYAZLz2mUbO9kVg6naSnL07zRoBI8rRu7ud664uFmrNiq7blhabWTUlRWo+eOue4dkpOCk3zEQTwzH1dV76w3H3Z47JbdMXh7st9VmKel3Zf7FQ9WWfefKUyUtwZhRWkhVQNffRcdQlNBSpc0efnLI179EW9lSW1OOkSPdA/UoLee6zG/wtjxruF/0d2aKNOHQ9R8wMau/PW/LxBs+f/qLkLlrjBgEsHnaRD27Ry56H8FPfcXrB89UN03V8Gilxoxdj2zWhd//oqb6x46jrf3WPOd1fTG0cllZelGZ99pnFfr9Lq7DzlepMtz973jPN0Zvta3hQgToF7GbU8Rg/c2CfifV3BeZ2yBaBsBX+DQbVqKfmAJupyRJoG9ElT07DymL0ua4LueXSmVnuj0Tn3z7dGuX9GuZjy/GN6Zp7zImZZ3SK9cM/bytxenPtBggDR0BwQqo685Rr31JMa9sJMTVmyOwBgtmVlacq7b+uWh17UxDXexH1SjlZ/M15/c47TC3O9Sb6Ulkq1C3KDQ9SlTWgSElh+tt4ak6lsbxRA2bIAwPB/v65d+bt045WDdP3lZ6vvcZ3Vsd1B7mCvbZrNs2VsWXsPKpcWBzZxC5OTO7dT29CkSipbCz4Zq0ceel7jsrxJVVjdbv11Zklusqs30ZmnEwCo9LY7N98PvqhR45dreSAAYCzPPmM5uROU0qppemHSem8EwF6Vk6Psn1Zp4vjxGnbnCI36phS/zexFGvffFzXs75/FUWiPqq5Ht9TQi6zlmhMta7BwnmZstxdNlN6NCE1p7ZXmgIjOo/iyNO6JF/WWV2msRbd+uiLjcKXWq6Xc7VlaPjtTL7z1o1ZbYKBeqob+8Vx1qRNadt96EmB3rVkinsWTGOelwJMAnrRzh+q6bmFNXPAkACqJqvokgOWc7nnsObdw/6arz1Xjhg28OZFZ/wCP/+t1VateTQ/cMoSmgSpQ4uQ5/fN7AtVSW/i2rn96kbZ5o/Foevy5evg074YRlVSOpjw/IlSzr16Kzhx8hga0Tw4FbvK2avms8Rq3OV1D+3Ajj2IKr4VcvaUuvW+w0r17Ph9lDUA5iXYPmeOc2xdl6o2xc7TA7RKrlrpcOkRDjyxBM4v+Z5Rn2U3BkwHU/N/r8p387TAnf5vvpKrTLtPdxzfxZuy2YMyTGj4lT2p9rB67Pt351uLBkwDR8CQAqoTsSeO8AECSupx/pR44t7MbADA166SobY+BeuB6Z5ql6K3L9cK4Re48YF/VoUNL9/+cd8dpihs5B1BWrA8AawJo8Fn99ggAjBn3ud547zNvLMSWsWXtPfZeAI72/XVOB+91POqk6pwBBAAqv+VasCT0qmnP/srwAwAmqZ5Suw4kAIBSSlGanTvyV+mN12cWK5AIoBzUcs7tR56km+841ytQz9GMMZ9oQb47F4iueprSu4baj1o+c36EVgwWacrsUBMgbY9JizMAgFgq15MAwYjczQOV/PHrGj17q3K7Zujp8ztGbFuyZr166pB+kq7oH97RaZ7WTR+vZz5dpOVZ/rJNlHZahoZ23Z3xXDdvvEaPm68F/jKNWirjvAxltCV5VR67a4IWFf1b/O4IPfJFjnMySdXQh89Vl+phNU3/0EZzxkzQW3OzletclCJ+324HuuP1xmertHxz6IRTs0ET9Rg0UJcevnu5bau+1htvfKMpq3JC63LSVw8nfQ120pd/s1Pos69I1lv/+EwznNEel12rtCleLakOfTTy8mMKPdpe8L5Gabr7jpOUGkfaL3hPOD+KHiPinbtuppOJ/lpT/H4WqicpuWVLDTj1JA0IHptCv9Fz1XbuOL3gHKd1ziGvmZyivoPOdm7oq2bHiolxXgpGvC9Thy+e12jnRrzukf308KWdd29LlFocuevm6KMPpmni4vXK3hqaVjfFSQeDzlBGoMPM4LF6Kj1Lz7w6R3M2OgnHyQCmDXD25fhU1dw4Uy+8+Lmm/OTsg5OemrZP0xWD+6ltWG0tzsH7thI/CVAB5+mnH73FW2JPdz/6nJo2Tnab+wlnQQDLWp1zah9vym5PPfs/rduQrT/dOsSbgvJWVI3QSGmwcJporI/8c1lSklK7naTrzuyo5JwfNW70eI1b6FwPnLRVt/UhGnzJQPVoFFqvL540aLIXZ2r0ezM1x1vO2tdNPbqPrhuUpsX+PoTz9yne61DY9azpF+9o9Mz17nW/buuOumJIhtIabNXiT97WM/613bb3jNN1aefdNbMKHdNT8zT61a+VucQ5Ds4k9zhceLp6xNsgcME2Fa3tmZfp9l571hBDZRPIt3dI12OXHavkoqqdOWl4yjsfatzsLK328h92Tk/rk67B6e12v78gvez5JGPB7zb4Wy8qD+fYIw9sv/PD03XFxccUXJPi/R2jnAXzr3e11EcPfa3F+UnqMvhKDe0cOZ8aPO9n//S1xr0zUzNWbVW2c34L3e+k6pxC5+5gXnqoBqwJnA+dPOqZvztXA1omad3MsRr19o9abunV8r99IuT789drzgdOXuUb59xsy3n54UvP7acOsR8gBCqnaE8CBC14W9c/a0/5JSn9yht0afvQ5KJ/f7t/e+EKanIX6747huC1IVAukjt9tK75r9U8balLHxys9EJd1/jt0jv7dbmzXx0K1zQ/J3ecnnHuaRc7lyH3OtK5t4YO7LxH/wjc+0ZQkGaa6Jy7LtOA4KEoeGp093dS/HO5/yRAjFYzYuQvEu07q6RPAuRp8bjX9YJl0mw0N3SDv/qzt922JVfn1VDTNilKbZCk3K1bNWf8WD3yieU0PfmrNPGfozTsv86P0L4o66jEeovdul4z5q31FgplFoc9P0dz1knJbVKV1tpZZuMqvfXPFzVqrpcDxd6Xs9z5HkMv047r5pyqo2t7WGro5O9kupYHkoTLmfbWP8fqjXlbVbdBLdV0Un+u930/M8/OHmarZrzyooa/u9zN1DV10kWXNvVUc/t6LXYy/r5tzgVw2BOZyvwpRzVbtnSXkbNM5n9fdNJihI7u8tfqjVGhgiWTm19rd/tnCxZqyu5VO5yL28zQgqnpxzinofjSfs06ls5D++WO1wuNJzd0poUmRWT7cstfJmii9bPgXKztPXWr5zkn1+V6wzk2wyeHH0izQzNedeZ9nKXc2t6xzM7SR8+PToi2iiOrauelJup74bFq63w32+ZmanRBGo/Gvr/xemv2euUm1VPbNk3kJAVty3I+e2SU73XN1xr+z5la4Ox7Xcvg5Dj7/e7rGvXFNI16aoIyf3am2z1Zfp7WLZipR/47LXTsPJyDUTIVc56Oxpr2sRr91glwJIMyekcMABh7j73X1oEqIOdHPeOcy6ZsdM5ldiOYl6flk8fpkXHTNM7JT7z1Q45zjrOTn5PefnKWHTVedmvsizcN2nL3/PNrzXCWU3KKuhyZohZJOVq+JMut4Rq6nicVXMtrOnkY9/rufXbc16ECdg0frWecvEbNOv72z9ffRoxX5iej9cj4VdrmX9uda1Tm6Nf1RoSfjLbOd8/1E1flqa63fe5xeLQY/Rak9NPgHoXusiNrlKZzehIAqBpSlH6c910tyNSw4WOd30CME6vXf8AzTn7TCkrrumnbSXubnfzRu2/rnn9/HVeQKLYoebhJL+7OA+d7eWBn2eWzfyz4zGJfS1AxktM19HRLZ3ma8fZ4zSkqm6s5Gv1UpiYucxas3cTJ59bz7necc9YTr2tGhPev/tg5H7r3OqHzm903vvHU6/rom9f1p9FOGqnupBc//+ucb5+ZHliJk+8f99Tz+ttnq5xzs5OvPrKlUuuE8sPDhzufx1O6SFQdDlHoIT/nvFtQIBPP7y90Drbzv8sKdm3chlBWpQT5neKpeWR7pbllKas0Y3bYSWGB1y59nTbq4gU2fNtm2jlhvpbne9tv+cVvJmjYiML9GnDvG0WHw72mvNdryqzC/UksmL3EzQvr8PYKZReLfy4vjUT8zmrc5/Bex+WXrTlKrl/bGyuZ1bO/0jQr82p2qE4/qllootm6RBO/WqMtTvYsa0NdZVx3lW4bdHzBMlvWrlFy77N048Dj1bfbUerd+1gdkTNLmctytWVdvo44/lA1dpZb/v7L+sdM5xdaPVkDrr5EtzvrGHD8scroeYBynPvuI9oc4EaU7np9lXLrtNSlt16pIccfoR7HHqu+B/ykL+Zs0PKF2WrTu4Oa0W7v3rdhvsa56UJqfczxitkXyM6VmuyloQbtj3OX3fLjDE1c7JwNtmUrt0OGHrj2NJ3eu4cy+rZW/vzvtGjzTq1cV129j01V7c1T9cLry7RRtdR36PW6ccAR6tatm07pc6ha1Kylpg2dtJ+dqeH/+E5Zu5LV95ohuu3kru4yGWnbNW3yGq1cvEq1e3RWW2fR3Z+9WVmNO+vuP16ki08JbZeaVtfGSYu0PG+z8lO6qkdL7+qWPVOvffCTstVEA849LrSeONJ+69SjnHTeRvp2lhY456OjB9+oOwf10ICuXmCk4PdVWx16dVV7u0AV7IuUevwZuvv/Mtxjc8oJR6j9r4s1edlWrfv+ZzU7Pk12vtu9jp3KbtBJdw8brHP6OMfy2DpaOXWJVufmaHVSaw04rOpFRRPjvJSlaR8vdjMbLY520llqqtrW+E4Tf9iqlYvWqU3Pjmpm32PWd3p3lt2QJ6ubk8ZDNd2cZdZW14AhTho9sZvSu3XWgD6tlTP9Oy3eUfh7LThWTjpre8lVuu+cdOc34vye5ji/J2da1sKlyu7YTw9ff4ZO7+tsxy5nG350fgc//6qmvdNCHVRzDoaj4BxZr4X69jpEe1aM26pFX4XOaQ0OPUp9D3FOXBV0no5m5ep1mvTNXJ14/DE6oElDb+pu9iTAvEXLnLzqwd6U3Xbs+FWTp89T17T2atxof28qylPUc7snUhosmJbj5HlPGKy/DunvnA+PULM1szUjK1/bli3VggZOWrnduQb2PVb93fOWk8fYka3ah/XQEZYs4k6D2cocM1EzNjln5F4D9dSVfdTtaCet9+mu45rvp9qNk5Xa0bmWH19Py93ze7JOv36o/nCKM62jc92w7Y3zOhR+DX/gjsE6u8+x6t3kJ2XaE5I7sjRrSW1l3DBUN2b0VEa6c23/2rm25+Vq3X4RrgEbdyj55LP1wGUDdIp7PXOWn+Ys/2uOluc20ilHhLavKE3b1NDSz5e6eZHIktTlvHM0wL2AoSqonZqmo2v/qGkLtypn60bNmjJDH05dKrVKVfvGzom3wHpNfHqMPrKym5ZpuvnGS5w8iJO2+xyn3m03a8GMLK3bsFzrmnj55II0HMy/hBT8boO/9Vh5uFXj9dB/lrhND7h54KHBPLCTMTvsYDUrxrUEFSAs/9omtZVqfOfkETZs1JzsRup/5AGq4cyNfN7foJUbUjXk2rN0Zp/OTj7XyTf02i907snNVk5TJ421cjPJBXnpLfnNNPSuy3Vpv2M14MjNmvF1lrbs2qx53+1Q2uAhuu/84530crDyZ88J5X/z6uqULi3dbVjwv//o+QU7VbdDuh646SwN6Jym3n2OUrPV32rGyo2atyX+cyRQaUS8hwxXTVmzwvLucf3+mivteOf83/Sn0GcccJTuHHa+znampTUNrTnu/E5RCq4NgXIRk9RSdTdO1ZRV+craufv3bOZ8+qEynelN0/trsJsf2n2uWLells78w5W67tSeoeuXky/MtHzh5izlph6ro237ufeNoYkabJnufI9O/jS3tnp3S3W+GWOdRM/X8jwprd9pOs4tLyv+udwtF3HLEHffV+6e5omUv0jQ78yrM1z5dBg4WGe2LlwzqEXPPR+5aNvpEOdrcmRne+1HLdLEKc636kgb5NycBZdv0E7nnBB69HPGlFBHZC2O76/0gkdGpLqdO4Yil9uXa8EKdxISRZ12Gjyo4+5HipNSdeZAr12xnxZphlXM3K+29xhZjhbPXaRseyTfJKWow0GhtLT6m/labNM7HavBVhvI1zxNPdwTyXotWOjchBSSokv/r59Sg0m6ekf16BS6oZ0zb6H732TPWhSqSXh4mvp6yTe+tF98BfvSKE2XnhZ43Lp6sjpkpIc62spfpSnhkXDV0oCBzv6ENt/5bTkn4MNDL7M3lXRrKr+qeF5qccIZOtO6B9j6o555N1ZfGSnq63ynhR5Prp6qLmmh/Y34vXboqSv8Dp+c31Nfv+afcyHPOL1zQXpq0bWd+0SLXXidQ+LiHIwSq8jzdAksXbHGHZAAktM0uH+ofxW7Lvbo2cZLe0lKP2X3NbBu5zSFao7laJ33kEf8abC2anppLnvJIq9DPZOkpm1TQ9eSIhQ/jxC6hrfwztHJXTt7NbCcfema7lwzvB2rU8S1vXVnXWHNv3mjlhe4IiN0vLbNXagF7qs41DlG55wYY0/bHKPBR5byh4kKlqTU4y/RY388SQM61AvVos62mnNPa9iY+bvP21nfaqLbf0A9DTjvpEJ5kOS2J+lMr53gOd/OCdXgL4XwPNyCr+Zrnb3o0Ec3h+eBT+sja0SmZNcSVJwUZVx4jNsn3Lbpn2j07tupCDrqzPPDmuaok1ZQo3edn0ENSMs4o+DcWLPlserbJvTazn2DO3vnrOotld7Ve70hO5Sm8udo4jeWLpI14LRjrd6Xp556dPXOkQuXa7H7Ckg0O7Rtj9Ni8X9/kZRXmUhQWnpHuTGHYGsN+fM1Y649QdZEfdP37Jso9YQMt5kwX3LnM7w+j/Kc94Xuv7n3ja1tp/ah79HJC7vlcmah9/RF9VSld/av32WTluKRqN9ZwSWpcnEyX8GMVoE8ZS+bqXFjx2rUyFG65cEndc3f5xT+sWc5F1T38bomSovaNnmWVnv356vHv6grb30sMPjtkO2+kcNeVscezQ3J3V5ERnvTFi89JCs1GNkzDeoHMmGeA1PU1n2Rp22Wbmo5N6KnNHFvVpZ/8bZuGfak7nkpUwuyQ48Nm9WrvRQ3e3xY2vHaP3XscfJJabVHW+imQ7eOoZPdXOfC4t4QrdeUmaFHoLp0C/YTEEfaLwF/X+q2P8QrpA2o7pzcQgcnwsm0tuqG7U/TpoUvyImnqp6XnBukC0KdZm+b8oneWOZNjiQvW4tnTtDo/76uRx4doVvueyzUx0Y0+xVuairZf34zuaUK5c+aNgllpgpwDkbx1azu1cWp4PN0OL8G/5qfN7j/i8N/D08BVBG1kgryH66G9UPXbOe82tYvDHI1UYvCJ7lipMFaSs84JhRQWDVHwx94TNcMf10fLcwuRqFncfMI4dfwZDX1Cl/btinczFWsa3vTDt6Nd0DNA5uFzvdOfs1unOLV4oQ+So94eUxWxsDofUGhcqvZNE3nXD5UT911hs5sH7qBXzfFmtTyGs7KWu/W0lOdlkrz4m1Bae28iRu8wtUSC8/DZWnxktA1o22HdoV/5wElupagYqX00RVuEDFHmWPGh4I20eSs0oIvxuuZ/47Wnx508rl3jdALMaKV1tTqbslK9s6TyYcUDtA2TQk7Q61z8rnudmTrrUeD6cYZ3PbUbVbZFFgClU6Ok/69xN00OfDbKObvL7LyKRMppOUx6tvaXgSaBJo3R5l2L9+6nXrskSGpp7T24c0V1lLb1qFrzrbtO5y/3PsW6aCOXnv+6zVldugb9ZsCqts1ze3rs0CZpKWiJO53VkmDAJFkue1p3/L3CXprynIt3lBbqYemqsvhyVEybrVUcz/vZQzJBx2iHl0jDx32fMofe0ODVLX1Im9zZs+JeVO5+PtVofl1nBv08CBAJBFuKlqccJme+uNJOrNTsmo6F5rVs7/W8AdH7dHmV82UlhHTjQ1dWsZZY80/2eWv0hyrvZI9X1N+cv7XaVdQ+674ab/4ataKc3sRpoqcl5r30xUnWI5lqz56xblBilSylGXp/Gk9MnqmJs5dq3X7NVGHDoc4N+XBMHucwgvOYuAcvG9r0cTLSa+LVsDjTPcyV01TdmewK/Q8HaZxwwZqntJYs+f/6E2Jn73H3mvrQFXmnOPiTD5xpcHmfXT3ny7R0JNS1cKZlLtmud54+mnd8lLsPE9I2eYRChd6xVazRoTrQ0kLa6u30zneUwRBdXv00ZnNvRFUWTWT2ynjyqG6zqvZvy5zmua4rzz71S5UqaAi1XU+uyjlcS1B2WlxQkaoY8+Nc/TMuOURA6i5C8dp2D2jNfzdOZqxYL1yGzdThyMPKbjHLI66deJt/6mW2naOnG56dE0NqyADJIZtsxd653fnXtIL/pbN76/8y0RCrLZ/KD8yZ27oKbQZM0PBu7T0SP1TJhX0yRi0bmPhexIf977RpKrHUaHAyeJZFthZpCmzLVifpC6dQq0mmLI8l8cr0b6zqhMEWDhZb1k7j3VSdcV9N+ixuy7TdecP1BUnBB5DNsnJ3gV1lWbMjVaDNUVN/QLig47RFbaeCEMoAoi9L1UD0v0OxibrhWgdcKyZoNGZoXlNe3QOPaITlJO3x8107rJVoaZ3qjcp9OSA1VzKuPhKjXz4Sl3XzU5GOZrx+ifuo+0tUkInp9zG7XVphHRjw5nOxSg+qUrvbsuGHhXLdgbbHtv+UNMCjnjTfgn4+5L94/I9I+j5P2qx93hToSg+dqtC56UWJ+6+QXphyo49MksLvvjabR+v7pH99NSD1+qx6we7n5dxqN8SYlniHAxP4+RQZjp/uTIj/Tb8TricpcKf7qq48/SeenY9QnMXLNG8hUu9KbsdfGBzdwhny9p77L1IfMVOg0kp6tL/XD3w4C167LJ27jVj2+wJeiNm8xaOcswjFGX1ypXeq92WL7GGuB0tU/Z8wrAIdbv115nB33n1ljono503gqovSR38Gjr5eaGCWv9JwexVWhyhKufiZV56cq4VhQtMs7Xaq4nvW76yOHVBnWuP13C0X8gTSXlfS1BGnHPFmRd3dttwXvfFeGVuDQ/MZCvzk/lal+98p/0Ha+R91+qBa851vr8Mpe/ZVUzpNW1c0FZ6216R080V5x9b7HMkUOlt/FrPvBvqML1u12O9po3L6PdXgfmdgg6CFyzUjOxpzj2K87pOO/UtaJImKNu5/ngvCyzXAq+uUGorCyhw7xuP1G7tQ+dOaxJouncPmNxR6QUFe2V3Ll+9JiwTsdJ7MrFA4n5nVScI8Kv3WPF+9dTU/+3lZ2vKZ/OdpBBQK03pfjvr776mj1btbh5AmxfpjU/nuy+7HBmK7mVnjtcbYbnO3HVfa9S7oeVQOSSnnxRq19wKeV54TsPHzdHy7aHvNnd7lhZPGathT8zUcnv0st4hGtw/QrYqe45Gjw/UDtk8M3CR6ui2/WlpZEowPVRPVlo7LwCRs9N9b4u0Q0I3Igsma9SUrMI3DpbGXs8MO4HE1qJbRzcTuG3BTI12e0Ovpy6dA9sfb9oPs3yJ97hpDC06eyfan77W34LHxln/gnETNNE+wLnQpneKdMFDlTov2Q3SuWlu2l29OGuPgNg27/dUMzlQm8L5jXzktmla9jgHw1Xw6GeeZrwyWqPnrlKuncfzc7Ru4QQN/2+oLUa1cTKAfkZsL5ynw53St4dbo3/0mxO0YVPh50AHZfR2hyBbxpa199h7kfjiT4PO9XZmoG8LR3KHVK9wKE+5gctFSLYWLwtUhihhHqFMzJ2m0YHfYu6qCXrhi9C2pXYNXW+KJ0UZZ+xumqXFif1DfROhipmvN/4+TpnL1ofO555cy4d/Gsp3q5FXqN/cyR+55/b1euO5CW7nf77sxeM1erLlQZLUpUdaqJDHuSMP9WWRrcyvfiz4XW1bMk7jrJAmbrXUo0dqKK3Nm6y/fRGWB373M7cma3lfS1CGmvfTpcdb0Mb5/qygsBDnPOmdNpMb7g7a5K76TB+VeRMSjuqHq4v7RHeOPho7PtDXi8nTuimv64153iiQAHK3r9KMT17XsEcyNccKbpu20xVndPQK50v4+1u31mtO11OR+Z1ax6ivPblmfSOOXag5zrWsbqfDd1fSDDPjk3GB33melo8fr4822usm6tE1dI/CvW8cUo5Wuluovl4ffRJq4aNp545e892mtOdyJw/h1dNaPfUbLfbzHNt/1OhP9iw7S9TvrMZ9Du91XH7ZmqPk+vE+AhdZ5B77HdF66Xat0TSbl7NOmV9O1xdfTdVHH0/VygNaq+babCeB+L04J6mF88asaYu1cstWzfv6a3341XRNzJystz6ar0V1D3E/s0bLlmq2Yr5m/LxVi6fN8JZx1vnplxo7cblWJ4eWQyVRrYHaH91IW75bpKVbd2rd0sX6YuLXevfjrzRu4ixlztuobbuc5RocoituGqgugWrOW36coYlu1LiWcn+Yrbc+t/Rj6cFJI5abr5eqK4b0UQu7SmV/q3//bZzecNLDjMXLNHnCpxo9dYPynXUnH3u8Lu7onMQbHKo2uc5nLt2urHmzNO4LLz1+NllvfDzfOZkcoL69DpE19lDw2fVaFEzbQ+1k5f8wQ3PWbFV2Tr5ym3fV0BP9HtFNvGnf1HM+M/T72rbsO334tZOunStxWveD1SDS76veIeqQ9L0yf9iujT9+5xzLqfri62807kPn/xJnu6vXU/ol5+iU5l4bNjF+owX7Gv67riIS47wUqRf8gIZO2s1x0u4y/zY2kHZ+/s79/nKcz3fTzZdT9danWWrWPkmrs5zlA8cl6rHK+k7vznIukHukd3+7dh9DzsEISdYR7bZr1pQ1yt65XUtnzdG4T77Su59M1YQZa7TOPUenaPDFp6lD/dA79sp5Oky1alJqyxRNmDRDs777wS3cP6BJ5OdB7QmAf7/8ntZv+kVDLz5DTegPoEJFPV95In3/UdNEwfUgeN01W7Xoq1nu01QF59640+AvmvLy6/rbOOe6+92PWjwjU6+9872W7rR1dNT5A9urqZPenFSnrFmhz8j6bpomTJ2uD9fU1SlH7Io/jxD1ehZh+z2Rru0Fx9R5f9bkqXrXvWZM1rufrdJGy4u17Kybzz1CDdztLqYmB6rBimmatb2drv5dV2/fUbWs0RdvOPmcqd+GzudOXt3Nr3+xWMvtjt7JW/a96CylN7HKEfXUvu2vmvXNKmVnO++b8JWbtic4eYF3J2cp20lPTXucouv6NA8VJlVrpgbZ0zV55U5tc/IQH1ne4QsnLzUpR+2P3DO/EisPVyPlYDXbMEfTVlvQOTwPnKQu9rspxrUEFcDPZ+5xDg5p3K6ZcqZ/p8XWBLcpSAtJ7rls2tp8rZsXOn9OcNLNu9/sp7ap2Vq90U7ZR6nvIZZAouel/XPf7mU9e+R/k9T6kP20dPpSZW3I0uTPvXT9xVSN+2CSPpybreSjIuTTgcqu4DeY7fxOAuf3ic65dLGT57C8ePvOuvHKU9ShIIhfnN+f8e6vd23WLOd+9Avnvnl142N1dEpxykSKEPP+PqRZo2xN/jpLS3+20n3nunXuSTqi0Ml+97mirjbri08n64sp3zj3spP00fdOvsmRetJZGnJ46E3c+8ajrpr++r0+Wrhd27a5N4FKP6t/4LiX/lzeos7Pzj3mBuXucNLR56Hr/lsfzdW2g1NVO6twOkrU76zqPAmQ0k83X5YW6mwyJ0fZW5OU2megbj4p1DlgIXXSdMUdl+iKnilq4Xz/uVud5Z3fbt3WqTon3e/wrIl6XHaJbj4tVakNkkLLZFt0sZ7a9kzX3We69cJRmdTpqME3X6sHzk9TWutau9teq56k5JQU9R10rh67a6B6RMuJNzhcN1+fri6NdjrfdZ5ynfc17eDcqN58rrr4F6nkVHVpU09183K0fMFyLc7KUc2mzrrPv0QPD9z9SHrbjCv18Pkd1TYlSTUtPTppJ/vXGkrt1FlDL+sd38WnQLLSu1mUMdQ5cdpxYW3NFSftO7oMylDf1s52Oa9zNztpuk793TW7I7C2tR/+v2PVxY5pfp73O3A+w/bl1it1adSObFEVz0ttM/pH7HyxxQnnOjfZKUp27snddONsS8ZVg3Vmq9ATDGWPczA8zfvp7rvO0Dmdmig58NBRzQaWFvrp4bsuUd9g6zp75Ty9p0PbtNLNV52ratWr6Ymnx+ipZ//n3FDM1PxFy9zBXts0m2fL2LL2Huw74kuDyWp7pHNdcPIh2T+t0owlW7UtyUv7d2SoQ0FOPUUZFx+rtEahc/I2Z1016zkn82LmEcpU23Q94Hx2anXbNydfleR8djdnu6/t59XWLgnnhu+0YzTAuVbt3ndULYcoY1Aor77HOb3rsbr5rqEa7LUT7bI+Me7YfQ2wtJ29NZQ/OvPSS/TAoI6F8rEdBg7WFd2aqK7lV5y8w7bqKTrzmpLkV+qpy/lDd/9G80J54Nw6TdTFSYN+6wPlfS1BGaru5KkHRerouZa6XDBQg60fIee8YmlsW51UXXr9uepRXrc5ycfoupvD0rUzqHHonnVwQd9vQNUXOr931hXXX6nHruyntoWe4ivm78/J1ww9s2Wotr+dl7fWUl1brqLzOwUdBDtap2lAqFJ4RB3OuETXHd9YsvtZ5/pVs14TpTv3Jbf3D76Je994JB/VbndTaSnt5XXP4CmDc3n7M3T34EOUasu76StJHU4cqNtPiZSOEvM7q7bL4b2Oy4q12TqwWaEiSgAAgH2S5aI+mDhFk6d/pzVZG7ypIfaEgPUBYE0A2dMDQCKY8dJjGjXbedHpJD19MTetAAAg0azXR089rzd+ktqeeaVu7xVeBjpHo24drxnOqy6X3qKhR4amApUdQQAAAIAyYG3/b9j4i/u6caP91bghjUQg8RAEAAAACS1rgu55dKZWV2+pKx4YrB6BB9hCCAKgauJBWwAAgDJghf7W5I8NBAAAAACAKiZ/vTLfneO2J980PT1CAACouggCAAAAAAAAANg3ZU3Qn+4boevvfF4vLMiTGnTUpRkFLdQDCYEgAAAAAAAAAIB9U/Uabue+2/KT1LRDZ91+a4Y6UGKKBEOfAAAAAAAAAAAAJCjiWgAAAAAAAAAAJCiCAAAAAAAAAAAAJCiCAAAAAAAAAAAAJCiCAAAAAAAAAAAAJCiCAAAAAAAAAAAAJCiCAAAAAAAAAAAAJCiCAAAAAAAAAAAAJKhquxze67isWJvtvQIAAAAAAAAAAJVZiYIABzZL9sYAAAAAAAAAAEBlRXNAAAAAAAAAAAAkKIIAAAAAAAAAAAAkKIIAAAAAAAAAAAAkKIIAAAAAAAAAAAAkKIIAAAAAAAAAAAAkKIIAAAAAAAAAAAAkqGq7HN7ruKxYm60DmyV7YyVXzI9FFVWtWjXvFQAAAAAAAACgolVoECD4UQQB9g3BIAABAQAAAAAAAACoWBUSBPA/wv5v2pivrVt2KTfXxt3JSFBW5l+zplSvfjU1bFS9IAhAMAAAAAAAAAAAKka59wngBwB+/TVfK1fs1MYNu5zXBAD2BfYd23dt37l995YGQtP58gEAAAAAAACgIlRIx8D5+fnKWpPvFghj32TfvaUBSwsAAAAAAAAAgIpRrkEAq/FtQ/amUO1/7NssDVha8NMFAAAAAAAAAKB8VUhzQNYHAGAsLRAAAAAAAAAAAICKUSFPAlgnwIAJdQhNIAAAAAAAAAAAKkK5BQGChbyU98IXTAsEAgAAAAAAAACgfFVIc0BAEGkCAAAAAAAAACpGuQcBAAAAAAAAAADA3kEQAAAAAAAAoAr7fuFinXza+e5/AADCVdogwMbNOXrm7QU6/aYP1euKt93/r3zwg3Jyd3pLhNj45zNX6ZJ7J2rcpOXe1PjMWLBONz4xWX3/7131vvpdXfvYJE2b93Ox+zCw5Rcs3aRb/zbFXZdtr73evLVwj8jbc/L00vsLNej2j91lTr7+A02Y+pM3V1r18zb95cVv3ek2//w7J+iDySu0M5/mcwAAAIpr0uSpOuX0C7R+w0Zvym5WSNKlRz/VqNPcHR58+HFvzp62b9+hodfeFnGZ0f/9nzvPlgmyz/bXbUO07fDZPFvG1mfss4Lvj/TZ/nbF+gxbX3A9kbY1yD8usY5HUaIdExN+XPz9jSae7fePnb9MUcfaxHN8w5exoajjF769NtjxDBbK+cc43jQRz/5UVv7xsO89kkjHOHx//eMVbR0AgPLnn8+j5Q/sXB0MQvnXsFjn/+C6ilq/z89HBJfzrxP+dcQfgtcTWz58fvj12dhy8eZhbKjK1+jKIvz7KyoNmPDvM1I6C8+TRVomnvX4bH1F5QMru0oZBNiRs1N/++9cvfP5UvXu0lIXnnKoGjaopZH/+06vfLjILRTfsj1XDzwzXSdf+77u+Mc3WrzyF+/d8Zs2/2c1rL+fLjqlvU77TaoWrfhFd/1rmmYtWu8tUTQLAHz49QoNfeRLrV2/TeeceIiGnNZBbVvv7y0Rsi57h+4Y+Y2ee+d7pbVt7C5z+vGp2m+/JHd+9pYc3fv0NM38fr1+e9yBOu/Etm6A45H/fKuPpuwOFAAAACA2P0N//Amne1MKs5uNCy6+SiOefFg7t69R1sr5Tqb/GzdzH8nyFSu1ZOlynXP2Ge64Zf7tJsA+4+LLfu9OCzd//kJ3vbZ+G3r17KaLfndN1BvFBd8vcv+fNOAE9wbkkDYHFbzX377gTZFtw0233aNWLZsX+oy77n244ObE9jPr53UF87dsWOpOt/dFu4F5439va9bs77yx+MVzTGy/rr1hmObNmuRuj/1/7ImRUW+44tl+O552XC8ePKhgOXsd61jHc3x9Lz3/j4LlbBg14q+qU6e2NzeyASf2LfTd33LjNW56Cy9o+OjjiQXfeyQ2z5apquw7+nLSFJ076Ay9PHpM1DR31RWXuN+tf7yK+q0AAPaeex/4a9Trdlmw63Gs8//EzzK9V3v64tN3Cq4lNnzwzqtq0riRN3fP602063M4P4/z4MNPFLq+27rsmoWSK26e3Fh+beWq0PG391h+0vKXwXRp73/JyXv435elDbsvCC4Tz3riyd9WJZX2SYBeRzXXaw/3180XddI1Zx+hx64/Vu1Tk/XFjDVa/8sO7dyZr63b8/R/zrw/nHuE967iufyMDrr3yq7O/8N0y0VH6c7LOmvz1l/1zbwsb4miLVuzWc+8tUD9urXSP4f9xt1WW9//DeyoBvVqustY0OLNiUs0f+kmPXrdsQWfacv+5ujm7jLVq1XXhSe100v399V15x3pDn/5fQ81alBLn09fpW07Cj8BAQAAgD3ZjeO8+QvdjLxl+COxgu6BZ2Y4N27d3XG7Qbxr2I3uzUKkG8/pM75V+nHddVj7tu64BQWys39xbyyskDiSK4ZcVOjGc+jVl7n/oxX62k2tFV7be2y7Bp9/tjdn9/YFb4xnfDtbS5etKFivsdc2zeYZ294brr3afW2s8NrGLaBh+xDObsQyv5qqE/v38abEr6hjYjdRVhBsN9z+cbT/Nh6tgDie7R//0ac6+KADddYZGe64sdc2Ldqxjuf42vbYjWFZsO3p0b2rm+58KSkHxNx3/3hZAXpV5aeJP1xzedQ0F4mfpu27BQBUHlaIbtcuKwyPVVBfUuedc6YaNUyOev4vTT4lEv/6bPm8aOx67Fe6CA8qWL7krmE3FZqG4iluntxPA5Yf9Ctl+PlJP0Bk35lVQvDz1cbWf/89txUsE896TFH526qmUgYBateqof7dW6lOrVAtebN/vf10cIsG2rYjTzk5O5Vcv5b+cm0PnXfiIe68cGvWb9NfX5oVszmhGtWrea9C6uxXw/2fXL/w+qwZn9c+/tFtnsdvxueNCT+6TwF8PmO1aiZV12WnH6a6tXdvb5Bty4RvVumCAW3VteMB3tTCLGDQp2sLd12+Zk1q64DGtZW95Vc36FGURSuydfe/ptGcEAAA2GdZZn/0i/8sKGgOZzcUVtjbt0+6NyWkaZMmWrs2a4+CY1vebkSCy9u67TOKc9O3bt0GJ++4y/2ccP6NSNcuR3tT9mTvs/fbeozdoFjts+A21K1Txy38Dt68hGvatLGqVaumdesLP/lqN0xPjviXbrlhqNocnOpNjV9Rx8RuoqwgOHwfD3K2d8rU6e58Ow72OHis2l/h2//jkmXujbl/A2fstU3zj4OtL9Ij/0Hhx7cs+dsTlJX1sw5t28bddz9oE+QHeS449yxvStVjhSqHd2zv3nhbEC1WIUuQn46BIDsXW7MbVhvTH4K1Ne33bU2RfDt7bkGtTRvsdTDQFr4e/9xg6wo/T/jnpODn+O/3p9m6Y32e1TS1wc5DkeZHEus99rn+Z9kQ3LZobF3+8sGmSyLts/GPpT/d3w5/iLaP8Wxb+Lr890XajvBjjb3PrkuXX3ah+3rUv553/5eljZuy1b1b56gFwFZgbNcTGypKpEoXKBv2HRcnT24s/2f5QMsPBll+MliZoyjxrqckef7KrNI+CRDul62/aunqzWp5QF23aaCiTF+wTqvXbdPVZx+uh37fTYcd3MhtTmhc5p79BlhhvrXH/9YXS3Vgs/rqcWQzb47coMPwl2frb6/NUeP9a+nSjPZuMz55O/O1PWen5i/ZqEMP3F+Llv/i9ktghe/X/CVTs35Y767XLHO2e8XaLWp1QD1nPXPdfgOsoN6aBtq6vXC/AUFr1+/Qzxt26OCWDVSnVihAEcun01a5ifjWC9Pcpw0ssGDNCU0txpMNAAAAiSxaYbzdBDRrlqJlzo1ekN2AWIFkl6M7eVOKzwpLrIA9+DRBUPiTBpEEb1ZsfVZL3Zq0CfILm21etEKmaPv/5tvj3Pf2Oq6HN6VsRbvZ8rfDL9QvSqTtj7a/sY5DuPDt27Z9u3vTbzeDpRXt+zr88MPc2m+RgjYFQZ6w41VV2M1zMHhm/6MV6oQry2OPxGE1g612qDXZ4DftYM02BAuOLbg25Mrr3ZqdftMOFmiz85ux36I1mRZsPuy+u25153U4rJ17DQiei+zcbM2jBX+jfqGULW/peeB5l7nnTn999jq8yTUL8vpNm8XTpJiJ9B4rQA9vUi286Yog2wYrsLfzj9/cRbC5NH+fwwN0Nm7B4NQDW7nLWbDVf7/9N8OfHOn+91kTMXacbBkbrMZteG1xK/C384DfPIetq9ORh0fdjuCxRuXRpElj97c49q1xewRuysJvT+7v/o9UKSNSgXFpxHO9KbgeJ0ghcGVS3Dy5zwIEkSpt+NPtfHmRc66zJif9NGrnSUuzftOepqj1JKIqEQSwgvh/vzlfP67crJN6HqgGdUPN7MTSu0sLDb/+WGX0SlXvzi11wwVHugX8837cqF/zQrXqrR3+Kx/6QulXvq1zhn2sRvVr6e+39dJBzeu7882Hk1e4temtDf8Rt/bSVWd1dJvxuWDAodqy41etWb9dk+es1T/HztOxnVJ0Ru+D3cDAvf+crkXLs911/JS11f3/2Cuztf6XHF1w0qHOttTTs+8s0DNvfx+xpr71IfDUa3O0I3enTjr2QCUFnhCIZrCz3vuv7Kp+3VtrQI/Wuu68NO1Xs5rm/pCYiRcAAKCsRKp9bAUo1iTLb3r1iKvQJshuVv3apr36ZLiFUvbIeDhbLvxJg3C2jBWmBB9rjia8oDnI9idSMMJujGwb9kYtN/9Gz9g2zZgyoVBTPUGRtt9u5oKFfMYKyqxAymfrs/VGC7LEOr7WfmywxmpJWGGZFTJYfw/hbPutsC9YkGKvbVrwRrWqCS+88/+HF+qEs+/YCmlLG3hD4rHfsd9chLH0EakZD2vKwf+t238LtFmzEJa2Ij2RdPppJ7vLRXqSygq/rTA7WCvUCqX8AkG/yZJYzbIZCzBefOG53lh8wt/jXyvC98/GozUrZttg58dgcxd+c2m27bYPti/+8TH238b9654tY9cu//1+4Vp4jVvrCyV4HOz8FazJ6xfAPfnYgwXnWVuXHf9o22H7Fc91DxXPfov227JrcqS0VxoWZLDvPTxdW5ot6toQvGbHc922pxlirdM+P1IQH+Ur1hOB/rk/mPYs32QB0SBLo9bPwOFH9XLTgs1/9aV/F5w/411Poqn0QYCNm3P0lxe/1cdTV+rSU9u5hdvxqFWzhmZ8v94NHlz72CQNffhLtza+Fbjn7wwVutdMSlL/bq3cAn5b73uZy3TD8K+0ZFWok2FrBujbRRvc4MHJx7Xeo/mgbdvztHlbrhrWr6WHft/dDQ7cdvFRunNIF/28abs+n7nKXc4K9M1ZfQ7WvVd0cQMJj1/f020aaNKsNVr1cyhI4LPtvHvUN27A4vrzj9RR7QpHxaJJqlFNX3y7yn3a4P8e/kK3/u1rty+B3DiaEgIAAEBh0ZqwiYcVWljbsVbbcdJn49ybjEjNHRRV09EKWazWpt0MBdu9Ly67wbHaqVY4FSyo8QvArVZfZS5oibb9djNnN3VW28u/6beCu3jbbY12fIPfnw1Wc9UKveJpysM6801p1bFge6wAYexrz0c8vlbT1mrcBgsy/eYO/BvVqii85qT9t/FgAavv38+8qPqND3aPlf23mtTx1pbGvsV+r35w1dKKpZ0g62sj/HxthXd23rAav/7v7YZb7ipUgG0svVnBt/8Ekc23/mUsQGttlFutUJtuBdW2Tv91MJ0bv/AqWIPVxm16cYS/x64VVqgeqUk1f//C2e/NCrlsv322n/Ybs/Oksf3zm2Qz9j87+5c9gpbBZnwidboffhzCa/La//BtCbKgQbDvkNJcf1Ex/IBXMAhfVux7D6YH+z1aEMwCULGuDeEdA4dXvgheb2yw9M/1pmqx7+rxvz7gvva/SzunW4G/XQN8FgCyQJL/FNPHH4xxl7NzmYl3PYmmUgcBfljxi659dJK+mLFaNw1O06UZh+1REB/Jjpydbn8ANz85WT/9vE0n9zzQLZg/7OCG3hIhdWvX0HkntnU76bXmc0bd/htt2Zbn1s63pw9+zd2p1eu2us3q1K+zZ3v/FmiovV91dTq0sVo2qetNlds8UHNn3JoYsm2pVzv05EKPI1IKtt/W2eHgZK38eavWZ+e406z5oG/m/azf/yVTK7O26k9Du+nkYw9UNW+XbV33Pz3dbXLIH2zcpm/8JUd//PtU3fcvZ/zXnTqn3yG6/ZKjldK4eJkNAACAfVGkR8LLqjDWv9GwApBg57BWiBSrpqPVnLTCZJsf701qpDbyLfBgTyPY9GCndvb5ftMYwRq2FckK1iI9Ch4Ubft99v1YTf/gTX+k4xCuOMfXPtNqsEZrwz/IasT6zV3YEGvdNt0KNaxwwwo5bCjr5g4qmn1fVuPXnsbwC1pssPFIzUdYR5P+Tbr//QHhrEDHfq9+k0CWZiztFIf93uxcbAXstq7wwGyw4NEK3ZOT93dri1rfFhaos+uEFZAHC6bD03mk4ERR56JIIr3Hmibya7X6Q6QC+aDwQk8bgk9KhTfFY/9tf/3zrB0fO04W8PB/p9E63Y+lqHNyeEDU/vtNEqFysjRi189gkytlxa7rlv/y80xFVZiIV/B6E6nJqmj8oBkqRlHNNNl5xPJWfr7B8obGb9bR0qM9URl8CsrSq10/gum1qPUkokobBFiyarPu+uc3ytu5S3+7tZdOP965cMURADA/rvxFn01fqcEnh5rHsSaB2rRuUPAEQDQtmtZxO+LN2rhduXk7Vb16ddWrnaTc3HzleE0IBdWvW1MHNKrjPjEQqe9d6+DYaucf1CzUvNC2HXu2/2+BiP28pn6mz//Z7di3VUo9/eOP6Uo/qnlBAMDUrFndDVo8dXOvgsHGbfqshevd999y8VHu0wj9urd2+0/IjbDdAAAA+yrL1FvmPlIb9Fbb0y+MLuvCWLvRsAIQv5apiVXTMdj2c3jzOP66ot2UBh9bt4JuKzSymk3hhatWmG0FRBdf9vuCwiG/AMsKiSI9uVBSdlytsD9SG6uNGzWMerMVa/ujiee7i3V8o/FrtpY1v1DDmjqIp7mDys4K7+w4BQMhNth4sLARiJdfoGO/19IGLIOFPtaciZ1f7Dxj/IJouz5YLXq/SRw7p9r51g8MBAum7amjYDr3h3jPK8URHmD0h0jBUZ8VdIYvb4N/PvULcq2Q/6eVq/dons4KYe04FRUoLS1btx1v2w47h9v/kjTFh4plT9AVNKmyY8+nUUrD0qEFjq2z7/JoGurmG0JPAcbq4NhPl+HNX6FsxJsnj4eds/0nksL7efL564v0eb7gehJRpQwCWMH1q+N/cGu4P3DVMUprawnDmxkHa/PfmsGpvd/uznR/WJ7tBhZ8Obk7C/oG8K3/5VdtyM5RSqM6qplUQ/Xr1FTnw5pq0YpsTZ61VvlhJf3+/OkLftacH0KJyGrzz128QWvWb1O7A5PdtvzbHZTsNik0/uuf3CcMjDUXNGfRBqU2b+AGHjZvzdWLHyxSiyZ1dL+zz7Z8OAuCdDi4oY7p2LRgsHGbvjUntF57OsHYdsx2tsmeEAAAAEBIpHafjRXubNyUXXDDUNaFsVbwbwGAYE3IaE8aWIGU1VQKtl0azgqlwm9K/cJvv+aUFZxZQbfV2oxUcGbTwguG/Nq1VnAUqx394vJv9MILgG3cCtUiNZVR1PZHU1SNwXiObyTxPLVQEn4h3Hvvf+wORTV3UJlFayLF2LhNt/l+IAwoKQui2pM5pWGFgHa+85ussd+dnaPfefdDbd68pSBAa/+taaBvps0sOIf7hYMVlZ7985l/fouHFaLGU3jpPwHxwYefuONF1bYOv37GI55t8bdjknNMIzVJhMrHfgdW29p+i6/+d6w3NcQ/50dKL35+JVaw3m+z3dZbHunB33YLNPiBwEj8z7V8IcpWvHnyokRKT5E69/UL/6Pl4+JJl1VdpQwCWAH6twtDX87HU3/Ss29/X2hYsWaLOy+aAxrVdgvR/zfhR734/kK9MG6hXnp/kRo1qOUtIa1et01X/fkLDX95trvOx16epWv+kqmtO/J0Vu+DVbd2kht4yEhP1dHtm+jx0XPc5nZs2ZH/+06vfvSDO79/91Zq1riu/vzcDD356hw96qzH1mnvOb5LC/ezWjatp4xeB+qTqSt156hv3H4K7hj5jeYt2aSBfduoaXId/bj6F7c2vwVA3vx8aaH9fdHZfgsaxGLBBHuq4Om35mvsxCUaOeY7vf/VCjXaf/c+W1DlkRe+1UX3fOr2O2C+X7pJp9/0obN/s93PtuDB6A8X6cQ/vKcvv13jLgMAAJAo7KbPClmtprt/02eZ/mC7+H5BZklrIVrhtRUiBVmbufZos9+efawbDbsZspqXsQqo/ZvSYA02e2033H6BuRWw2w10aQMZdpysHW7b5pLyC7qDj2Hb/xdfeaPgcW0bt6cP/PZa49l+26ZPJnzujYW21ZrHCPZxYOsLPtUQz/G19fjbYexzrK3Y8mqr375Pu+G1obTNHexNfsFstBtomx5sfxyIR3gQ0c7RVvPYmscpjvBzs59eg01OWBq189Qvm7cU1Pi3z7ff5s233Vsobdvv1s7r1vm3z7bNmi4qzfkyEv8caoFR/1xmws9VQXbutAI2a/YtGKiwYxdch/8ExKfOuTG8tnV4wNk+L9icULwibYv9D34f/na8+vqbhZokQuVm10TroNp+N1lZP3tTQ6yvBytkD6ZR+97j6QDez6/ZessrPdi2W34gVrNA9rnWHKBtR3i/QPa6PH7v+4p48uQ2bnnQYCfPdt7wvwebb307BfO/lq4KnlAJLGfrDeb/ilpPIqqUQQDrvNcGK/gePf4HPffugkLD+iJqt1uh+7XnHqG6dWrquXe+d5sHuvnCo9wa975GDfZTp3aN9fmMVe46P/lmlY494gCN+mMvHXP47k4gmibX1oNDu+nsE9pozuIN7rJfzFhTULje6oB6euz6Y9W5Q1O9/flSfTptlc7q28Z9j73XWLBg8MntdNflXdzggwUlbP/+cm0PndIz1Ob/rnwpb2e++7SCFfoH9/ftL5Zp6/ZQTf9oDm/TUNedl6btO/I04rW5ynfWd9PgTgVPBgAAACDEMvdWu9wKi60JHL+daT/TbwVDpal1ZgVGo55+oaCJHRssqBDsHNZqOcW6AbYbouD7/cG/CbL1vPyfkW7hjD/PhDeZE6k9aBvi6eDWZ7Vk7aaotDfg1jyGFRT4bVpfcPFVemr4n2MWqsez/cOf+mfBdL+Jn6Ju4Io6vibYTJLfd0B5tVdvx9aOcXgBXFVjT7dYkz/RAhn+jXmwbwygKPabsHO0/5u0c8LZZ2YUu08Ac9+Djxb8rv2mxoLnC0u71uxO8Kkt//dp04Np26aHn4dt26zgvDx+x+HnUBusUCvatcq2P7zjSxu2bNla6Lxry1nQ+/uFP+zRPJ0192LXKjsH2nutWZbx773mzY2ffYY1KWTH1d8W+79l61Zvid0Fgq+PeTtqIBGVk6WTSL9HS2fhnffb927pIJ4mpuz3dt45Z7rBhHj4+Tp/iKdZQ79yRniwLMj2Y9JnoQ6Qg78le22q8nV7bysqTx7J7LnzCr6HSPmzSOebSMsVtZ5EVG2XPdNaDCvWZuvAZsneWHS2Wht27typ5Uu9iYAj1TlP1qhRw63NYQMAAEBl4hcEl9eNgN1k3nTbPW6hS3m0G12W/G21gpmiCtYBACgNqw1sgQ0LrlCwCgBlq9J2DAwAAABUNKsxZh1QxlvrrCSsQ15rQqKkTxpUpG3bQ01SVuUmagCgsvCbtrCap+FDaZtdq+os6FweHcACAEJ4EgAVjicBAAAAAACAj6cAAKB8VciTAJTzwkdaAAAAAAAAxp7As7bbrU8X64CVAAAAlI9yfxIgPz9fq37KV24upb+QatbcpZatq6t69eo8CQAAAAAAAAAA5azcngQIFu7Wree9wD4vmBYIAAAAAAAAAABA+SrX5oD8mt77J4dqgGPfZmnA0oKfLgAAAAAAAAAA5avc+wSwwl5r+qXJAbsIBOzD7Lu3NOA3AwQAAAAAAAAAKH8V8iSADfvtV13NWlhN8Hy3QJhy4MRn33Go9n+++91bGgimCQAAAAAAAABA+Sq3joF9/uqtg2C/o2D7X8yPRRXlF/j7TwDYf386AAAAAAAAAKB8lXsQwPgf4Rf+B8eRuPyCfj8QEBwHAAAAAAAAAJS/CgkC+IIfRQBg3xAs8KfwHwAAAAAAAAAqVoUGAYIIAuwbKPgHAAAAAAAAgL1nrwUBAAAAAAAAAABA+Qr10goAAAAAAAAAABIOQQAAAAAAAAAAABIUQQAAAAAAAAAAABJUifoEAAAAAAAAAAAAlR8dAwMAAAAAAAAAkKBoDggAAAAAAAAAgARFEAAAAAAAAAAAgARFEAAAAAAAAAAAgARFEAAAAAAAAAAAgARFEAAAAAAAAAAAgARFEAAAAAAAAAAAgARVbZfDex2XFWuzdWCzZG+s5Ir5saiiqlWr5r0CAAAAAAAAAFS0Cg0CBD+KIMC+IRgEICAAAAAAAAAAABWrQoIA/kfY/00b87V1yy7l5tq4OxkJysr8a9aU6tWvpoaNqhcEAQgGAAAAAAAAAEDFKPc+AfwAwK+/5mvlip3auGGX85oAwL7AvmP7ru07t+/e0kBoOl8+AAAAAAAAAFSECukYOD8/X1lr8t0CYeyb7Lu3NGBpAQAAAAAAAABQMco1CGA1vm3I3hSq/Y99m6UBSwt+ugAAAAAAAAAAlK8KaQ7I+gAAjKUFAgAAAAAAAAAAUDEq5EkA6wQYMKEOoQkEAAAAAAAAAEBFKLcgQLCQl/Je+IJpgUAAAAAAAAAAAJSvCmkOCAgiTQAAAAAAAABAxSj3IAAAAAAAAAAAANg7CAI48vN36bPpq3XJvRPV64q39ew7C7w5Fas42zFu0nJ3GfsPAAAAAEAi+37hYnXp0U816jTX6P/+z5sa3fbtOzT02tv04MOPe1Mis/WefNr57v+iFHcbjL8d8S4PAEB5qLRBAGsxZtq8n3XNXzLdwu7Tb/pQL72/UNtz8rwlirZ566969u3vNej2jwvW8czbC/TL1sI9Fc9YsE5/fn66qlevpksz2qtpcm13+pr12/SXF7/Vydd/oL7/967u/fc0d1rQzvxd+mTqSg158HP3M86/c4I+mLzCne5bunqzzv5jaBuCw/1PT9eOnJ3eUtG3AwAAAMU3afJUnXL6BVq/YaM3ZbdgQY4NsQqJYhUkWaGOzbNlguyz/XXbEG07fDbPlvELieyzgu+P9Nn+dsX6DFtfcD2RtjXIPy5FFZrFEu2YmPDjUlShWDzb7x87f5mijrWJ5/iGL2NDUccvfHttsOMZLFz0j3G8aSKe/ams/ONh33skkY5x+P76xyvaOrBvsN/dkyP+pVtuvEY7t6/R4PPP9uYUT6zrQlHKahuAqsg/n0fLH9i5OhhM869hsc7/wXUVtX6fn48ILudfJ/zriD8Ef+u2fPj88OuzseXizcPYUJWv0ZVF+PdXVBoIsnRTVN7M5tky0fIX/udGSg8mPO1U5fxIpQ0CTJ6zRjc/9bW27cjTTYM7qUdaMz3z9vd6fPScQgXnsaz/JUffLlqnE7q1dAvVWzerr+ff/V4jXp9baB0zF65zPmen/nDOEbrqrI46o/fBWr1um27/+1R9+NUKnXBMS53SK1VfzFitPz07Q+uyQ4nLAhWvffSDO61G9Wq68JRD1aBeTT3yn2/14eQV7vygtLaNNOS0DgVDt8MPUFKNat7cyNsBAACA4vEz68efcLo3pTDL4F9w8VUa8eTDbkFO1sr5Tob+G/dGIpLlK1ZqydLlOufsM9xx/2bCPuPiy37vTgs3f/5Cd722fht69eymi353TdQbxQXfL3L/nzTgBPfm4pA2BxW819++4E2RbcNNt92jVi2bF/qMu+59uOBGyPYz6+d1BfO3bFjqTrf3RbtZeuN/b2vW7O+8sfjFc0xsv669YZjmzZrkbo/9f+yJkVFvpuLZfjuedlwvHjyoYDl7HetYx3N8fS89/4+C5WwYNeKvqlMndkWdASf2LfTdW4GhpbfwG8uPPp5Y8L1HYvNsmarKvqMvJ03RuYPO0Mujx0RNc1ddcYn73frHq6jfCvZN/nm4a5ejvSlFs9+q/WbvGnaTN6V0SrINQKK594G/Rr1ulwW7Hsc6/0/8LNN7tacvPn2n4FpiwwfvvKomjRt5c/e83kS7Pofz8zgPPvxEoeu7rcuuWSi54ubJTTx5zqAZ387Wv5950RsLsXVYnvfjD8bETA+WN1y5KvRd2zKWd7W8bHn+BspTpQwC/JqXr0+/WeUWqN9+6dE6+4Q2uu3io3TSsa312fSV+nHlL96SsaU2q6+/3dxL15wdKlT/y7U91Ouo5pq1cL1+3rTdW0rK3Znv/k9KCh0OK7z/aMpPWrJqs/58TTf3s2+96Cjd4vyfu3ijGwwwq9Zt1TtfLtdxnVL0xI093c95+PfddWTbRho7cYnWZYc+w9aX7/w5oVsrXX7GYQXDb3ulFnymCd8OAAAAFI/dOM6bv9DNpNvNYCSW6R94ZoZz49bdHbcbxLuG3aiXRo+JeOM5fca3Sj+uuw5r39Ydt4Kg7Oxf3BsVKySO5IohFxW68Rx69WXu/2iFvnZTa4XX9h7brmANU3/7gjfGdkOzdNmKgvUae23TbJ6x7b3h2qvd18YKxGzcCrFsH8LZTU/mV1N1Yv8+3pT4FXVM7GbLCoLtBss/jvbfxqMVEMez/eM/+lQHH3Sgzjojwx039tqmRTvW8Rxf2x676SsLtj09und1050vJeWAmPvuHy8rQK+q/DTxh2suj5rmIvHTtH23AIDKwwrR7dplheGxCupL6rxzzlSjhslRz/+lyadE4l+fLZ8XjV2P/UoX4UEFy5dYkDE4DcVT3Dy5KSrPGRQtPxXpuwtPD356s7ynLW/8vGusYFRlVqlLm605nMYNa7mvayZVV8P993NfB1nzQK99/KPbDI81sWNN97wx4Ud3njWrU213RXu31n3tWkmqWztJtWrVUPaWHF350Bd65YMf3Pm//2uo6aFv5v2spas2q03LBjo0NdmdZ+vpdsQB7rRvF21wP/fnjTu0Yu0WdT6sqerXqekuZ9vcu0sLLVi6SctWbXGnZW/5VVkbtquet0y4aNvx7cL17nhRpszNKuhH4LrhX+l757ODYh0jAACARGKZ+dEv/rOgoDmc3VBYYW/fPunelJCmTZpo7dqsPQqObXm7EQkub+u2zyjOTd+6dRu0a9cu93PC+TcZsWqX2vvs/bYeYzcfVvssuA1169RxC79j3Zg0bdrYyddW07r1hfOZdpPkNnNxw1C1OTjVmxq/oo6J3bBFqkF7kLO9U6ZOd+fbcbBHsWPV/grf/h+XLHNvzP2bM2OvbZp/HGx90R7x9oUf37Lkb09QVtbPOrRtG3ff/aBNkB/kueDcs7wpVY/dRB/esb17Y29BtFiFLEF+OgZ89hs+/Khe+viTz9z/weYYwptpCH9iymqL2vv91/aEmD1hk9Kq4x7nhe07thfULrXBXtv7TLRtsOnB5Uzwc6Ox7bTB1uF/nr/OcMF9jNT0SPgxCH5urHlAcdl16fLLLnRfj/rX8+7/srRxU7a6d+sctQDYCoztemJDRYlU6QJlo7h5cl9x8uFvvj3OzYOdljHAmxKdn1+zvKWxvKblOS3vGWR512DFkaqkUgYB9kuq7tbYt5r4n09frdy8fP2w4hd9MWONenduqYNbNnCXs6aChr88W397bY4a71/LbfLn9ONTlefVqA/Kyd2pL79do6nfZen4Ls3VZP/aqpmUpP7dWrnN9BirmW/N9DRusGewwdRytqtmzepavW6rfnXWF41f2L924+6nDWKJth1NnH0qyoRvVurF9xcq/ejmbvNBcxat171PT9eyNaEARHGOEQAAQKKLVhhvGfxmzVK0zLnRC7IbECuQ7HJ0J29K8VmBkBWwB58mCAp/0iCS4I2Irc9qqVuTNkH+zYvNCxZIBUXbf/8mqddxPbwpZSvajZS/HeFBiWgibX+0/Y11HMKFb9+27dvdm3670SutaN/X4Ycf5tZ+ixS0KQjyhB2vqiI8eGb/Y9XqCyrLY4/EYE/u2NNdVvvXb07MgktWgF+/fr2CphxiNSNh50drGsieEPOb7JoxZULBedcCc0OuvN6t8ek3+WBBOjs3mmjbUBrWrIr91v3tv/+eUHMj/u/Ezh0WTLDzh98URXhzZ7avwfm2bfXr1StyHlBSTZo0dmtqj31rXMzgekn99uT+7v9IlTIiFRiXRjzXm4LrcTEqfiA+xc2TF5elz/fe/zjuAE6k/JoFIyJVEIk2vbKrtE8C9OnaUsN+d7T+OXae+vzfu7r0/olqfUA9DT3nCLcmv7F2960TXiswH3FrL7fJH2uS54IBh7rzzbhJy93a7ycMfU//efd73XlZZ/0u4zC3Df+6tWvovBPbqlP7UILL6JXqNtPTpvX+2r/efm4Q4ofl2e48s2Bptpau2t0UkW1Ho/1raeb367Rle6izYSt0t0BD0KZfctz/Dz0/092W8E6Oo23Hgc3ru+OxbHc+776rurr7bk0W3XxRJ/fphM+mr3Lnx3OMAAAA9nWRah/bzYA9QvybXj3cAqTisJtVq7FpNS979clwC5YitUtty4U/aRDOlrGCIb+5oFjCC5qDbH8iBSOs5qltw96o5ebf6BnbJiuUi9bZZqTtt34aggV1xgq+rHDNZ+sLFvaFi3V8rdawX4PWatSWxPAnR7qFDNbfQzjbfnsKJFiQYq9tmt8HRVXkF950OKxdof/RavX57Du2fi1KG3jDvsF+08Emw+z3a79j64vC0lJxRWqurKTriocFI4LnXfvNB2u/Wg1kO78Fm6Lwmzuz5lJsu2z7gtco2+7TTzs55jygtCwAZkFsuyaX9e/Dggz2Ow5vLs9v/i/WtSF4zY7num1PM8Rap31+pCA+yldZPBFoebsbbrlLvx86JO4AjuUlg/k1SxfWPFAwnVsezfoEqKoqZRBg165QDfcn/ztXXQ47QA/9vptbeL1w+Sb9/bW52rz1V7cA3ZrlObBZfZ18XGu3UD+S1s3quQXg1mlvUo3qumvUN/rPuO+1Mz+s194AW9eJx7ZWndpJunPkN/rrS7P05Ktz9MiL3+rX3N3vs6aBju/cQl/MXKMbn5isf785X3c66/9qduH2Qxs1rOVugw0D+7Rxp/1z7PxidXIcTd9jWuqAhnXc19WcQ3Bk28Zq3qSuVqzZomznOMVzjAAAALCnaE3YxMNuOKztWKt9Oemzce4NRKQmacILS8PZTYzV+rSbISv8KSm7ebE2be3mJljo5BeAW62+eG+S9oZo22+FWq++9G+3g2H/pt8e4y6qjVhftOMb/P5s8GsYhzf7EYnf1Ii/PVaAMPa15yMe39QDW7nNLwWbyvGbO/ALI6ui8JqT9t/GIz31YJ311W98sHus7L89kRJPB8yAL9jkTTydREYTqTawnXOstnB5CK9dHF771X4vVgBl5wmf/S785irstRXy2z6HNyMUax5QFuxabL+PYBC+rFi+K9iXjF2rrbLCRYMHxbw2hHcMHF75Ini9scEqYHC9SUwW4LFzbLxPbFkFEjtfBvPDli4e/+sD7ms/3VhgwToxtr6dqqJKGQSwDnVf/egHdTq0se65oovbBJA1Y3PrJUe7HfZ+PHWl2xyPNctjnQfXrxN6MiCSow5t4taqt9rvz97dW2f2PlgvvLdIU+cVrq0f7og2jfSXa7uro/P/7c+X6sdVm/VH5/PbH5TsPpFQq2aS20/B7wcdrstP76AVa7dq7GdL1eWwJrp64OHuOlo5yxl/G2ywmvov3NdXPdNSNHnOWi1fG2q2JxLrE8CeHAgO4f0EROtnwIIcOTnxHSMAAIB9XaRHwsuqMNa/iQjvHNYKk62mW7Qa/lZwY4XJNj/em9RIbeRb4MGeRrDpwU7t7POt1rWtv7TNWpRUtEfBg6Jtv8++H6vpH7zpj3QcwhXn+NpnPvnYg1Hb8A/ymxrxtyfWum26FWr4TeXYUNbNHVQ0+76smQh7GsMvaLHBxiM1H2EdTfrNlfjfHxAP+w1b2jJ++ok3ABjOCnRinYf2lvBCS/+35LMnnWyf/RrQwaaQYs0DSsuui3b9tCB8+Hm9tOy6bvkvP89UVIWJeAWvN+HNb8XitxGPilHaZgH9ptBuvuEab0p0lhe2Ch6WD7O8W3h+2PJplo/zrzGWDzWRmrisCiplEGDr9jxt2vyrDm5ZXw3q7i7kPrBZPbeW+5oN21S9enXVq52k3Nx85eTF1769FdpbIb61h78hO9RETzRWq94K70f+MV2TnjlDf7v5OLfT35837HD7JKhdq4a7nBXCDzn9MH341CnuMPjkdlr983Yd3KK+mjUO1dAPZ00IHdJ6f238JcdtPigaW8dTN/cqNNi0oJ07Cz/R8Ksdj9ydbnNG++1Xo9jHCAAAIJFZht0y7pHaoG/UMLmgEKisC2PtJsIKpe2mxK9JHutJA7uBsceNrQ3n8OZx/HVFuykNPrZuhWTWiaXVWgovXLXCbCtgsppPfuGSFTbZNCtkKqoz3eKw42qF/ZHaT23cqGHUG6lY2x9NPN9drOMbTbDporLkF2pYUwfxNHdQ2dlTDXacgoEQG2zcpsfbQTAQix9EtULuRA4cWUFl8HfkD8F9tnOYTbNa0HY+DzaBEmseUFr2BF1Bcyk7yvaJGbuGW+D429lzY1aYKCkrILbrbawOji2/ZU/UWJ4inmABiifePHlx2PdkBfrhAVQ7//lPavoBUVt24HmXRa1kEk1V7ieiUgYBatWsodr7VdfSVVu0eVuorX1jnQOvWb9NNWtUV/06NdX5sKZatCJbk2etVX6E5n3svda0kM9qx/+UtdVtFqhxctGd7gZZYf1/P/pBNWpUU+8uLbype5q5YJ3GfbXc7dMgxQsChDc9tC57h75bvDFmoMA0bFBLx3RsWmiwaUGT56wp6I/APmfi9FVucCHt0MZKrrdfkccIAABgX+K3MxreLInVMtu4KbugMLqsC2OtwMoCAMHa6dGeNLCCb6tZZ83cRHsKwQr6w29K/cJvv+aUFeBbQbcV/kSq6W/TgoVKNlgNOaspZwVPsdrRLy7/Ri+8ANjGk5P3d7+XcEVtfzRF1RiM5/hGEs9TCyXh16a0zutsKKq5g8rM0rm1Qx7p5tjGbXp5trGOfZuf/iqSnW/Dmwzya7GWlhWCFqfw0c6TFhQJBpt9seYBJWXXKuuzwp6Se/W/Y72pIf45P1IzcH5+JVaw3m+P3dabnf1LxH51SsPfdgs0WL4gGv9zLV+IshVvnrw4LN0Fm3P0Bzv/+U9qWnDUzoP2NKyl0eIEkuNJu5VZpQwCWOF5v+6tNGnWGv1xxBS3rX1rl//Pz81w27cfcOyBbk39jPRUHd2+idu2/h//PlXPvv29Rv7vO7cpITN6/A+6bvgk9/02XPvoJL04bqFOdNZttfxjsWCBdeTrr/P/Hv7SbYbIav0f1LyBt5T0349/0N9em+sud//T03Xr375W21YNdFbfNgVt8P/n3YX607Mz3GVs2Sv//IXbrI/tox8oKKllq7folie/dvfv/mdmaPSHP6hrxwPUtUPTuI6RbcdZt3ykF5zjYkGEvLx8t/8D67x43o+hzMbqddv0u/s/0+1/n1IQcAAAAKiK7KbPClmtprt/02cZ+mC7+H5BUrBDxeKwwut33v3QGwvxOxvz27OPdRNhN0PW4V6sAmr/pjRYgy28/VMrYLcb6NIGMuw4WSfH8RZERWLHNbzZAPv/4itvFHR6aeP29IFfQyue7bdt+mTC595YaFut6Ytgm662vuBTDfEcX1uPvx3GPsfagS2vtvrt+7QbXhtK29zB3mRPt1hhULSbY5tu8/12noGSsnOGBVWDQSU7z1rtz1hiPZVUEsEneXx2LrYap6Vl5z4rILOCqmDBvdW6tvOZTXv62ZcK5vnXLjsuJtq8klzXgGjsmmidaNv1PSvrZ29qiHV2bYXsweuppcV4OoD382u23sM7ti+4ppcl23bLD8RqFsg+15oDtO0I7xfIXtvTNaXJH+3L/O84Vp7cxi0PWtZPMflP41oajcXy8/53btti/UgF89pVTaUMAljh+cWntNd9Vx2jHbk73QLqT6et0snHHajHb+ipg5qHmsSx5nkeHNpNZ5/QRnMWb9Bz7y7QFzPWuM3tmCMOaeQ2hfPKhz+469i6I1e3XXyUbr3kKNWtHbuN/KQa1dwmg17+YKFe++hHJTfYT8OvP1a/PS7VLVz31axRQ1/MXO1+9vT5P+vCU9rp4d/3cLfN17xpHc1atN5d5n+fLlHrlHp64sae+l3GYaXurPe8E9u6nQNbfwRfzljlFvrffXnngmNQ1DECAADY11jG3WqX++0k26PBdrPhZ+jtxqA0tc6s5tKop18oeATZBit8CXYOa7WcYt0A2w1R8P3+4N8E2Xpe/s9IN5DgzzPhtZkitSdtQzwd3Pqsk0q74SntDbjVvLKCAmvex7bhgouv0lPD/xyzUD2e7R/+1D8LpvtN/BR1c1bU8TXBZpL8vgPKq9kRO7Z2jMu6uYOKZk+3WJM/0QIZlt7D+8YASsrvmNQ/R1gTaVbbMxY731gwz85DZdHkmf1e7foRPF8c66Rxe6KqtKyALLxTShu2bNlacN6c8e2cgnn23wr5/fNUrHlAWbJmgSKleUun4Z33+2kxnr6O7Fpy3jlnFllQ6/Pzdf4Qz2/cr5wRHmwLsv2Y9FmoA2T/N+Xvi6nK1+29rag8eXmyoJWfJw0OwXQze+68gu+8vPOCFaHaLguDF8OKtdk6sFmyNxadrdaGnTt3avlSbyLgSHXOkzVq1HAfCbcBAACgMvELgssrk283mTfddo/7pEG87dHvLf62Wk2tirghAwAAAFD2KuWTAAAAAMDeYDV/Mr+aGnets5KwDnmt9mpZt29bHvx2rqtyEzUAAADAvo4nAVDheBIAAAAAAAAAACpGhTwJQDkvfKQFAAAAAAAAAKg45R4EsJreSUnFetgACczSArX/AQAAAAAAAKBilFsQIFjQW7ee9wL7vGBaIBgAAAAAAAAAAOWrXJ8EsEJeG/ZPlmrW5GmAfZ2lAUsLfroAAAAAAAAAAJSvCmkOqHr16mpywC4CAfsw++4tDVhaIAAAAAAAAAAAABWjQp4EsGG//aqrWQurCZ7vFghTDpz47DsO1f7Pd797SwPBNAEAAAAAAAAAKF/Vdjm813FZsTZbBzZL9saK5q8+Pz/ffe3/L+bHooryC/z9JwDsvz8dAAAAAAAAAFC+yj0IYPyP8Av/g+NIXH5Bvx8ICI4DAAAAAAAAAMpfhQQBfMGPIgCwbwgW+FP4DwAAAAAAAAAVq0KDAEEEAfYNFPwDAAAAAAAAwN6z14IAAAAAAAAAAACgfIV6aQUAAAAAAAAAAAmHIAAAAAAAAAAAAAmKIAAAAAAAAAAAAAmqRH0CAAAAAAAAAACAyo+OgQEAAAAAAAAASFA0BwQAAAAAAAAAQIIiCAAAAAAAAAAAQIIiCAAAAAAAAAAAQIIiCAAAAAAAAAAAQIIiCAAAAAAAAAAAQIIiCAAAAAAAAAAAQIKqtsvhvY7LirXZOrBZsjdWcsX8WFRR1apV814BAAAAAAAAACpahQYBgh9FEGDfEAwCEBAAAAAAAAAAgIpVIUEA/yPs/6aN+dq6ZZdyc23cnYwEZWX+NWtK9epXU8NG1QuCAAQDAAAAAAAAAKBilHufAH4A4Ndf87VyxU5t3LDLeU0AYF9g37F91/ad23dvaSA0nS8fAAAAAAAAACpChXQMnJ+fr6w1+W6BMPZN9t1bGrC0AAAAAAAAAACoGOUaBLAa3zZkbwrV/se+zdKApQU/XQAAAAAAAAAAyleFNAdkfQAAxtICAQAAAAAAAAAAqBgV8iSAdQIMmFCH0AQCAAAAAAAAAKAilFsQIFjIS3kvfMG0QCAAAAAAAAAAAMpXhTQHBASRJgAAAAAAAACgYpR7EAAAAAAAAAAAAOwdBAGK8O3C9ep1xdsa+b/vvCkAAAAAAADYlzz48OPuAABVUaUOAqz/JUf/eW+hLrrnUy1dvdmbGh8rtLfC+/DBCvUjsRZqXnp/obtMWRT4l2Z9uXn5+njqSg158HP3/X3/713d++9pWrN+m7dEbJu3/qpn3/5eg27/2H3/6Td9qGfeXqBfttJDMwAA2HdMmjxVp5x+gdZv2OhN2e37hYvVpUc/1ajT3B1i3dRv375DQ6+9LeIyo//7P3eeLRNkn+2v24Zo2+GzebaMrc/YZwXfH+mz/e2K9Rm2vuB6Im1rkH9cSlPIEe2YmPDj4u9vNPFsv3/s/GWKOtYmnuMbvowNRR2/8O21wY6nHVeff4zjTRPx7E9l5R8P+94jiXSMw/fXP17R1gEAlZmdw04+7fxC14GqyD+fR8sfhO+nfw2Ldf4Prquo9fv8fERwOf864V9H/CF4PbHlw+eHX5+NLRdvHsaGqnyNrmzs+HI8y1elDAIsXJatS++f6BZeP/3WfG3P2enNKZ66tWtoYN82GnJah4Khyf61vLmFrVq3VeO//skbK73SrO+jKT/poedmKKVhbXebjzk8RZ9NX62H/vOtNv6S4y0VnQVPvl20Tid0a6lLM9qrdbP6ev7d7zXi9bnaUcJjCQAAUFX4N3rHn3C6N6Uwu+G74OKrNOLJh7Vz+xplrZzv3Hh8496ARrJ8xUotWbpc55x9hjtuN4Z2g2ifcfFlv3enhZs/f6G7Xlu/Db16dtNFv7sm6o3Ngu8Xuf9PGnCCexN0SJuDCt7rb1/whte24abb7lGrls0LfcZd9z5ccONq+5n187qC+Vs2LHWn2/uiFWS/8b+3NWt28SvExHNMbL+uvWGY5s2a5G6P/X/siZHu9Eji2X47nnZcLx48qGA5ex3rWMdzfH0vPf+PguVsGDXir6pTp7Y3N7IBJ/Yt9N3fcuM1bnoLL2j46OOJBd97JDbPlqmq7Dv6ctIUnTvoDL08ekzUNHfVFZe4361/vIr6rQAA9p57H/hr1Ot2WbDrcazz/8TPMr1Xe/ri03cKriU2fPDOq2rSuJE3d8/rTbTrczg/j/Pgw08Uur7buuyahdIpKt+OslMpgwDbf83T/vX205+Hdlefri28qfGzWvi78qVWB9TXxRntdPkZhxUMBzav7y212878XXovc7mWrCre0wbRlHZ9TZNr68X7++qRP/Rwt/mRP3R3gxnT5/+s+UuLzgynNquvv93cS9ecfYSuOquj/nJtD/U6qrlmLVyvnzdt95YCAABIPHbjOG/+QreA2W4GI7GC7oFnZjg3bt3dcbtBvGvYjXpp9JiIN57TZ3yr9OO667D2bd1xCwpkZ//i3ghaIXEkVwy5qNCN59CrL3P/Ryv0tZtaK7y299h2DT7/bG/O7u0L3hjP+Ha2li5bUbBeY69tms0ztr03XHu1+9pY4bWNW0DD9iGc3QRnfjVVJ/bv402JX1HHxG6grSDYbrj942j/bTxaAXE82z/+o0918EEH6qwzMtxxY69tWrRjHc/xte1ZuWqN+7q0bHt6dO/qpjtfSsoBMffdP15WgF5V+WniD9dcHjXNReKnaftuAQCVhxWi27XLCsNjFdSX1HnnnKlGDZOjnv9Lk0+JxL8+Wz4vGrse+5UuwoMKli+5a9hNhaaheOLJt6PsVMogwFHtmmjELb107JEp2i+phjd1t0UrsnX3v6bp5Os/cJu7Of/OCfpg8gq38N3k/LpT6zbtUM2a1VUrqehdnLlgnT76+icNOf0wb0pk3y/dpOuGf+V+5iX3TtSUuVluwCFcUeuzZnn+/eZ8d/t7X/2urn1skqbN+7lgXT2c/T6w2e5gRY3q1XTogfu7r3/ZVnSTPtWd5atV80YcSTWqqXatJNWtnaRatfY8ngAAAInCbsRGv/jPgoLmcHazYYW9ffuke1NCmjZporVrs/YoOLblLTgQXN7WbZ9RnJu+des2OHm9Xe7nhPNvart2Odqbsid7n73f1mMsaGC1z4LbULdOHbfwO1YtuaZNGzv5xGpat75wE5l2k/vkiH/plhuGqs3Bqd7U+BV1TKwA2AqCw/fxIGd7p0yd7s6342CP5kd7IsOEb/+PS5a5N+bB2vn22qb5x8HWF+mR/6Dw41uW/O0Jysr6WYe2bePuux+0CfKDPBece5Y3peqxQpXDO7Z3gy4WRItVyBLkp2MgyM7F1kyE1Ra1Ifw3Xdz5NgRrM9s50Gr62vnCr5UafDrIn2ZDcZqrsM+w5e2/bVNwu/zP9Ndrr22aL9Y+2fbYYOM23V8m0vmzOPtug79M+DE0weNgQ/jnlfQ4+WKtv6T74R/X4LTwbfO/p59Wro75nUQS6zuw/Tn8qF76+JPP3P82P7jNsY6Xv00LFy0utN/2nnC2rD/fhuBnmPBtDH5WcF5R7Lp0+WUXuq9H/et5939Z2rgpW927dY5aKcOC6XY9saGiRKp0gbJTVL4dZatS9wkQzafTVrmZ/1svTNO9V3ZVg3o19ch/vtXUeVneEvFbl71Dz7/3vU7u2VpHHbrnTZlv9sIN+tvrc9Xh4GSd0+8Qbdqco3ufnq5ZiwrfQBW1Pps/7B9TNOGblRo6sKMe+L+uSqpRXXf9a9oe6/JZcOOHFb+4zRulpuz5JEMsObk79eW3azT1uywd36W5muwf+/FlAACARBatMN4Kl5s1S9Ey50YvyIICViDZ5ehO3pTiswIEK2APPk0QFP6kQSRW6G35X9tOW5/VUrcmbYL8wmabF63QItr+v/n2OPe9vY7r4U0pW8HtD/K3IzwoEU2k7Y+2v7GOQ7jw7du2fbt7029BitKK9n0dfvhh7hMpkYI2BUGesONVVVjhTTB4Zv+jFeqEK8tjj8RgvyFr6izY7Nd9d93qzQ0VYp54yqBC8597+ilvbqiANKVVR/eJH3++1Ti1pifCC0vfHfdRQXNhVsPXPtsKgu037DcjUlSTY+EswGxP9nz8wRjNmDLBPdfbeweed5l73vW3yV77zZ0Vtc/GgsfP/ecVTfpsnDvfb2ItWAhdnH33m3KzZWxfrYa0XbtsW4ytN3gc7PPq16vnzivtcYr0fnuyLOWApu78ku6HbaMFW4dcdb0bNLZptn67rocXYtv3dOvt97lPnPnLmVhN6NlnW+F+sHlBO9f534GlIdsGq7lu/20ZC4zGe7ysSbjrb75LL/9npLuM7XN4czz2WeFN7dm4v4yt74Zb7irYRhvOdq49kebFo0mTxu73MPatcXsEicrCb0/u7/6PVCkjUiWO0ojnehOp0gVQVVXJIMDgkw7V/Vd2Vb/urTWgR2tdd16a9qtZTXN/CNXcyd2Zr42bczTvx4367Q0furXtb3xishYs3eTcNLiLuKxw/ZUPflC+8//MPgcrKcZTAz9v2qGbLzrKbWLnhgvSdOeQLtq5c6fGf71CeXn57jLxrO+jySu0Zv12t4meM3ofrN6dW+qWizqpYf39Cq3LZ9v7ofOesROXqE/XVjqkVeiJgKKMm7TcfWLhhKHv6T/vfq87L+us32Uc5j5VAAAAgMIi1T62m3QruPlNrx6FaprHw25W/Zp7vfpkuIUKVhgQzpYLf9IgnC1jj95bAUFRN6HhBc1Btj+RghFWUGDbsDdqufnBF2PbZAVkwaZ6giJtv/XTYAU8FsTwWYGIFZL4bH1+wVsksY6vFTD5NScj1b6Mx/AnR7qFDNbfQzjbfivICxak2Gub5vdBURX5hTcdDmtX6H+0Jpp89h1bwWdpA29ILJGeJDr9tJPd37R/XrCAWvDccXSnIwvm23n8/ntucwtfffbami4Lb5KrYcPkQs2LWS1gO8fYOdy/DvhNjsXbZJX1s3JR2PnFf2+0Jt1i7bPPApe33XJtwXbZPGuqxQ+4FXffrakXf99tnbbN/pNatpz18RG8Htrn2TaZ0h4nO4fbvj94/7CC99vx6t+vd6n2w7bR0sam7F8KjrW/b+Ftz9v3ZM2X+cfYlrP9sf2y/QsXabtsm62AvKigZ3GOl63PTzt2XrT984PH9hn2WbGa2gs/Hxu/ycJI8+Jh+2vHNRgkKisWZLDrcfj3aselqGtD8Jodz3XbAkGx1mmfb4GaWHkroCqpkkEAa97mi29X6W+vzdX/PfyFbv3b19q2Y6db+G9qVK+unmnN3E51rWPcTu0aa8aCdbrhickFte39wvWPp/6ky0/voAMa1nGnR5N+VHMdFOhPwJ4IOLjl/lq6arPbcXE867NtnP3DBq1Zv00X3v2pW0hvw7nDPtGKtVvcTnvzdu6OUuTm5buF/399cZa6dGiqqwd2VO04m/Np3ayeu/8XnnJo6EmDUd/oP+O+L2gyCQAAALFFa8ImHnZzbW3HWs06q6VpN8qRmlYo6gbcbvCtZqDdpPqFGiVhN7JWm9EKWYKFTrZ+KwAPFjJURtG23wo7Xn3p327tV/+m32p7RuurIVy04xv8/myw2p1WYBRP0xBWc9NqrPrbYwUIY197PuLxTT2wldv8UrCpHL+5A79ApyoKrzlp/2080lMP/37mRdVvfLB7rOy/1YaOpwNm7Dv834nVWA4vWPVr8kYLpNp53ApbI80PNkfms/QXTHuWZq1GvG2Dz+bbcnauicdRnY4o9PSSnUOsQD1ak272RFqsffbZsvaeILte+U2bFXffwwPewSe1bLrNt1r24TXvTWmPky0TrbZ1affDCnAjHatw4d+Tsf2x/Qp/StBE2y5bR1HNy8V7vKyj+WD+wF/GriuWjiwPYU8wRGpqz34X9vvw328B1vDrV6x5RfGDVsEgfFmx/Qn2JWO/AQt2WPAm+N2Gsycl/Ou2DeGVL4LXGxvsu+N6g31JlQsCbPwlR3/8+1Td96/p2vHrTrdpntsvOVopjXef0K3ZnPNObOt2qmsd41onufdc3lnbd+Rp4rRVbkG4dbI74vXvdF7/Q9S14wHeO6OrVat6xFr0ec668nflx7W+3Lw8rXe239r7t06Pn3K2KzjYNls/Bmbr9lw9+tIsPT56tk7s3kr3X3WM22Gw79uF6wuCCP5g03zWFJHtvz258OzdvXVm74P1wnuLStRkEgAAQKKL9Eh4WRXG2s3l4399wL3hD3YOazfcVtMtWg1/K2ixwmSbH+9NqhUehBdiWeDBnkaw6cFO7ezz/eYmgrUrK1K05omCom2/z74fq+kfvOmPdBzCFef42mc++diDboFPpBqhQVZoY0EDf3tirdumW6GGX2vUhrJu7qCi2fdlzUTY0xh+QYsNNh6p+Qir1eo3h+F/f0CQ/U7sHGoFufabDQZU4zmHWEfckebbNJsXFKnGb3jBoZ+e42VPO4U3hWbCfyP2GfZZJtY++4o6x5ni7HtR7EkLC7D6ta2DzQ6Zkh4nuxYVVdu6LPcjmmjfU1HCa59b80DW70tRSpuufPYEg9/fgD/YNvns+mXNCVkexz4v2B9A+LzisPfa9dOC8OFps7Tsum75Lz/PVNInFsIFrzf2BEe8HRzHE8gCqoIqFwSYtXC9W+B+y8VH6TZnsCaBWh5Q1601H021alLbA5PVtGFt/bL1V+Xm5mvq/Cxtdl7/c+x8pV8ZKkT//V9DNVOsSZ/wQvVdzuqttr8vx/k8W0+T/WupZlJSXOubvzTbXb6Gc9QPOyhZx3RsWmjocHBDN9CwbUeenhg9R+O//kk3De6kP156tPavV9Ndl+/gFvX3CCLYtEhqJlVXe+fz8nbma0N2jjcVAABg32M3+NaEQqQ26Bs1dPKLXiFDWRfGWkGNFdj4tfeM1XCL9qRBsI3f8OZx/HVFuykNFqRYQbffXnF44aoVZlshhNXs9AsO/EIoK4iIVOhUUnZco9WMbNyoYdSCl1jbH008312s4xtNsOmisuQXalhTB/E0d1DZ2VMNdpyCgRAbbNymx9tBMBBk5z0LqFlasmZI7LwQqUZ6JFYgG+mcb9PiKay1wsJgWvaH0gasrEA90nr9c1JJ9jm8f5PS7ns42zbbHqtxbdeOYHMr5XWcTFnvR7wiVRAIsgCE3xZ/cIjVBJ2vrI5XeODZH4JBc/tv435/CNaHhn99D84rLnuCzio4uM0C7djuTS0bdg23wPG3s+fGrDBRUjffEHoKMFYHx/YbtCdLwpuOAqqqKhcE2JqT5/6vVTPULI4VzM/+Yb37hIDP2uQPFtjb6+9+3Kh1m3bo4JYN3CZ1jjikkdtcTnD4ba9Ud/m0tqF5VmDvmzb/Z/28MXRSs/VNnZulRSuy1bFNI9WJc30tm9RVm1b7a+nqLZo0e02hbfxx1WZn/aEbwq9mr9UHk1fo2vOO0MC+bdxC/HANG9TaI4hg08zmbbmF1m1PPvyUtdVtFqhx8u59AgAA2Nf4zS2EN0titcw2bsouKDgp68JYv6ZjsOZmtCcNrJDHatZZMzfRChGsoD/8ptQv/PYLK+wG3wq6rbAmUk1/mxZeaGCFAFZTzgon4inEiJcffAkvALbx5OT9IzbTUNT2R1NUjcF4jm8k8dQ4Lgm/NuV773/sDkU1d1CZWTqP1MyJsXGbbvP9QBhQElZ4Z+epYLM50YJLsZpzsWnhTbKEs4LIsi4A9AsWi/NbCO6zL9J22bXNrl12Ti3tvsdi52QLYviB7dIcp6KOR3nuR5A15eZfP3x+czuRzvv2mbHSXixlla7861z4dkdjx9r6XbCAbHhQpSTXHXuP32/Cq/8d600N8c/54fkt4+dXYgXrLf9l362tNzv7l4j96pSGv+0WaIgVXPM/N7yvBqAqqnJBgNTmDdzmfp5+a77bXv7IMd/p/a9WqFGgwH752i26+anJGvm/7/Ts29/rthFT3Hb1WzStqz5dW7rLWIe81lxOcMjwCu07tQ81pXNgoA+AX7bm6tYRX7vrfPTlWRr+8my3WR9bnz1pEM/6UlvU18k9D3TfN+K17/SnZ6frk6kr9eSrczTs71O0dUeufs3L19dz1rrv+35Ztp5753t3H/zh85mr3HmxjB7/g64bPkn/fnO+O1z76CS9OG6h26yQNRNkrP+BR174Vhfd86nbH4H5fukmnX7Th24TRPZkhQUSRn+4SCf+4T19+W18PcUDAABUZnbTZ4WsVtPdv+mzm9Fgu/h+QWZ4u8LxssLrd9790BsL8Ts99Nuzj3UDbDfMVuszVgG1f1MarMFmr+2G2y8wt4IJu4EubSDDjlOw+YCS8Au6g80G2P8XX3mjoGNEG7enD/wmJuLZftumTyZ87o2FttWaQQj2cWDrCz7VEM/xtfUEm7qwz7G2ucurrX77Pi0IZUNpmzvYm2K13W1senj73UBRws+pfjqzgKd/Tg9vq95qD9v7os2313Y+CnbMGomdf6xQPbzNdKv57J9TSsJ+83ZNsI7DfbZ+q1lv55tY++yzQuvgNcD2ya5tfiCxtPseZNv29LMvFRwD/zrpB7ZLe5wiHQ///F6W+1GUYPMw9t/Go10vom2X7a/tt88PggcL3csqXfnXVguYB99n2+Nfw+x1cPuCgY3weSVhx8Y6IrbvIvypDOvg3grZg9dT21/b76IqWvjH19Z7eMf2Bdf0smTbbt9vrGaB7HOtOUDbjvB+gey1/5sFqoIqFwQ4vE1DXXdemtu+/4jX5io/X26TOf6TAaZe7ZqqXTNJb3z8o557d4G+X7pRF/+2nUbdnl6oc9/iOOGYlrr0t+318ZSVGpe5XMempegv1/Yo9vps+cdv6Kk+XVu4/RPc++9pmr14g644s6NaHVBP+Tt3FXTe+/6k5e72Bwd7oqEo9lSCNVX0yoc/6IVxC93ggjWddOslR6lu7SRvKQAAgH2TFZJb7XK/HV9rb9kKjf3CcytsKU2tM7vhH/X0CwVN7NhghSXBzmHtJjzWDbAV5ATf7w9+0wu2HmvH1wIJ/jwT3oxApDaHbYing1uf1bSM1mFjcVgzElZQ4LddfMHFV+mp4X+OWagez/YPf+qfBdP9Jn6KenKgqONrrGDHn+73HVAWzVpEYsfWjnFZN3dQ0ezpFqthGi2QYendAjvBvjGAeNz34KMFv0e/iTD/d27/7Xdvv39/mWF3/bngya5I863Q7+MPxhQZ1LOCSGub3wTPRVu2bC3yvbFEOofb+u0pL/8cEGufjT2xZcv7y0Q6/5Vm38PN+HZOwTGw/xYA8M+JpT1Ots92jbQnC/z3/j979wEoRXX2f/yh994ERMGGYkElQhQTe39tUWM3sUSjhsQWE//x1ZhX4xujUeMbTTSJxhoTSyyoEbuigoJIFBQLTZAOl97u5X9/Z/cs5w4zu3Pbcsv3g+PenZ2dOVN2ynOazrtt2mZqidXkeiRRszq6F1BTOX75hc77Sld4P6FB17YjDjs4O0Vm3TQfP42C7jV5XEWvrRq0bcJ7mDB92oZhTbjws6pSs0CqqRKlZUQ77/fHTpq+jnQtOfmk41xmQhrhumhI06yhL5wRzZAJaT1Gv5bpADncX/pb6vN1G41Lkw2q01oJM+eWWL9enbLvkmm2GkpLS21G5ZsWQwO2Vfl5slmzZi43XAMAAEBd4gPBtRXw1UPmZVde42oapG2PfnPxaVVpvDCwBADYfGr7OtXYKDCvwLkyZgjoAmio6l1NAAAAAKC2qMTYW2+PTV3qrCrUIa+aPahqTYNiUqeIUp+bqAGA2qJgfFjyOByq28xKQ8J2AoDNj5oAKDpqAgAAAAAAUDXUBKhZ1AQA0BgUpSYAcV54HAsAAAAAAAAAUDy1XhOgrKzMZn9VZuvWEf2FWYsWG6zPlk2tadOm1AQAAAAAAAAAgFpWazUBwuBu23bZP9DohccCGQAAAAAAAAAAULtqtTkgX9K7Y6dMCXA0bjoGdCz44wIAAAAAAAAAULtqvU8ABXvV9Eu3HhvICGjEtO91DPhmgAAAAAAAAAAAta8oNQE0tGzZ1Hr1VknwMhcQJg7c8GkfZ0r/l7l9r2MgPCYAAAAAAAAAALWr1joG9vzs1UGw7yhYr5VcLOopH/D3NQD06scDAAAAAAAAAGpXrWcCiF+ED/6H79Fw+UC/zwgI3wMAAAAAAAAAal9RMgG8cFFkADQOYcCf4D8AAAAAAAAAFFdRMwFCZAI0DgT+AQAAAAAAAGDz2WyZAAAAAAAAAAAAoHZlemkFAAAAAAAAAAANDpkAAAAAAAAAAAA0UGQCAAAAAAAAAADQQFWpTwAAAAAAAAAAAFD30TEwAAAAAAAAAAANFM0BAQAAAAAAAADQQJEJAAAAAAAAAABAA0UmAAAAAAAAAAAADRSZAAAAAAAAAAAANFBkAgAAAAAAAAAA0ECRCQAAAAAAAAAAQAPVZEO57N+pzJxbYv16dcq+q7pKLhb1VJMmTbJ/AQAAAAAAAACKraiZAOGiyARoHMJMADIEAAAAAAAAAKC4ipIJ4Beh1yWLy2zF8g22bp3eu9FooBTzb9HCrF37Jta5S9NcJgCZAQAAAAAAAABQHLXeJ4DPAFi7tsxmzSy1xYs2lP9NBkBjoH2sfa19rn2vYyAznp0PAAAAAAAAAMVQlI6By8rKbN6cMhcQRuOkfa9jQMcCAAAAAAAAAKA4ajUTQCW+NZQsyZT+R+OmY0DHgj8uAAAAAAAAAAC1qyjNAakPAEB0LJABAAAAAAAAAADFUZSaAOoEGJBMh9BkBAAAAAAAAABAMdRaJkAY5CXeCy88FsgIAAAAAAAAAIDaVZTmgIAQxwQAAAAAAAAAFEetZwIAAAAAAAAAAIDNg0yABmT6nOV21R/G2H4XPGMX3/SWLVtBZwwAAAAAAKDyRr8z1vYcdpB9OuWL7JhklZkWAFB8dToTYOHSNXbfs1PsjGtesWlfL8uOrUgtyzzw3BQbft5TdufjH2fHbkoB8UtvfcdNN2HKwuzYjDTLiTP+kwVungf88BkXeB9x82h7f9L8SLv35sbpM01zzGUv2EPPf25r1pVmp9hUvrQm0TrcdP8E+2DKIjtuv/42ZMce2U8AAAAaJwUkjjjmVFu4aHF2zEYKUihY0azNFm64/sbfZT/Z1KpVq+3CEVfGTvPw3x93n2makJbt560hKR2ePtM0mp9oWeH345bt05VvGZpfOJ+4tIb8dsm3PQpJ2iYS3S5+fZOkSb/fdn6aQtta0mzf6DQaCm2/aHo1RINifhunPSbSrE9d5beH9nucuG0cXV+/vZLmAdQ0HXOHH31Khd9tTfDn7ELnPaAu8ufzpPuD6O/GX8Pynf/DeRWav+fvI8Lp/HXCX0f8EF5PNH308+j1WTRd2nsYDfX5Gl3XaPum3Z7RfRF3Xi3mNPVFncwEmDK9xL533asuYH7PvybbqjXJAfPZC1bYv9/9Kvsu2fuT57ugfagyy4mjeXZu39LOOGIHO/pbW9lnM5fa1X963z78bGPg/vXxX9tPf/+uzVu0yk4+dBvbtl8nl1nx4HOfW2lZfNv4cWkt5Kt5y+2jLxbb0ftuZZecuqudc8xA69CuRfZTAACAxsM/6H37wGOyYyrSA9+pZ55vd9x2o5WummPzZk0uv8F/L/GmfsbMWTZ12gw76YRj3XsfyNEyzjz7YjcuavLkKW6+mr+G4XvvZWd8/6LEB5tPPv3MvR526IHuYWObAVvnvuvTFz7wKg2XXXmN9e2zRYVlXH3tjbkHV63nvPkLcp8vXzTNjdf34h5u5Z+PP2UfTkwuWJMkzTbReo245Cqb9OFolx693nzrnW58nDTp1/bUdj3ztBNz0+nvfNs6zfb1Hrj3D7npNNx1x03Wpk3r7KfxDj3kgAr7/opLL3LHWzTQ8OKoV3P7PY4+0zT1lfbRm6PH2HdPPNYefPixxGPu/PPOcvvWb69CvxUAxTN876E2fszLNnCHbbNjklVmWtRf1/7qpsTrdk3Q9Tjf+f/V197K/rWpN155Onct0fD8049Yt65dsp9uer1Juj5H+Xuc62+8tcL1XfPSNQvVU+i+PSrN/WQxp6lP6mQmwKq1661ju5Z2w4VDbf8hvbNjN6Ug+rNvzbCps/OX3p+/ZJX946UvbH1pWXZMRtrlJDn32B3t2h8MKX8daFecMdh+cfYetmzFWntv0jz3uUr0P/HaVOvfp4PdccVwu+iEncuXtZcdsXc/e+bN6TZ11qbpTkprIRvKJ9d3mpTv0SZNsiMBAAAaGT04Tpo8xd2k62EwjgLd3znuKBewED0gXn3VpfbAw4/FPniOGz/B9t1naC6woUyBkpKl7kFQQeI4551zRoUHzwsvONu9JgV99VCr4LW+o3SddsoJ2U82pi98MB4/YaJNmz4zN1/R3xqnz0TpvWTEBe5vUfBa75WhoXWI0kPwW2+PtUMO3j87Jr1C20QP0AoE64Hbb0e96n1SgDhN+v/94ivWf+t+dvyxR7n3or81Lmlbp9m+Ss+s2XPc39Wl9AwbOsQdd17Pnj3yrrvfXgqg11f+mPjRRecmHnNx/DGtfQsAqDsURNe1S8HwfIH6qjr5pOOsS+dOief/6tynxPHXZ93nJdH12Be6iGYq6L7k6qsuqzAOlZPmvj3k74/y3U8Wc5r6pk5mAgzevpsLmn9zl57Wsnmz7NhNffDJAnvx3a9cqfckyih4+vUZ1rpVcxd8DxVajpryUW2BX9w11jX5o+Z51Nb+nIUr3efNmlaMtrdpmZlHp/Yt3evCpeUPD/NW2G7bdbNunTMlhtq2bm4H7tXHBfsnTa140syX1nxUs0DpEjU1FDaNVGgdAAAAGhI9iD18/x9zN+tRethQsPeA/ffNjsno3q2bzZ07b5PAsaZX5kA4veatZVTmoW/BgkXl92Ub3HKi/EPtkD13z47ZlL6n72s+okwDlT4L09C2TRsX/M5XSq57967WpEkTW7CwYpOTepC57Y4/2RWXXGgD+m+VHZteoW2iALACwdF13Lo8vWPGjnOfazuoan6+atbR9H85dbp7MA9L5+tvjfPbQfOLq/Ifim7fmuTTE5o3b75tt+0At+4+0ybkM3lO/e7x2TH1j4Iqg3bawWW6KBMtX5Al5I9jIErnYzUVoRKjGqK/a38Oyfe5miuZMPGjXM0lDWHTHyqROmjwcBv10mvuVZ9HS4X674Wf+bRFaxTpvcY/9++XrX3X/nb3n+93taX03bjaR1GaRkN03cLzpNKuddA4TRudd1KaQ/puOI3/vqaNNs/hl+EHn5a4aSU673B7i//elM++cK9+unAdUDfounTu2ae7v+/6073utSYtXlJiQ/faI7FQhjLTdT3RUCxxhS5Qcwrdt0eluZ8s5jT1TZ3uEyCfBSWr7d5nP7XD997SBm+36cOUp4yCZ9+cbqcftp117dwqOzadcZPn249/97aN+2ShHbXvVnbO0TvaNn062rr1FUvpK9A+e/5K+9cb06xfr/Y2bJde2U/itW2daabnq/nL3atX1bTuvE0XO3J45mFt1227uHRqnKRdBwAAgMYgKRiv4HKvXj1tevmDXkiZAgpI7rn7btkxlecD7GFtglC0pkEcBb0V/FY6NT+VUleTNiEfbNZnYYAllLT+Tz410n13+D7DsmNqVpj+kE9HNFMiSVz6k9Y333aIiqZv5apV7qFfD3rVlbS/Bg0a6GqkxGXa5DJ5IturvlDwJsw802tSUCeqJrc9Gg4FwQ854sQKTX/99Z7bs59mAs1q1uORB+7Ofa7SmtGmPpQBd84PfuJqFfmmHRTM0TlQVKpX41TSWK+axtca0zKizULovYLYCmTddvP19sS/RuaC7FquMng1/sjDDnJNh6gktW9mTMtKQ/P4630P2ejXRuaWq+YofPDde2bki7mmzvy886XZU7Bdv0/fzInSudsug7KfVqT56Xzmm1TR/Nq3a5f9tCKd+xTwV7Ngfnq9SrRZOjV99pPLr7YH77vTTacSwbXd7Ayqplu3rq72nI718LdVU448/GD3GlcoI64QR3Wkud7EFbrA5pPmfrKY09Q39TITQCXmVeK9rPz1uP37W/Pm8auhdvj/8NjHdvjwfrbHjt2zY9NRSf27npjk2vy/62f7uuZ+1OzP5Wfs5gL9UrJ8jf3g12/Yvj94yk66apR1ad/K/u/K4bb1FpnP27Zpbh3atrCJny+0hUsyFzilfczHmeaCQtVJ63579LGjspkAu+3QzaVT49KsAwAAAOJLHytAoeq+3xo+rEJJ8zT0sOpLNA7f/ygXcIoL+ESDpXE0jare++aC8okGmkNan7jMCAVZlIbNUcpND1bKfBGlSe1Jh031hOLSr34awgCeKEil4JGn+eVrpzrf9lX7tNUtlXrLbXe6IIP6e4hS+hXgCwMpPnDo+6Coj3zwZseB21d4TWqiydM+Vr8W1c14Q8Pif/vKNAvPD7vvtov7XfvzaNhkg2hafSdsikuiTTtoGgWqtZwkccvQa9gshJ+X3mt6pfms00/KTV9VCkJdecWI3HXIL1fp0XK8zp07VWgaLU2adf5XMFcZFf78p+Ucc/Th7u+Qptd2Cq+Jml/ctKIS1Do/6/rnp9fr9ddd5c6J0VpQCiz7NOj3rwyTfDXbsPkoY0zHuo7xfL+bqlAmg67H0eZWfPN/+a4N4TU7zXVbtRnyzVPLj8vER90T3k8mKeY0dVW9ywRQqfsX3plpo8Z+Zeces6P16Nwm+0lFK1evt7ufnOya3znhwAGbNN1TyPTZy+2TaUvsiH36Wf/eHbJjK2rRvLkdvFdfV7r+0GFb2rNvTbdLbnnbps5e6j7v0amNHbRXH5syo8RG3DzaNdFz3Z/H25OvZXK/veqmNUmadQAAAEC8pGrAaSiQobZjVaJRpTf1oBzXJE00WBqlII46SdVDahjcqSw9yKrkpQIvYbBf81cAPAy+1EVJ6VcASiV/VSrWP/SriaCkvhqikrZvuP80qISsSiBGm7GIoxKtPfvulEuPAghPPHpv7Pbdql9f1/xS2FSOb+7AB+3qo2jJSb3qfVxAT82jqJkUbSu9qkZKmg6Y0Xj40rpJmaU6j6o5t7hztYJ3YX8f6o8jOp2m0fy1nCRJy1AJ4vC7Oj/pvYKLeo3L/KssnZ+UUR1SOqJNmOm3E/5u0qRZtd/UJrrORYVo3soAUHNGaUro6/ceN++4puvUoXp4HdSyCtVsw+blj/UwE76m6JjV/ZdvbsVnaJ1x2ol5rw3RjoGjhS/C640GnVO43qAxqXeZAGre5o5/fGwnH7yNDdmpR3ZsRSpt/8i/v7C3Js61C0/c2bp3qvwPeu7izEW8e+fW1iQhJt+2dTM7+ZBtXel6dRB818+/ZctXrrc/P/WpC+zre6ccup0reb92fZn9c9SX1q1jK/v5mYPd97feokPqtK5eU2rX3TPOtenvB73X+CRp1gEAAADxVcJrKhirh8vf3fSrTTqHVWBDJd2SSvgryKJgsj5P+5Aa10a+Mh5UG0Hjw07ttHyVutb8fXMXxZbUPFEoKf2e9o9K+ocP/XHbIaoy21fLVElZlWqNa8M/pGCWb1ZDQ755a7yCGr5Er4aabu6g2LS/VLJYtTF8oEWD3sc1H6HSvr6pEL//gFCa84RKZap0ZlRNNiv14cSPc/0E+EElj0M6VyhTVcd7TWWuFjqXeXGllQulOc25MqTaFcpk9SWuo00SRcXNW+81HvWbjm1dP5UJHz2vV5eu67r/8vdMhQpMpBVeb6675kpXCMJnEOaj3wnqtjTXiWJOU1fVu0yAsZPn2bIVa+2PT0x2zfD4jm7Fd4r77n/m2rsfz3XTXfDrN3JBc30uml7N+Kg5nyTtWjV3rytWrXOvafTu3sZ6dG1t8xavsnXrM8H5Fs2b2nf2H2BP3nSovfrHo+0np+xii5atcRkIA3p3sOUr16ZK68o161yGw+2XD88Net+iRfIurMo6AAAANGQKEqlphbh2PLt07pS7oa/pYKwPeoSlGvPVNAjbcY42j+PnlfRQGgaCFOhWAOiO227cJLiqYHbYSaUG33GlAlhxNReqSttVD0x6cIrq2qVzbPBO8qU/SZp9l2/7Jqmt6t8+qKGmDtI0d1DXqVaDtlOYEaJB7zU+bQfBQGWoxHvc+SXaz0t1RDP4/BBmTur8o8Did088dpPmTGpSUlvVUWnSXFk6Z2oeKnWt60e+JlfiSvLrvcaj/lMNOhVwcM0CrU6uSVMVuoYr41gdeecrMFFVl1+SqQWYr4Nj3W+p9ktYmwibV5r7yWJOU9/Uu0wAdXir5nfCIdoprpoI8s30hIM+F02vz9WcT5Ltt+7k2s1/9f3Zrr3+qDXrSl3p/tDCpWttUcka69mlTfm8m2XHVjR19jL7x0tf2r6De9s2fTtWaFIoX1pbt2xhO/bvbN/YqXtu0Pt8TQcVWgcAAIDGJq4ZAlEps8VLSnI39DUdjPVBj7BUZFJNAwW+VbJOzdwk1UKINnEhPvjtS74qgK9AtwI1cSX9NS4aGFIJOZWUUwm5fO3oV5a2qwJW0QCw3nfq1HGTpi6kUPqTFCoxmGb7xtFDoB4G9VBYk3xpymefG+WGQs0d1GU6ztVmeFwninqv8YXaXgei4prNCum3rgymuMxdZZbWRKee/nzizy9JfBvjv/3fX9ZYUylxAUhdw7ScuHOnlybNCrRWNcCp87JqBSQ12aN5+2aHQr7mXU1lsmPz0bVKfT6oltwjf38iOzbDn/Oj91vi71fyHQO6/1IGg+ZbUrK0RprWCvm0K6NB9wVJ/HJ1X4jNL839ZDGnqW/qXSaAOrxV8zvhEO0Ud4etO+Wa6QkHfS6aXp+rNH6SPt3b2ZlHbm+Tpi6xC/73Tfv9ox/ZX5761G55cKLNnLvcvl6w0s6/4Q33XuNvfvBDu+g3b9mK1evt+P36u/b9RQH4cJoLy6eRs47awVq3alahSaGqpjVJoXXQcMY1r9j//m1CrlmhR0d9aYf86Fl7bdzX7v2yFevsyjvG2DnXv25zFq504wAAAOorPfQpyKqS7v6hTw+jYbv4PpBZlQ6BRcHrp595IfsuQ4EgBT18e/b5HoD1wKwO9/IFqP1DaViCTX/rgdsHzPWQogfo6mZkaDupk+OqBIk8bddoswF6vf+hf+Y6jdR71T7wzUukSb/S9NLLr2ffZdKqZirCZjg0v7BWQ5rtq/mEzVxoOZdccXWttdWv/alMKA1JmRf1gWq3KBiUFNjReH3u23kG0vDn7Whb9CohrN+1P78o09D/zkW/YZ1nw35E0vCBnzBTIWkZ4blCfyugqHPaln17u/NQeM7TeuSrxZVE/YyE53otR9ewQhmGadKs86syE9Q0nA/k6zV6DRONv+cvD1SYTtfKMHM7lDRvvQ+vVajfdE1UZ9M61ufNm58dm6EO7vWbCK+n/hgoVNDC/+4130E77ZC7ptckpV33A/maBdJy1Ryg0hHtF0h/qyZMde6PkJ+2re5BfY0jf17Ldz9ZzGnqm3qXCVAs5dd8O2LvfvabEcOsS8dW9uioL+zB56fYspVrXfC+S4eWttv2Xe318bPtr898Yi+9N9u+uXMPu+tnw+0bgzb2VdCyRVMb98n83DQHDOltt122tw3oU/sd9RZaBwAAgMZIgQeVLvdtGqtdeAVrfEBCAcrqlDpTAOmue/6Wa2JHgwIlYeewKpmZ7wFYAZ7w+34IH4IevO9OF+Dyn0mhTvD8kKaDW0/NadRESVo1IaFAgW+f+tQzz7fbb7khb1A9Tfpvuf2PufEKdqmJn0LBpULbV8JmknzfAbXVXr22rbaxllHd7bw5qXaLSmQnZWToeI/2jQGkod+0ftv6jfvf5VVX3+DOt6Lzi5oNC9u/j55309L0+i36a4TPeIiewzQoeKhrhQJDSluYweiPd9dUSvZ85YOime8mN6MTUs0s1f7yy0x7npN8aRYFsdRviQL5/lyr1+UrVrjPo8ZP+E+F6fS9pPNi0ryVwV5b51JsHmoWSLUIo/RbiHbe74+bNH0d6Vpy8knHud9NGv4364c0zRr6TMIwsypK6zH6tUytHn8s+3WR+nzdro/S3E8Wc5r6pMkG1WmthJlzS6xfr07Zd8k0Ww2lpaU2Y1p2JFBuq/LzZLNmzVzpCg0AAAB1iQ/M1FaQQg+Zl115jQuE6OGiLvNpVWm8NAEnAEDNqe3rEQCg8aAmAAAAAJClEmNvvT02damzqlCHvGoaqKo1DYrJt+Vcn5uoAYC6yDdzodKl0aG6TbABABBFTQAUHTUBAAAAAADIj5oAAICaUpSaAMR54XEsAAAAAAAAAEDx1HpNgLKyMpv9VZmtW0f0F2YtWmywPls2taZNm1ITAAAAAAAAAABqWa3VBAiDu23bZf9AoxceC2QAAAAAAAAAAEDtqtXmgHxJ746dMiXA0bjpGNCx4I8LAAAAAAAAAEDtqvU+ARTsVdMv3XpsICOgEdO+1zHgmwECAAAAAAAAANS+otQE0NCyZVPr1VslwctcQJg4cMOnfZwp/V/m9r2OgfCYAAAAAAAAAADUrlrrGNjzs1cHwb6jYL1WcrGop3zA39cA0KsfDwAAAAAAAACoXbWeCSB+ET74H75Hw+UD/T4jIHwPAAAAAAAAAKh9RckE8MJFkQHQOIQBf4L/AAAAAAAAAFBcRc0ECJEJ0DgQ+AcAAAAAAACAzWezZQIAAAAAAAAAAIDalemlFQAAAAAAAAAANDhkAgAAAAAAAAAA0ECRCQAAAAAAAAAAQANVpT4BAAAAAAAAAABA3UfHwAAAAAAAAAAANFA0BwQAAAAAAAAAQANFJgAAAAAAAAAAAA0UmQAAAAAAAAAAADRQZAIAAAAAAAAAANBAkQkAAAAAAAAAAEADRSYAAAAAAAAAAAANVJMN5bJ/pzJzbon169Up+67qKrlY1FNNmjTJ/gUAAAAAAAAAKLaiZgKEiyIToHEIMwHIEAAAAAAAAACA4ipKJoBfhF6XLC6zFcs32Lp1eu9Go4FSzL9FC7N27ZtY5y5Nc5kAZAYAAAAAAAAAQHHUep8APgNg7doymzWz1BYv2lD+NxkAjYH2sfa19rn2vY6BzHh2PgAAAAAAAAAUQ1E6Bi4rK7N5c8pcQBiNk/a9jgEdCwAAAAAAAACA4qjVTACV+NZQsiRT+h+Nm44BHQv+uAAAAAAAAAAA1K6iNAekPgAA0bFABgAAAAAAAAAAFEdRagKoE2BAMh1CkxEAAAAAAAAAAMVQa5kAYZCXeC+88FggIwAAAAAAAAAAaldRmgMCQhwTAAAAAAAAAFActZ4JAAAAAAAAAAAANg8yAfIYOXqGDT/vKfea1oQpC9137nz84+yYypn29TI74Wej7Lp7xtnqNaXZsZtKO52ULF9jP/j1G27Q3wAAAAAAAHXJqlWr7cIRV9rDf388OwYAUFPqbCaAWox5f9J8G3HzaNvvgmfsmMtesIee/9zWrNsY8FbwW0FwBd3DQcFxBclrkg+kR5flBwLsAAAAdcvod8baEcecagsXLc6O2ejTKV/YnsMOsmZttnDD9Tf+LvvJpnxQIm4aBSr0maYJadl+3hqS0uHpM03jAx9aVvj9uGX7dOVbhuYXzicurSG/XfJtj0KStolEt0uhQE+a9Ptt56cptK0lzfaNTqOh0PaLpleDtqe2q+e3cdpjIs361FV+e2i/x4nbxtH19dsraR4ANtJvKu58Vl21NV/UH/58nnQc6Fx9+NGn5K53/hqW7/wfzqvQ/D1/HxFO568T/jrih/B6oumjn0evz6Lp0t7DaKjP1+i6RtuX7Vm76mwmwOvjv7af/v5dm7dolZ186Da2bb9OrnT9g899bqVlFduU79G5jZ122HZ2ztE7uuHYb29t7do0z35aM1o0b24H79U3tww/HDl8K/f59uXpa9u6hfsbAAAAm49/0Pv2gcdkx1SkB75Tzzzf7rjtRitdNcfmzZpc/uDxnnsAjTNj5iybOm2GnXTCse69Hgz1gKhlnHn2xW5c1OTJU9x8NX8Nw/fey874/kWJDzaffPqZez3s0APdQ9A2A7bOfdenL3zgVRouu/Ia69tniwrLuPraG3MPrlrPefMX5D5fvmiaG6/vJQWy//n4U/bhxMrXaE2zTbReIy65yiZ9ONqlR68333qnGx8nTfq1PbVdzzztxNx0+jvftk6zfb0H7v1DbjoNd91xk7Vp0zr7abxDDzmgwr6/4tKL3PEWDTS8OOrV3H6Po880TX2lffTm6DH23ROPtQcffizxmDv/vLPcvvXbq9BvBQCw+Vz7q5sSr9s1QdfjfOf/V197K/vXpt545enctUTD808/Yt26dsl+uun1Jun6HOXvca6/8dYK13fNS9csVE+h+3bUnDqZCbBsxTp74rWp1r9PB7vjiuF20Qk72w0X7mVH7N3Pnnlzuk2dlSnlv6H8X+kGsx37d7Kzj97Rzj12oBvOOmoHlzFQk9q2bmYnH7Jtbhkavn/0DtaxbUu3rOO+3d9aNKd1JQAAgM1JD46TJk9xAWY9DMZRoPs7xx1V/uA21L3XA+LVV11qDzz8WOyD57jxE2zffYbawB22de+VKVBSstQ9CCpIHOe8c86o8OB54QVnu9ekoK8eahW81neUrtNOOSH7ycb0hQ/G4ydMtGnTZ+bmK/pb4/SZKL2XjLjA/S0KXuu9MjS0DlF6CH7r7bF2yMH7Z8ekV2ib6AFagWA9cPvtqFe9TwoQp0n/v198xfpv3c+OP/Yo9170t8Ylbes021fpmTV7jvu7upSeYUOHuOPO69mzR95199tLAfT6yh8TP7ro3MRjLo4/prVvAQB1h4LounYpGJ4vUF9VJ590nHXp3Cnx/F+d+5Q4/vqs+7wkuh77QhfRTAXdl1x91WUVxqFy0ty3o+bUyaj1wqXlN93zVthu23Wzbp0zJW3atm5uB+7Vx+YvWWWTpmZONmvXldrXC1ZYm1bNrWkTNyrWZzNL7L//9L4d/pPnXdM9p/ziZXv+nZkVahQsXbHOfv/oR24aDX94bJItX7ku+2k8ZUa8/N4sO+AbfWzbfh2zYzf6dNoS+/Etb7tlnnXtqzbmo3mumSNPy1c6lB41eXTpre/YtNnLs59ulHa6NJYsX2e3//0jO+CHz7j1fOC5KRWaWAIAAKjP9CD28P1/zAWao/SwoWDvAfvvmx2T0b1bN5s7d94mgWNNr8yBcHrNW8uozEPfggWLyu8DN7jlRPmH2iF77p4dsyl9T9/XfESZBip9FqahbZs2Lvidr5Rc9+5drUmTJrZg4cLsmAw95N52x5/siksutAH9MzVdK6PQNlEAWIHg6DpuXZ7eMWPHuc+1HVQ1P6lGhkTT/+XU6e7BPCydr781zm8HzS+uyn8oun1rkk9PaN68+bbdtgPcuvtMm5DP5Dn1u8dnx9Q/CqoM2mkHl+miTLR8QZaQP46BkM7FaiZCpUU1RH/Tlf1cQ1iaWedAlfTV+cKXSg1rB/lxGqrSXEX4fQ3hea5Q2kTf16DxcdP586dKaWvQZ2GTJv5z/71w+ZpvdJ38ch75x5N555tE39c89arvh/sjX1qSJH3H7zetQ5TfZhL9fpge8emd8tkXFfZF3Hyj84puO30n6bP6Ttelc88+3f1915/uda81afGSEhu61x6JhTKUma7riYZiiSt0gZpT6L4dNateFV33ze18Nb9yAfBX3p/tHhZ+evqudu0PhliHdi3sf++bYGMnzXOfq+bBtXe/b4+/MtWG7tzTTjpwG/t8Zon9+anJ7vM4LjD/9kxbva7UDhra15pFciEmTllkv//HR66WwkkHbWNLlq2xa+8ZZx9+lnlgUWbAwy98Ztf/ZbxLz+mHb2e9u7e1/71/gi1YsvGCmna6NBaVrLGbH/zQBf1PPWw769ernf3xicn2UPn8o00sAQAANERJwXgFl3v16mnTyx/0QsoUUEByz913y46pPB9gD2sThKI1DeIo6K37WaVT81MpdTVpE/LBZn2WFKBJWv8nnxrpvjt8n2HZMTUrTH/IpyOaKZEkLv1J65tvO0RF07dy1Sr30K9MiupK2l+DBg10NVLiMm1ymTyR7VVfKHgTZp7pNSmoE1WT2x4Ng35DauosbPbrl1f/NPtpJih7yBEnVvj8r/fcnv00E+Dt2XcnV+PHf64Sp2p6Qp+Fnhn5Yq65MJXw1bIVZNZv2DcjUqjJsVDc91VjqmeP7u7zyqRNQXidG/x0112TaZ5E6dD1Y/yYl904DfrcN1+m+QwaPLxCE3j6PfpA+uWXXOSucz6oqzSrJpJqdSkjMmm+hShjXfMZ9fxjbh5KY6G0xMn3HaXjW8OHlU9TsQkZ/R1m+D//75fskQfudt/XoNLsl1xxdYXvqPm1n1x+tT14351uGu0HbfNwP0TTouHyn/zQfVbdY6W+6Natqzten/jXyAoZKTXlyMMPdq9xhTLiCnFUR5rrTe56XImCH0BdVSczAdq2aW4d2rawiZ8vtIXZQLeC1GM+zgTtvZWrS8t/tOvsxTFf2UEXP+tKtyuYP3v+yuwUGeov4LofDLGDhm5phw7b0n588q7WskUT++jzTEkfzXds+XDa4dvZteft6Zr6ufGioXZw+fRJ5ixcaaMnzrFv776FDdyqU3bsRvPL0335GYNdU0aXnLqr/eKcPa20tNT+/e5MW7++zGYvWGEjR8+03bbrar++aC87//id7Kfl019xesUHzLTTpaE0H/bNLd33NR/NT/N9eews1/cCAABAYxVX+tgHQhRgSBPwCOlh1ZcmHL7/Ua4ZGwWUojRdGCyNo2kU6PHNBeUTDTSHtD5xmREKaigNm6OUm898ER/ECpvqCcWlX/00qDS9MjE8BYYUuPE0Px+AipNv+yoQ50t0xpUITeOW2+50QQb19xCl9KsWSBhI0d8a5/ugqI988GbHgdtXeE1qosnTPlawt7oZb2hY4moSHXP04e437c8LylALzx2777ZL7nOdxxXA9k3Aif5WkFufaRqvc+dOFZoXUylgnWN0DvfXAd/kWJomq3Ru0u//+uuuyn1f55mDD9qv0mlTfyPheVrniLgabKG4ZWj5CuLqvK/zn9J1Rvn5zwd1/fk03A5Vof5lNF9/Xk2Tlqg039FxEd0O0XOQ9l94DfDn4+i203x9enUOUvM3PqPWXyu0b8L9pX2p71T3WKlPtP76zem3Fx6jNUGZDLoeR49/3/xfvmtDeM1Oc91Wxle+eWr5cZn4QH1VJzMBenRqYwft1cemzCixETePdh0CX/fn8fbka5nOwLzmzZvYYd/s5zroPf2I7WzAlh3tpbGz7LLb3rHpczbWFmjerIm9MWG2a+7nhze+4TocVgbCutIyV9L+0+lLrEvHVnbAkD65Ev2tWzWzXbZNLnmjpn1mzl1u+w/pHdsXwL6Dt7Ctt2iffZfpt6B/n442bfYyW7Wm1L6ev9J9X00J+f4LmpQvert+Ha17tgkkSTtdGuq8eOguPd33RfPbdfuu9tW8lTZvCZkAAAAAoaQmbNJQQEBtx6ok4OjXRroH5WjzAxINVEQp6KBShHpIrU5ARg+yatNWwagwiOSDGmHgoy5KSr+COirdqQ6G/UO/mgiK65cgTtL2DfefBpU8VQnENM1gqDSpSvb69CiA8MSj98Zu36369XXNL4VN5fjmDpIyLeqDaMlJveq9D6aF7v7z/da+a3+3rfSqGilpSxqjcfC/k2jJbfEleZMyUnUeV2A27vOwOTJPx1947OmYVZvhSoOnzzWdzjWFaJqkUsSVTVt0Pkk12EJJy4g2gRYGdRVcV/C+ur/BwbvtXKHWVtq0hNJ8R/tG+yg8v+jvaMaurr++GR+do6MdryuTJbwW+/2sc7jO+74mWtI9QXWPlfpG12L99sJM+JqibRz2JaPffZrjUrU3/HVbQ7TwRXi90aDjiusNGpM6mQmgIPUph25nl5+xm61dX2b/HPWldevYyn5+5mD3+dZbdHCvCmKrE2CV3FeJ+3v+37ft4pN2dkHzMR/NddMsXrrGfvZ/Y+2Xfxpnq9eWuqZ5fn7W7tazayagvqZ8nJrVadWimbVskW5zLFu5zt744GvbsX9n2z6mFoC0atV0kyaCZH3ZBivbUGZzF2eC7u3aZJo4SpJ2utVrSu26e8a5/gf8oPca77UoX79WMRkW65UZUpZ9AwAA0AjFVQmvqWCsHi5/d9OvNukcVkEFlXRLKuGvEvoKVOjztA+pcW3kK/Ch2ggaH3Zqp+X7JjbCUo3FFNe8T1RS+j3tH5X0Dx/647ZDVGW2r5Z5283Xu2BUXBv+IQWSlGng05Nv3hqvoIYv0aqhpps7KDbtL5Uo9u2H+0Hv45qPUElb33SG339ASL8TnUOVWaffbJihmuYcoo644z7XOH0WiivxGw0c+uO5EJ1jC5UirkzaqiNaQlpN2qhvkpAP6iqzoSauCcqgiDYBJ2nSEpXvOzo+wiaBNKijUR+s135QBu6pZ56faxJI52idqysjqVm7UFWPlfpI10VdP5UJHz2vV5eu67r/8vdMhQpMpBVeb1S7xDenVUhDzMRB41QnMwFEpeu/s/8Ae/KmQ+3VPx5tPzllF1u0bI21bd3MBvTOZAJEKeg+aEDmoWBBSaaEzodTFtq4yfPtijMH25Xlg5oE6tOjra1bn4l6q5aASv2Xld84lP+Xysw5y+3jLxfZLtt0ta4d42/oFVQP57emfHnr1pW5zIwWzZtbu1bN3fjS0vwLTTudAvwnH7Kt3X758Nyg9xrvlSkDIgj2q4mlNWvKXC0IdbwMAADQ0OnhXQ/xcW3Qd+ncKReMqelgrIIUCkr7EoWiEm5JNQ3UpM2IS66ySR+O3qR5HD+vpIfSMOAUtl8cDa4qmK2AxZlnX5wLVih4oXEKWsTVXKgqbdekkp5du3RODKrkS3+SNPsu3/ZN4kvd1jQf1FBTB2maO6jrVKtB2ynMCPFBN41P20EwENJ5TxlqOpZUYl3nBZ0f0lCwOO6cr3GFgs+iYGF4LPuhJjKsqpu2NJSZoHNdNP3RZtLUNIrO09EmympS2rSE0nwnbN5H59FOnTrmSuT7jl3VN0HSMmpKbR4rdZFq0KmAg2sWaHXNti6ha7gyjidM/ChvgYmqivaFESeawQTUd3U2EyBq6uxl9o+XvrR9B/e2bfp2dOMU1A4D7Qpqj5u8wP09aOvMyWHFmvXuVSX9RdOrrwHVEJDmzZvagD4dXJv4b034Oje/5avWufdxPvpykWtOaNguPWJL+8v7k+fb/Gwpfs1z7Efz7LOZJbbTgC7WplUz69OznQu+vzputuuY2E+n76ntfi/tdEqHaiZ8Y6fuuUHvw/R9PnOpTZ628cSlJpPe+nCO2569u7XNjgUAAGi4fNv/YbMBosDB4iUluWB0TQdjfYnQsHR6Uk0DBbZUsk4lFpMCFgr0Rx9KffDb12ZQEEeBblWPjyvVqXHRQIVKyKmknAIZ+YIyleUzX6IBYL1XsEb7JapQ+pMUKjGYZvvGSVPiuCp8acpnnxvlhppohmNz0XH+5ugxriRxNFij9xqvz31GGFAVCt7pPKVmcHxTQUmZS76pmLgmczQu2nxLlAKRVQ0A+gBi0jFf3bSlUWj7eDovKuB6+y03uOtSbbT1njYtobTf8eeXp595wW3vQn356DoRbQ6oEH9N8deYqOocK/WVtrH6QFAtuUf+/kR2bIbfJ9H7LfH3K/ky63X/pd+A5ltSsjS2X53q8GnXcZ8vQ9EvV/eFQH1XZzMBXn1/tt3y4ET7y1Of2s0PfmgX/iZz4lDzPyq5L//5YpH9+JbRdveTk90w4rej7a/PfGJDduphg3fI3JxvtUUHV3vgnn9NtidenWp3PvaxPff2TBdY94YP3sJlBPy5fFnX3jPOzeuK29616V9v7FfAU/M6k6cucc0J9e7eLjt2U0tXrLOf3vGu68/gt+Xp17r069Xe9h/SxzV3pOV9e4/erkPiy25/xy1Ty/7nS1+69Hppp0ujTevmdvvfP7KbHvjQpeuq/xvjmkI6Yp9+1qFdC7du//u3CXbGNa+4JpXk02lL7JjLXrDfPTzR1Z5QBsTDL3xmh/zoWXtzwhw3DQAAQH2hhz4FWVXS3T/06WE0bBffBzKr0iGwKHitQETIdw7p27PP9wCsB2aVdM0XoPYPpWEJNv0dNuOgoIkeoKubkaHtpE6OqxPY0HaNNhug1/sf+meuE0W9V+0DldKXNOlXml56+fXsu0xa1WxE2MeB5hfWakizfTUfnw7RctQeeW211a/9qUwoDdVt7mBzSmq/29N4fe7beQbSiJ5T/XGmDE9/TleNpjCQp9LD+l7S5/pb56OwE9c4Ov8oQ1hNp4VBcQXJ/TklH/22de5XB+GeP29VN21xlEEc1jhLWobSrnUQpUfXwCsuvcid3+Laeo/OtyrSpCWqMt/R+eXD/0zaJGCsjNuw42C/vpXlr2PKnA73vfal5lndY6W+0jGjY0fHbLT2ijqvVpA9vJ5q26TpAN7ve8130E475K7pNUlp1/1AvmaBtFw1B6h0RPsF0t/qfDjpu0BdU2czAdQ+/7hP5rug/kvvzbYDhvS22y7b2wXFvQ7tWromdh564XP728gptmjpGvvxybvab340NBfkHzSgsxu3avV6u+PRj1xzOJedtluuZoD07dHO/ueHe9meO3a318fNtlfen23H7t/fNacTtWrNepsxd7lt0bWNde+UfEE+8Bt97HtH7mCjxsyykW/NsG/u2tN+M2JYrrNgNXd08YmD7LTDtrOZc1fYE69NK59fK7vq+3tYx3YbMyjSTpdGv17t7P+dvYd9NW+FPfT8524bXHf+N+ywYVtmpwAAAGj4FCRX6XLfxrDamFbQ2AfPFWCqTqkzlXq/656/5ZrY0aBMhbBzWAUj8j0AK5Mi/L4f9LApms+D991pykjwn0m0yYG49ok1pOng1lOJ1LiS3ZWlZncUKFAzHkqD2mdWqdN8QfU06b/l9j/mxvsmfgrVHCi0fUVBJz/e9x1QW006aNtqG9d0cwfFptotavInKSNDx7sydsK+MYA0fnn9b3O/R99EmP+d61W/e/3+/TRXXX1DrmZX3OcK+qVpHkaBSPVHIOG5aPnyFQW/K/o969yvALr/rs4nbdpmaj9VJ21xfKaD0urPk1pGeM3ToPPvEYcd7D5XQNZ/V5TmaKZt3HyrIl9akqT9js47qnEWDRhrO+ra479/yBE6l19a6T4BRNcxHXv+Oqbh8X+NdLXZqnus1GdqFki1c6K03tHO+7VtVCsyTV9H2qcnn3Scy0xIIzxGNKRp1tAXzohm3oS0HqNfy2SKhftWf0t9vm6jcWmyQXVaK2Hm3BLr1yu+M9yQZquhtLTUZkzLjgTKbVV+nmzWrJm7QGsAAACoS3wguLYCvnrIvOzKa1xNg7Tt0W8uPq0qjadADAAAAID6p970CQAAAADUNpUYU6eIaUudVYXvpLCqNQ2KaeWqTB9X9bmJGgCoLco0Dkseh0PYfE1D01jXGwDqM2oCoOioCQAAAAAAAAAAxVGUmgDEeeFxLAAAAAAAAABA8dR6JoBKejdvXqnKBmjAdCxQ+h8AAAAAAAAAiqPWMgHCQG/bdtk/0OiFxwKZAQAAAAAAAABQu2q1JoCCvBo6djJr0YLaAI2djgEdC/64AAAAAAAAAADUrqI0B9S0aVPr1mMDGQGNmPa9jgEdC2QAAAAAAAAAAEBxFKUmgIaWLZtar94qCV7mAsLEgRs+7eNM6f8yt+91DITHBAAAAAAAAACgdjXZUC77dyoz55ZYv16dsu8K87MvKytzf/vXSi4W9ZQP+PsaAHr14wEAAAAAAAAAtavWMwHEL8IH/8P3aLh8oN9nBITvAQAAAAAAAAC1ryiZAF64KDIAGocw4E/wHwAAAAAAAACKq6iZACEyARoHAv8AAAAAAAAAsPlstkwAAAAAAAAAAABQuzK9tAIAAAAAAAAAgAaHTAAAAAAAAAAAABooMgEAAAAAAAAAAGigqtQnAAAAAAAAAAAAqPvoGBgAAAAAAAAAgAaK5oAAAAAAAAAAAGigyAQAAAAAAAAAAKCBIhMAAAAAAAAAAIAGikwAAAAAAAAAAAAaKDIBAAAAAAAAAABooMgEAAAAAAAAAACggWqyoVz271Rmzi2xfr06Zd9VXSUXi3qqSZMm2b8AAAAAAAAAAMVW1EyAcFFkAjQOYSYAGQIAAAAAAAAAUFxFyQTwi9DrksVltmL5Blu3Tu/daDRQivm3aGHWrn0T69ylaS4TgMwAAAAAAAAAACiOWu8TwGcArF1bZrNmltriRRvK/yYDoDHQPta+1j7XvtcxkBnPzgcAAAAAAACAYihKx8BlZWU2b06ZCwijcdK+1zGgYwEAAAAAAAAAUBy1mgmgEt8aSpZkSv+jcdMxoGPBHxcAAAAAAAAAgNpVlOaA1AcAIDoWyAAAAAAAAAAAgOIoSk0AdQIMSKZDaDICAAAAAAAAAKAYai0TIAzyEu+FFx4LZAQAAAAAAAAAQO0qSnNAQIhjAgAAAAAAAACKo9YzAQAAAAAAAAAAwOZRpzMB5i9ZZTc98KEd8MNn7LSrX7aZc5dnP9m8pn29zE742Si77p5xtnpNaXbspkqWr7Ef/PoNN+hvAAAAAACAmvbplC/s8KNPca8AAETV2UwABdfv/OckG/nWDDv0m/1s/yF9rEmTJjb+kwV26a3vuIyB/S54xkbcPNrenzQ/0ta8uXH6TNMcc9kL9tDzn9uadRUD9ktXrLO7n5xsh//keTed5vvJtCUV5lWTRo6eYcPPeypx0Ofi03/Rb95y45X+B56bYqvWrHefAwAAoLDR74y1I4451RYuWpwds5GCJHsOO8iatdnCDdff+LvsJ5tatWq1XTjiythpHv774+4zTRPSsv28NSSlw9NnmkbzEy0r/H7csn268i1D8wvnE5fWkN8u+bZHIUnbRKLbxa9vkjTp99vOT1NoW0ua7RudRkOh7RdNrwZtzzAo57dx2mMizfrUVX57aL/HidvG0fX12ytpHgCA2ufP50n3BzpXh5lQ/hqW7/wfzqvQ/D1/HxFO568T/jrih/B6oumjn0evz6Lp0t7DaKjP1+i6Irr/Ch0DEt2f4XEWt5/8EN3n+eYjScdWdLr6os5mAqgWwMdfLrb9hvSxS07dxc4/fifbsmc7e3/yfOvcvqWdccQOdvS3trLPZi61q//0vn342cLsN81eH/+1/fT379q8Ravs5EO3sW37dbI7H//YHnzucysty0T4l69aZzfeN94eeuFzO3RYX/vRd3e22fNX2CW3vlNhXjVpy17t7Jyjd6wwnHXUDjagTwfr0K6lbd27g5vunf/Msctvf9dWrl5vl522mw3btZf9+alP7XcP/ydvzQMAAABsvKH/9oHHZMdUpBv6U8883+647UYrXTXH5s2aXH4z/557AI0zY+Ysmzpthp10wrHuvR4M9YCoZZx59sVuXNTkyVPcfDV/DcP33svO+P5FiQ+Kn3z6mXs97NAD3YPFNgO2zn3Xpy98KFIaLrvyGuvbZ4sKy7j62htzD65az3nzF+Q+X75omhuv7yUFsv/5+FP24cSPs+/SS7NNtF4jLrnKJn042qVHrzffemfig1Sa9Gt7arueedqJuen0d75tnWb7eg/c+4fcdBruuuMma9OmdfbTeIceckCFfX/FpRe54y186JQXR72a2+9x9Jmmqa+0j94cPca+e+Kx9uDDjyUec+efd5bbt357FfqtAAA2n2t/dVPidbsm6Hqc7/z/6mtvZf/a1BuvPJ27lmh4/ulHrFvXLtlPN73eJF2fo/w9zvU33lrh+q556ZqFqqvsPbnofm3W7Mz213d0P6n7S39cDt97aG4fhcN111xp3znuKBu4w7ZuukLz8XYcuH2F/a5By6iP6mwmgIL1Gpo1MWtS/s8799gd7dofDCl/HWhXnDHYfnH2HrZsxVp7b9I89/myFevsidemWv8+HeyOK4bbRSfsbDdcuJcdsXc/e+bN6TZ11jI33RezltrbE+fZMd/e2n5yyq520kHb2NXnDrHS0lL797szbf36MjddTRq8XTeX7nA46Bt9bfnK9S59O/XvbGvLl/vKe7OtQ7sW9vPv7W4nHDjArjxzsB32zS3ttXGz7MvydAMAACCeHhwnTZ7ibuT1MBhHgW49BPgbeD0gXn3VpfbAw4/FPniOGz/B9t1naO6hQZkCJSVL3QOBgsRxzjvnjAoPnhdecLZ7TQr66qFWwWt9R+k67ZQTsp9sTF/4YDx+wkSbNn1mbr6ivzVOn4nSe8mIC9zfouC13itDQ+sQpQext94ea4ccvH92THqFtokeoBUI1gO334561fukAHGa9P/7xVes/9b97Phjj3LvRX9rXNK2TrN9lR49GNYEpWfY0CHuuPN69uyRd9399lIAvb7yx8SPLjo38ZiL449p7VsAQN2hILquXQqG5wvUV9XJJx1nXTp3Sjz/V+c+JY6/Pus+L4mux77QRTRTQfclV191WYVxqJzK3pP7Y0D3g75Qhr+fzJdB5L/nC/Sknc+ChQtt8ZKS7Lv6r05mAqhZnNP/+xWbs3ClvTjmKzvo4mdz7e83a7oxQ0DatGzmXju1b+leFy4tv2Gft8J2266bdeuc2ZFtWze3A/fq42oXTJpa8SDq16tdbp4d2ja3ju1aub89ZUQ8/85MO+UXL+eaDJo2e9O+CdSEz5iP5tk517/umvDR6wef5q9R4Ob99kz3tzIBwnXr3qm1de2cSUuL5k2tc8fM+qU1e/5K+839E1xTR0qP0j9lesM5cAEAAOLo4eHh+/+YCzRH6YFCwd4D9t83Oyaje7duNnfuvE0Cx5peDyLh9Jq3llGZh74FCxaV3y9ucMuJ8g8iQ/bcPTtmU/qevq/5iB5QVPosTEPbNm1c8DvfQ1D37l1dE5t6qAnpIfe2O/5kV1xyoQ3ov1V2bHqFtokCwAoER9dx6/L0jhk7zn2u7aAq1/lKf0XT/+XU6e7B3D/Aif7WOL8dNL+4Kv+h6PatST49oXnz5tt22w5w6+4zbUI+k+fU7x6fHVP/KKgyaKcd3IO9MtHyBVlC/jgGQjoXq9kN3xSDhrC0pn7faopkwsSPcrWSNESb9YjOx58bNK/oecKfk8Ll+O/7cZp3vuWppKkG39RJ9PM4+b6j5fplaQjTlkTz8tOHTZfErbP4benH+3T4IWkd06QtOi//vbh0RLc1Nj9dl849+3T3911/ute91iQFW4futUdiAFgBY11PNBRLXKEL1Azt48rck4vu/3QfqPvBkO4nw8IcUf7Y8c8HVZ1PfVcnMwHUbM53DhhgbVs3c03lqMmcvQb1sOaqFpCloLsC3f96Y5r169Xehu3SK/tJvLatW7jXr+ZnAvjb9O5oe+7Y3UaNneU6HF63vsxGjfnKVqxe70rnN2/e1C3j4Rc+s+v/Mt6VzD/98O2sd/e29r/3T7AFSypeuF8bN9uuvGOMrVi5zk4/YjvbbduudvujH+UNvKtWwsvvzbJ9BveyAX0zTQG1LF/u8MFb2NTZy+z1cV+7dH0+c6m9MX6O7bdHH1fDoRB997Lb3rEX3p5pe+/S0zU79I2dutua9TQlBAAAGrekYLweAnr16mnTyx/0QnoAUUByz913y46pPAVLFGAPHz5C0ZoGccKHFc1PpdTVpE3IB5v1WVKQKWn9n3xqpPvu8H2GZcfUrKSHLZ8OH9QvJC79SeubbztERdO3ctUq99Cvh8HqStpfgwYNdKXf4jJtcpk8ke1VX+jhOcw802tSUCeqJrc9Gg6VDFbpUN8Ug2p6qdmGMHCszLVzfvATV7JT06hGmDLadH4T/RbVZFrYfNgvr/6p+0zNPegaEJ6LdG5W82jhb9QHpTS9jufvnHy2O3f6+envaJNryuT1TZulaVJM4r6jAHq0SbW4pis8pUEBe51/fHMXYXNpfp2jGXR6r8zgrfr1ddMps9V/X69yy213uldPTcRoO2kaDWp2I1paXAF/nQd8sxqa1267DEpMR7itUXd069bV/Raf+NfITTJuasKRhx/sXuMKZcQFjKsjzfUmdz2uRMEPpFPZe3JPGQRxhTaSxus4DWsBeGnmozToOUAFFBqCOpkJoGZz1AyOSuVv36+Tfe/IHezI4Vu5wHzJ8jX2g1+/Yfv+4Ck76apR1qV9K/u/K4fb1lu0d99t26a5dWjbwiZ+vtAWZgP1KnE/5uNMc0GegvpXn7undWrb0pWS3/+Hz9jfR31hl5yyiw3ZqYebZvaCFTZy9Ezbbbuu9uuL9nL9Evz0jMF2xekVHwLVBNGTr0+z7p1b240/GuaaILrk1F3tuvO/YW1aN89OVZEyGEZPnGMrVq+1I/bZypX299QJ8lXf393++MQkl67vXfeqbdmjnV140s6uVkM+6kfgz099YkuWr7Xf/vibFZpO2nXb+vkQAQAAUNviSh8rgKImWb41fFiqoE1ID6u+tOnw/Y9yQSlVGY/SdNGaBlGaRsEU31xQPtFAc0jrE5cZoQCS0rA5Srn5Bz1RmsaPeblCUz2huPTrgS4M8okCZQpIeZqf5puUyZJv+6pfibDEalUoWKYgg/p7iFL69WAaBlKSHlbrk2jwzr9GgzpR2scK0lY34w0Nj37HvrkI0fER14yHmnLwv3W9KqNNfVPo2IqrkXTM0Ye76eJqUin4rWB2WCpUASEfEPRNluRrlk2UwXjm6d/Nvksn+h1/rYiun94nNSumNOj8GDZ34ZtLU9q1DloXv31Er3rvr3uaRtcu/329nlF+royWlFVfKOF20PkrLMmr64yCxrfdfH3uPKt5afsnpUPrlea6h+LTb1G/LV2T44696lAmg/Z79LjWMVvo2hBes9Nct1WbId88tfy4THzUrnw1Av25Pzz2dN+kDNEkYcamV5n53P3n+6191/7umIqrtVSf1Nk+AZK0aN7cDt6rryvdfuiwLe3Zt6bbJbe8bVNnZ9rK79GpjR20Vx+bMqPERtw82nUIfN2fx9uTr2VyrL3FS9fYb++fUD7dEhfc//XFe9meA3vYbX//yN6emGn/8+v5K10tgQO+0cd6dM7k+pRfi227fh1dwN9bULLaTbfv4C1ymRGy9RbtXHNDcRaUrLI3PvjahuzYw7bt2zE7NpM5oNoBSofSo3QpfUrn/z36kev/IJ+5izJNHn179y1s8A4Vc9MAAACQXlITNmkoaKG2Y1XacfRrI91DRtyDQ6GSjgqyqNSmHobCdu8rSw84Kp2q4FQYqPEBcJXqq8uBlqT0Kwj2yAN3uw6G/UO/AndJfTVEJW3fcP9p8B3VpWnKQ5359uy7Uy49CiA88ei9sdtXD6R6MA0DmdEq6/VRtOSkXvU+DLB64cO1XlWSOm1paTQu+r36zFUdKzp2QuprI3q+VvBO5w2V+PW/t0uuuLpCAFt0vCnw7WsQ6XP1L6MMWrVRrlKhGq9Atebp/w6Pc/HBq7AEq95XthRp9Du6ViioHtekml+/KP3eFOQKA19aT/3GdJ4UrZ9vkk30WlKydJNMy7AZn7hO96PbIVqSV6/RtISUaRD2HVKd6y+Kw2d4hZnwNUX7PTwe9HtUJpgyoPJdG6IdA0cLX4TXGw06/rne1C/aV7+76Vfub78vdU5Xx8K6BkQlHTtp56MM6PCYUsbroMHDXcZmfVTvMgHURNDJh2zrSrerlPtdP/+W61j3z0996krBK0h/yqHb2eVn7OY62f3nqC+tW8dW9vMzB7vvb71FpjmdV8fNtjcnzLGfnrW7fe+oHVxTO9ect6cr9f/XZz51/QfMXZy5kLZrk2lKKEnJ8rU2b9Eqa9Wq6SZ9FiT5+PPF9sm0JTZ0555unTxlDjzy4ucuHUqP0qX0KZ3qH0HNF4n6TVBb/3444WejbNrXy3JpUR8CYe0CAAAAJIurEl5TwVj/oKEAiObpKYiUr6SjHjAUTNbnaR9S49rIV8aDaiNofNipnZbvm8YIS9gWkwJrcVXBQ0np97R/VNI/fOiP2w5Rldm+WqZKsCa14R9SiVjf3IWGfPPWeD2Y6gFVD6oaarq5g2LT/lKJX9XG8IEWDXof13yEOpr0TY34/QdEqUSvfq++SSAdMzp2KkO/N52LFWDXvKIZs2HgUUH3Tp06utKi6ttCGXW6TihAHgamo8d5XOZEoXNRnLjvqGkiBZ/C5cUF5EPRoKeGsKZUtCkevWp9/XlW20fbSRke/nea1Ol+PoXOydEMUb1GS+6ibtExouunMuGj5/Xq0nVd91/+nqlQgYm0wutNXJNVSXymGYqjUDNNOo/o3srfN+jeUOKancx37FRmPp4yBXTsJNXAquvqfZS4d/c21qNra5u3eJWty7Z5r+D3d/YfYE/edKi9+sej7Sen7GKLlq3J9DHQO5MJMGfRStuiW9sKJfXVjFD/Pu1tybK1tmLVemvXKtP0TmnpBveaRO34a94byjIl+QtZv77MxkyaZ106trJdIk30aLlavtKh9HhKp9KrdMueA7vb7ZcPzw1Xn7OH9ejcOpeWNWvKXDNIAAAA2Eg39bq5j2uDXqU9fTC6poOxetBQAMSXMpV8JR3Dtp+jzeP4eSU9lIbV1hXoVtBIJZuiwVUFsxUgOvPsi3PBIR/AUpCoJqs8a7sq2B/X9mrXLp0TH7bypT9Jmn2Xb/sm8SVba5p/MFVTB2maO6jrFLzTdgozQjTofRhsBNLSeUhNZOn3Wt0MyzDoo+ZMwhKdPhCt64NK0fsmcXRO1fnWZwyEgWnVOgqPcz+kPa9URjSD0Q9xmaOeglXR6TX486kP5CrI/9Wsr12GZHjuVBBW26lQRml1ad7a3kqHzuF6rUpTfCgu1aDLNamyetPaKNWh41AZx+rsuzaahrr8kkwtwHwdHPvjMtr8FWpG2nvyNHTOjtZIkqTxSdJMX5+bh6pXmQBr1pW60v2hhUvX2qKSNdazSxtr0XxjifqQOsr9x0tf2r6De9s22aZ32rVuYXMWqrmfFe69qG3/T6aVuNL8Gvr0bOcC9ao1oM9EQf73J8933/W6dy1/EOvR3t75z1zXj4D38ZeLYzsGXrR8jU2eusR22aaLbdlzY/NB0qpFM2vdsqlNm73clq3MLFPUObCW2aJZZpepg2J19uuHPQZ2dzUW1EnyTgO62lsfzrEvZ2WaSAIAAEBGXLvPouDO4iUluWB0TQdjFfhXBkBYEjKppoECUipZp2Zukmoh6AEk+lDqg9++5JQCZwp0q9RmXOBM46KBIV+6VoGjfO3oV5Z/0IsGgPVeQbW4pjIKpT9JoRKDabZvnDS1FqrCB+GefW6UGwo1d1CX6TiPayJF9F7j9Xl9LD2HukWZqKqZUx0KAup855us0e9O5+inn3nBli1bnsug1auaBnrv/Q9y53AfHCzW8ezPZ/78loaCqGmCl74GxPMvvOTeFyptHb1+ppEmLT4do8u3aVyTRKh79DtQnxP6LT7y9yeyYzP8OT/uePH3K/ky632b7ZpvbRwPPu3KaPAZgXH8cnVfiJqV9p68kKTjKc1xFko7fZrapnVVvcoE+HrBSjv/hjfslgcn2l+e+tRufvBDu+g3b9mK1evt+P36m+8099X3Z1eY5sLyaeSso3aw1q0yGQXqfFcB8xvu/cBNc/eTk+2y29+xcZPn2+H7bGl9erSzAX062Lf36G1jP57nPtM0194zzv750pcVmvDx/RAos+GyW99x/RDc9MCHdvvfP4rtGHj2vJVuWi2/TTY9Xs+u5fMa2tdGfzjHfnbHGLdMzeuGv4530x/6zfjqMJ46PD7riO3dNhlx89tu3fx2+M8Xi1ztgL+NnGLHX/GiTZiSyW1T5sI5179uV5Yvz2d2vDbuazvkR8/ao6O+dO8BAAAaAt2wK8iqku7+oU83/WG7+D6QWdVSiApeK4gUUpu5qtrs27PP96ChhyGVvMwXoPYPpWEJNv2tB24fMFeAXQ/Q1c3I0HZSO9xKc1X5QHfYbIBe73/on7lOK/VetQ9USl/SpF9peunl17PvMmlV8xhhHweaX1irIc321Xx8OkTLUVuxtdVWv/anHng1FArA1WU+MJv0AK3xYfvjQBrRTESdo1XyWM3jVEb03OyP17DJCR2jOk8tXbY8V+Jfy9dv8/Irr61wbOt3q/O6Ov/2lDY1XVSd82Ucfw5Vxqg/l0n0XBXSuVMBNjX7FmZUaNuF8/A1IF4pPzdGS1tHM5y1vLA5obTi0qLXcH/4dDzyjycrNEmEuk3XRLWTrt/NvHnzs2Mz1NeDguzhMar9nqYDeH+/pvnW1vGgtOt+IF+zQFqumgNUOqL9Aunv2vi9NxZp7sn1XvegYSfPOm/4/aDP1bdTeP/rKTNBfakkFd4oNJ+4/atjWce0ju36qF5lAnTp0NJ2276rvT5+tv31mU/spfdm2zd37mF3/Wy4fWPQxo4bWrZoauM+mZ+b5oAhve22y/Z2QX1PHfj+7pK93WeaRoFxBch/ef437MwjdnA1AdSs0MUnDrLTDtvO1Rh44rVp1r1TK7vq+3tYx3atsnPKdBasfgh+fPIutmr1etcPwYpV6+y68nnFdQw8Y85yW19aZtv26+i+G9JytXylY/W6UpeuV96fbYfv08+lN+x4OMmQnXrYbZfubTv172zPvDnD7n9uik0vX2bYvBAAAEBjpZt7lS5XsFhN4Ph2pv1NvwJD1Sl1poDRXff8LdfEjgZlKoSdw+rBJN8DsB6Iwu/7wT8EaT4P3nenC874zyTaZE5ce9Aa0nRw66mUrB6KqvsAruYxfIdqSsOpZ55vt99yQ96gepr033L7H3PjfRM/0QfBqELbV8JmknzfAbXVXr22rbZxNABX36h2i5r8ScrI0PEe7RsDKES/CZ2j/W9S54QTjjuq0n0CyC+v/23ud+2bGgvPFzp21exOWMrT/z41Pjy2NT56HlbaFDivjd9x9ByqQcGypGuV0h/t+FLD8uUrKpx3NZ0yvT+d8vkmzdOpuRddq3QO1HfVLMu/n300+2l6WoaaFNJ29WnR6/IVG1tS8AHBfzz2VGJGIuomHSdxv0cdZ9HO+7XfdRykaWJKv7eTTzoudcDV39f5IU2zhr5wRjSzLKT1GP1apgPk8Lekv6U+X7c3t0L35HEmfjQptx/y3Z8V6pA8zXxUi9ef/zSoybRRzz+W9961LmuyQXVaK2Hm3BLr16tT9l0yzVZDaWmpzZiWHQmU26r8PNmsWTNXmkMDAABAXeIDwbUV8NVD5mVXXuOCLrXRbnRN8mlVYKZQYB0AgOpQaWBlbChzhcAqANSset8xMAAAAFBTVGJMHVDWZjVfdcirJiSqWtOgmFauynT0V5+bqAGAusI3beFLlYZDdZtdq++U6VwbHcACADKoCYCioyYAAAAAAADwqAUAALWrKDUBiPPC41gAAAAAAACiGnhqu119uqgDVjIAAKB21HpNgLKyMpv9VZmtW0f0F2YtWmywPls2taZNm1ITAAAAAAAAAABqWa3VBAiDu23bZf9AoxceC2QAAAAAAAAAAEDtqtXmgHxJ746dMiXA0bjpGNCx4I8LAAAAAAAAAEDtqvU+ARTsVdMv3XpsICOgEdO+1zHgmwECAAAAAAAAANS+otQE0NCyZVPr1VslwctcQJg4cMOnfZwp/V/m9r2OgfCYAAAAAAAAAADUrlrrGNjzs1cHwb6jYL1WcrGop3zA39cA0KsfDwAAAAAAAACoXbWeCSB+ET74H75Hw+UD/T4jIHwPAAAAAAAAAKh9RckE8MJFkQHQOIQBf4L/AAAAAAAAAFBcRc0ECJEJ0DgQ+AcAAAAAAACAzWezZQIAAAAAAAAAAIDalemlFQAAAAAAAAAANDhkAgAAAAAAAAAA0ECRCQAAAAAAAAAAQANVpT4BAAAAAAAAAABA3UfHwAAAAAAAAAAANFA0BwQAAAAAAAAAQANFJgAAAAAAAAAAAA0UmQAAAAAAAAAAADRQZAIAAAAAAAAAANBAkQkAAAAAAAAAAEADRSYAAAAAAAAAAAANVJMN5bJ/pzJzbon169Up+67qKrlY1FNNmjTJ/gUAAAAAAAAAKLaiZgKEiyIToHEIMwHIEAAAAAAAAACA4ipKJoBfhF6XLC6zFcs32Lp1eu9Go4FSzL9FC7N27ZtY5y5Nc5kAZAYAAAAAAAAAQHHUep8APgNg7doymzWz1BYv2lD+NxkAjYH2sfa19rn2vY6BzHh2PgAAAAAAAAAUQ1E6Bi4rK7N5c8pcQBiNk/a9jgEdCwAAAAAAAACA4qjVTACV+NZQsiRT+h+Nm44BHQv+uAAAAAAAAAAA1K6iNAekPgAA0bFABgAAAAAAAAAAFEdRagKoE2BAMh1CkxEAAAAAAAAAAMVQa5kAYZCXeC+88FggIwAAAAAAAAAAaldRmgMCQhwTAAAAAAAAAFActZ4JAAAAAAAAAAAANg8yARKULF9jP/j1G27Q3wAAAAAAAJWxatVqu3DEldaszRbuVe/rsk+nfGGHH32KewUANBz1OhNg2tfL7ISfjbLh5z1VYbjunnG2ek1pdqqa9em0JXbpre/Yfhc8Y4f/5Hn769Of2opVle/5eM7ClXbjfRPsgB8+44Zr737fZs9fmf20+patWGt/eepTO/Hnme1zzGUv2J+f+sSWrqCXZgAA0DiMfmesHXHMqbZw0eLsmI0U3Nhz2EEuKKPh+ht/l/1kUz6AEzfNw39/PDaoo2X7eWtISoenzzSN5idaVvj9uGWHgaWkZWh+4XwKBaD8dsm3PQpJ2iYS3S5+fZOkSb/fdn6aQtta0mzf6DQaCm2/aHo1aHuGwTS/jdMeE2nWp67y20P7PU7cNo6ur99eSfMA6ronnxrpXpcvmmZ33XGTtWnT2r2vjnzXN6A2+PN50v2BztVh5pG/huU7/4fzKjR/z99HhNP564S/jvgh/I1o+ujn0euzaLq09zAa+B1WX3T/FToGvOg9V/R70f2l6aNqapr6okHUBNh12y52ztE75oa9BvWw5s2aZD+tOVNnL7Nr7xlns+evsJMP3caG7tzT/jZyiv3hsUm2bn1ZdqrC5i1aZVf9Yay9/sHXdvoR29tZR+1gH3yywC677R2bPmd5dqrqWbh0jU34bIEduFcf+175/Lfs1d7ufeZTu+MfH9VaBgkAAEBd4B/0vn3gMdkxFelh49Qzz7c7brvRSlfNsXmzJpff4L+XeFM/Y+Ysmzpthp10wrHuvR4M9YCoZZx59sVuXNTkyVPcfDV/DcP33svO+P5FiQ+Kn3z6mXs97NAD3cPGNgO2zn3Xpy98uFEaLrvyGuvbZ4sKy7j62htzD65az3nzF+Q+VwBK9L2kQPY/H3/KPpz4cfZdemm2idZrxCVX2aQPR7v06PXmW+904+OkSb+2p7brmaedmJtOf+fb1mm2r/fAvX/ITachTQDv0EMOqLDvr7j0Ine8RQMNL456Nbff4+gzTVNfaR+9OXqMfffEY+3Bhx9LPObOP+8st2/99ir0WwHqE/87+NbwYTUS/Ac2t2t/dVPidbsm6Hqc7/z/6mtvZf/a1BuvPJ27lmh4/ulHrFvXLtlPN73eJF2fo/w9zvU33lrh+q556ZqFqqvsPbmne7YHyu8twv1x9VWXZT9Nd89ZU9PUJ/U6E0D9y5aV/+/AvfrauccOzA1HDt/Kmjev2VVTkP+Rf3/uAuj/c8FedtEJO9t/n7OHHfbNLW3UmJn22YyS7JSFjZ+ywKaUT3/2f5Wn95gd7eyjB9qPT9nVZs5dbq+Nm52dqnq26tXefn/5cJfO84/fyX4zYpgNH7yFfThloc1fsio7FQAAQMOiB8dJk6e4m3Q9DMZRoPs7xx1V/uA21L3XA+LVV13qHibiHjzHjZ9g++4z1AbusK17r0yBkpKl7sFDQeI4551zRoUHzwsvONu9JgV99VCr4LW+o3SddsoJ2U82pi98MB4/YaJNmz4zN1/R3xqnz0TpvWTEBe5vUQBK75WhoXWI0oPYW2+PtUMO3j87Jr1C20QP0AoE64Hbb0e96n1SgDhN+v/94ivWf+t+dvyxR7n3or81Lmlbp9m+Ss+s2XPc39Wl9AwbOsQdd17Pnj3yrrvfXgqg11f+mPjRRecmHnNx/DGtfQsAqDsURNe1S8HwfIH6qjr5pOOsS+dOief/6tynxPHXZ93nJdH12Be6iGYq6L5EgedwHCqnsvfkogC87tkevO/O2G3v76Hy3XPW1DT1TZ3OBPhsZold9YcxuaZ3fnP/BNeMjleyfK0rVd+uTYvsmE2tWVdqj476wr533auuWRzf9E44H2UmjPlonp1z/etuGr1+8OnC7KcZC5asto+/XGR7DOxmW23R3o1r0byp7bNrL1u5utQ+/2qpG1datsFeGjvLfnjjmy7dGtR8kJoRiurXq601yVZY6N5501IBPu3HX/liLl2at5ZRSNOmTXLzFtWMaN2qubVt3dxatWqWHQsAANCw6GHg4fv/mLtZj9IDhR4cDth/3+yYjO7dutncufM2CRxrej2IhNNr3lpGZR76FixYVH7PucEtJ8o/1A7Zc/fsmE3pe/q+5iPKNFDpszANbdu0ccHvfKXkunfvWn6P2MQWLKx4r6sHmdvu+JNdccmFNqD/Vtmx6RXaJgoAKxAcXcety9M7Zuw497m2g6qD5yv9FU3/l1OnuwfzsISt/itW4CoAAGWzSURBVNY4vx00v7gq/6Ho9q1JPj2hefPm23bbDnDr7jNtQj6T59TvHp8dU/8oqDJopx3cg70y0fIFWUL+OAZCOher2Q3fHEP0N13ZzzWEJTl1DlRJX50vfG2ysHaQH6chbfMfWv7w/Y+yu/98v6shFc5Ty/Hz0xDX/EjcOn04cZKbVjXdVFOoZ9+dcuuq9YlLm5YZrkuhbVFZWrbSEKYz3PZeuA01hOf6uHXVPPz4aPqi6+rf61XfjX4/XG7cukb3h9Lq5xVdl6Q0NQa6Lp179unu77v+dK97rUmLl5TY0L32SAwAK2Cs64mGYokrdIGaoX1cmXty8YH56D1wKM09Z01NU9/U2UyA9yfNtxE3v23rS81+9cMhdv7xO9rYj+fbr++bYIuXpu+o9+sFK+3V92fZQd/oa7/98TA78aBt7I3xX9sd//jYVq5e76ZR6fsr7xhjK1aus9OP2M5227ar3f7oRzZl+sbS/VrmvMWrrEfX1tY6CKL37NrG2rZuZl/NzzTjs3zlWnv2rem263Zd7caL97JzjhloX8wssZse/DBXAn/X8vkP6NPBRo6eaYuXrXF9Cjzz5nTr16u9fXuP3m4ape23939oDz3/mR23X3+X9gG9O9j//GW8vTjmKzdNWspMeHPCnPLtN8++vecW1q0j1RABAEDjlBSMV3C5V6+eNr38QS+kBxAFJPfcfbfsmMrzAfawNkEoWtMgjoLeCn4rnZqfSqmrSZuQDzbrs2gwyUtaf7VZre8O32dYdkzNCtMf8umIZkokiUt/0vrm2w5R0fStXLXKPfTrQa+6kvbXoEEDXem3uEybXCZPZHvVF3qwDzPP9JqvVF+oJrc9Ggb9htTUWdjs1y+v/mn200wQ+pAjTqzw+V/vuT37aSZArGC5Spf6z1VTTIH0aCD3mZEv5poLUwlfLVtBd/2GfTMihZoc83ROH/3aSFd62jctpnnqe8rA9PPTq9xy253uVZLWqXXrVq5ZMqXfNz02fszLea8fUSplHd0Wau4iGuxO6/l/v2SPPHB3bn4qJXvJFVfntk/cNlS6e/bo7j4vtP/SUtBQwcFRzz+W2yZp1lUBf52ffLMiSuNuuwyyHQdu7+4LohmYPjCpzxujbt26um36xL9GVvmYyefIww92r3GFMuICxtWR5nqTux5XouAH0qnsPbn4fZbvOEhzz1lT09Q3dTITYPmqdfb3F7+wvXfpaf9zwTdsvz362Hf2H2AXnjDIxk2e75q0kSXZzIBf3/tBrvPbB56bYqvWZIL70rt7W/v9T/d17e7vs9sWrmmcQ4Zt6ZrvWViy2patWGdPvj7NlcS/8UfDXPM5l5y6q113/jesTevm2bmYrV1f5kr8b9kjUwvAa9umuXVs1yr7zqx925b264uG2cUn7eyWd9aRO9gJB21jn89carMXZGof9O3Rzm64aKjNnLPc/uvSF+zQEc+Vr9cCu/LMwS5zQN6bPM/emjjXrjlviGvTX/O65JRdbfAO3ezf78y0ZSsLd/A7cvQMt10OvPBZu++ZT+0XZ+9h3z9qoDVrWvP9JQAAANRncaWPFbhQQKEqbTnrYdWXPlRJUDVjE7ZV6mm6aE2DKE2jqvcKkBR6CI0GmkNan7jMCAXBlIbNUcrNP+iJ0qTATdhUTygu/eqnQaWxfMebohKdarPY0/zyBcnybV8FCcOSoVWhwJ4eWNXfQ5TSr1ogYSBFf2uc74OiPooGyfxrXKm+kPaxgr3VzXhDwxJXGvOYow93v2l/XlCGWnju2H23XXKf6zx+3TVXulopnv5WYD7apEPnzp0qNC+mUsA6x+gc7q8DvsmxqjZZpfOMrgd+fno9o/z845skK7RO1aV5httCv7VCTaLko20Tpsuf6/zvXednnQOvv+6q3DprGxx80H41uq7qz0bbMTyPF1pXXf8UzL7t5utz31MadXzpvYK/6tPBHyP+eEpzPW7ItE21z7Tvwt9PTVAmg7Zv9Lep31uha0N4zU5z3VZthnzz1PLjMvFRu/LVCPQZBxLW8omrTRUV3nMmqalp6qo6mQkwe/5K+2TGElfi/aCLn3WBbA1qxkdWZIP8XTq3ynUGrEwC+eMTk+13D/8n1/lty+bNXEe+fx/1uf3irvfse7981QXH1aSOhgUlq11b/PsO3sK2zjbzI1tv0c769WqXfbdRswIdDivArtoAj78y1a7/y3i3vL8+/amtLy2zDdm+gxX8V4l+ldBX4P/aHwxxNQxueuBD12yQ0jV+8kJbtmKt/eR3b+fW//CfKLNgvq1Yvd7Kygp3RLxlefq1bVS7oXmzpnZ1+frfN/LTVM0JAQAANHZJ1YDTUHBAbceqVKFKgupBOa5ZgUIlChUQUolTPQyFganK0oOR2rRVICYM9vsAuEr11eWARlL6FSRSCVR10uYfBFXCNqmvhqik7RvuPw0qIaoAXZqHTN9Eh0+PAghPPHpv7Pbdql9f1/xSGHzzzR3URLBvc4mWnNSr3sfVelBTKe279nfbSq+qkZKmA2Y0Hv53EpYu9wqVCtV5XEH8uM/jmnTQ8RceezpmFTRWGjx9rul0rqmOsAmasCP7NCVdq0vb0QfQ9LvT77A6dG3TNU7z0/kv7NRc2ympJHVNruvg3XbepESx5FtXlTSO7t+QMmN1H+CPkercFzQ0uhZr34WZ8DVF2zfc7tqHKqygTJ581wbV9PDXbQ3Rwhfh9UaDjjuuN/WPmlRUjR5l3mk/+9pUuk8sdI/W2NXJTAA1haPmdw4e2tduv3z4JsOeAzPVxgZv1y3XGfDlZ+xmf/vlAbb3rj3tnf/MtRlzM83zvPDuTPveL1+zl9+bbTtv08UuP303O3a//u4z8f0KtGrVNFUJ+elzlmX/yli5ar0tXbGxeaIJUxbaWde9Zv946Qvr06OdqxGgJoE8BeD/9fp01yeBahsoLYcO29Ju+OFe1rJ5U7v/+c+sZNna8nmutS4dW9n/O3uPTdb/R9/d2dq2buGW5TMI/KBxnt8+qt3wl//ezzUr9LdnP7Oxk+ZlpwAAAIDEVQmvqWCsHi5/d9OvXKAh7BxWDyr5ShT6Jiz0edqH1Lg28hWcUW0EjQ87tdPyfRMbYUnJYkqqCh5KSr+n/aOS/uFDf9x2iKrM9tUy9bCpgGFcG/4h30SHT0++eWu8ghq+qRwNNd3cQbFpf6lkrWpj+ECLBr2Paz5CTaX4JkL8/gNC+p3oHKrMOv1mwwzVNOcQdcQd97nG6bNQXInfaODQH89VpbRrHVTC3B/7Cl56adapOlQ6WtvRN5OjNOh3WBW6jihz9NQzz881CaTzn86D/vN8Jalrcl1VMjfabEehdS10rYhm1OpV75MyDRoTXRd1/VQmfPS8Xl26ruv+y98zFSowkVZ4vVHtoLQdHFc3ww+VE3dPHnXHbTfm7s/1+1WNpDDjKE6a801NTVNX1clMAHVeqwC4Xnffvqt9Y6fuFQY18RNH39lmy44uA0EZCWoyR03n7NS/s/12xDA77bDtbPeB3a1Fs42rrcC72vRXKf3yfZioW6dWrhkfNR+0fv3GUvhLlmtZpbZN345u/L/fnWntytP9m/LlKfg/bJee1iboQ2DdujJbtHS1W4fe3dtkx5p1bNfSti1Pu/odsCYb3Ps1a9e7fgCi66/gvjol7t+7/SYZBBoXR9PvsHUnVyNhUUn6PhUAAAAaEgUI1L5nXDueXTp3yt3Q13QwVg8oCjQoGOJLKeUrUagSoirlNOnD0RWaSBA/r6SH0jDYokD3oMHD3cNSNLiqYLaCW77DSg2+lKQCXHE1F6pK21UPTHpwiurapfMmgRsvX/qTpNl3+bZvktqq/u2DGmrqIE1zB3WdgmTaTmFGiA8ManxY6wFIS+c9ZajpWFIzJDov6PyQhkqNxp3zNU6fFaJgYXgs+6GqGVYKbGodNkcJZJ3T1dyYzn01kfnrO01VO/x1rfZSTayr9o+aBFSGja4teq1KE4ENlWrQqYCDaxZodaYPzJqia7gyjidM/KhWmmC6/JJMLcB8HRz7/e+b6kLNSntPHtJ3dN8U/SycV5p7zpqapr6pk5kAPbu0ti17tLN3Js6zL2dtLHmvUvQffr7Qtc/v34fUtM/HXyx2gfBeXdu4JnPUdE7Lls2sWdPMqi5cstomls/D6961/CGqR3tXe2D2ghXZsWYff7m4QsfA3Tq1tu236uQ6J54xLzPduvJ0vDbua9ehrzr7XV+6wTVDpIC7BlH/Bh98usD9Lc2bNXEdC6vD4q8XbDxJLly62iZPW2LNmzaxFs2auYC9MhdGjZ1VYT31PTVfJJ07tNokg0DjRBkgYaaG5vFVebrVLFDXThv7MAAAAGhMfDuj0WZJVMps8ZKS3A19TQdjfWnIsMRhUk0DBbZUsk6lKpOCKgr0Rx9KffDbl5xSAESBbpUwjQuAaFw0qOVLSSroVdnOJvPxD2fRALDed+rU0e2XqELpT1KoxGCa7Runtkp++dKUzz43yg2Fmjuoy3ScK0gW1/SH3kfb1waqQsE7nafUlEu0pHaUPleQMq6DyUJNwYgCkcUIAIbXpELrlCQuYOWvPfkoQ1q1nGqKzsG+OaAwiB73uy+0rv6aHd1/cfszjei6ptm/vmma0eXrUFKyNLZ/l8ZK+1clsLVNH/n7E9mxGf6cH9cMnL9fyZdZ7/tv0HxrY7v7tCujIV+Gol9uVfsAQbK09+QhfUf3jdFzRniPluaes6amqW/qZCaAAtnH7t/fFi9bY1fc/o795alPXf8AV9z+rv3r1WlWVpqJbt/3zBTXtr4+//2jH9kPbnjDNYdz0NC+1rNrG9dkjkrSqyPh3//jI9cXwK/v+8BKs9+XHp3a2EF79bGps5fZZbe+Y3c+/rFrm//2v39UoWNg1Uo4fr/+LlPhqv8b46b7n79+YP9+9ys7ang/69O9nbVq2cz69+nggvS3PfKRPf/OTPufP493NRO85s2b2mHf7OcyDK66c6xLt+alZSvAf0z5Mjq0a2H77NrLhuzUwzUrpPXW+ms9L/j1G7YwRUn+h//9uf34ltF295OT3TDit6Pt/pFT7JDybaOaBKJ0nnHNK/a/f5uQ60Ph0VFf2iE/etZlbohqPlx5xxg75/rXXRNGAAAA9Zke+hRkVUl3/9Cnh9GwXXwfyKxqaT8Fr59+5oXsuwzfMaJvzz7fA7AehlRKNF+A2j+UhiXY9LceuH3AXA8peoCubkaGtpPaU65OEMwHusNmA/R6/0P/zHW4qfeqfaBS+pIm/UrTSy+/nn2XSava1g77OND8wloNabav5uPTIVqO2iOvrbb6tT/1wKuhus0dbE4+wJYU2NF4fZ6vuj4QFT2n+uNMGZ7+nK4aTWEgT6WH9b2kz/W3zkf+/JNE5x8FqdR0WhjEVslnf06prGgmrtISNi9UaJ0kLuDvA+phs3O69oRt4EeDWlonrYs61a0KpWPu3Hm5zFetk66nIZ3fdP1TJ+meP3en2X+6Fvsm00Tjte8KSbOucftXr+Hx5rfrI/940gbttEPu2oIMXROvuPQit0+iNWvUp4KC7OH1VNs3TQfw/tjQfGtruyvtuh/I1yyQlqvmAJWOaL9A+ltNTiV9F/n5fZzvnlzvdQ/qO3kOjwt/PtR+0G/b36Ppe4XuOWtqmvqmTmYCyGHDtnRN6nTv2sb++swnduO9H7hme049dDsXbJcturexDz9b6D5XR7xb9mxnt166t33/qIGufX+Vxj/76IE2dOee9uK7X9mjL35h3/+vTBM9Xvk1wU4pn+ePT97FVq1eb/8c9aWtWLXOtdcf7RhYQfnrfjDE2rVtYQ89/7lNmb7Efv793e20w7d389Fw/P4D7OhvbW3vT5rngu+HlK/HUftWbP9u8Pbd7PeX7WODBnS2J1+dWp6uL12mxW9/PMytt6hpo+vOH2InH7KtqyFw3T3jbNTYr+z0I3awgVt3ctPko/4P1PTQQy98bn8bOcVWrF7nOiH+6VmDXYYGAABAY6UguUqXK1isJnB8e8E+eK4AU3VKnSnwcNc9f8s1saNBmQph57AKmOR7ANYDUfh9P/iHIM3nwfvudIEk/5lEm6eIa8taQ5oObj2VuEzq1LEy1OyOAgVqxkNpUBvSt99yQ96gepr033L7H3PjfRM/hWoOFNq+EjaT5PsOqK326rVttY21jOpu581JwUc1+ZOUkaHjXRk7YZASSOOX1/8293v0TYT537le9bvX799Pc9XVN7hzcdLnCjKlacJGQR71RyDhuWj58hUFv5tETajo/K/ziualpk7+/eyj2U8zCq2Tlq2Al7aFz+RUWhWYUtDVf0dUs8vT+UXXO39+0zqdcNxRVe4TQOnQed1fTw85QufJS3N9AoiWqeufaiT4dGnd27TNlKIttK7R7aVg302/vsZ9lk+addU2U7NMqqXn969el6/Y2EqEplHQ8R+PPZW35Hpjpn0Udwzp+Ih23q/tq+2dpjksXUtOPuk4l5mQhj8O/ZCmWUNfOCOa0RfSeox+LdMBsj9O/LpIfb5ub276/ee7J4+jz3Rc6T7S7wdlFob3aGnuOWtqmvqkyQZlH1fCzLkl1q9X4SC0ZquhtLTUZmQ6agacrcrPk82aNXO58hoAAADqEh8Irq2Arx4yL7vyGvfAkrY9+s3Fp1UBkHwPZAAANFQqpayMI2W+E/AFUF/V2ZoAAAAAQLGpxJg6Ekxb6qwqfEeKVa1pUEwrV2X6sKrPTdQAQG1RprFKh8YNYfM29ZWuiSpNHbd+lalRVp9pHWujY1oAKDZqAqDoqAkAAAAAAADqOmoBAGgoilITgDgvPI4FAAAAAABQl/laEOqrQB3DkgEAoL6r9ZoAZWVlNvurMlu3jugvzFq02GB9tmxqTZs2pSYAAAAAAAAAANSyWqsJEAZ327bL/oFGLzwWyAAAAAAAAAAAgNpVq80B+ZLeHTtlSoCjcdMxoGPBHxcAAAAAAAAAgNpV630CKNirpl+69dhARkAjpn2vY8A3AwQAAAAAAAAAqH1FqQmgoWXLptart0qCl7mAMHHghk/7OFP6v8ztex0D4TEBAAAAAAAAAKhdtdYxsOdnrw6CfUfBeq3kYlFP+YC/rwGgVz8eAAAAAAAAAFC7aj0TQPwifPA/fI+Gywf6fUZA+B4AAAAAAAAAUPuKkgnghYsiA6BxCAP+BP8BAAAAAAAAoLiKmgkQIhOgcSDwDwAAAAAAAACbz2bLBAAAAAAAAAAAALUr00srAAAAAAAAAABocMgEAAAAAAAAAACggSITAAAAAAAAAACABqpKfQIAAAAAAAAAAIC6j46BAQAAAAAAAABooGgOCAAAAAAAAACABopMAAAAAAAAAAAAGigyAQAAAAAAAAAAaKDIBAAAAAAAAAAAoIEiEwAAAAAAAAAAgAaKTAAAAAAAAAAAABqoJhvKZf9OZebcEuvXq1P2XdVVcrGop5o0aZL9CwAAAAAAAABQbEXNBAgXRSZA4xBmApAhAAAAAAAAAADFVZRMAL8IvS5ZXGYrlm+wdev03o1GA6WYf4sWZu3aN7HOXZrmMgHIDAAAAAAAAACA4qj1PgF8BsDatWU2a2apLV60ofxvMgAaA+1j7Wvtc+17HQOZ8ex8AAAAAAAAACiGonQMXFZWZvPmlLmAMBon7XsdAzoWAAAAAAAAAADFUauZACrxraFkSab0Pxo3HQM6FvxxAQAAAAAAAACoXUVpDkh9AACiY4EMAAAAAAAAAAAojqLUBFAnwIBkOoQmIwAAAAAAAAAAiqHWMgHCIC/xXnjhsUBGAAAAAAAAAADUrqI0BwSEOCYAAAAAAAAAoDhqPRMAAAAAAAAAAABsHmQCREyfs9yu+sMY2++CZ+zim96yZSviOzQYOXqGDT/vKfeaT9rp0qjsvNatL7MnXptqx1/5olufF8d8lf0EAAAAAID649MpX9ieww6yZm22sIf//nh2bLJVq1bbhSOutOtv/F12TDzN9/CjT3GvhVQ2DeLTkXZ6AABqQ73JBHj1/dkukH3dPeNs9ZrS7Fiz2fNX2m/un2CH/+R5FyA/5Rcv2/PvzLTSsuQmZ5LmtXDpGrupfF4fTFlkx+3X34bs2CP7Sf2koP8tD060LXu2s9MP387atm6e/QQAAKDhG/3OWDvimFNt4aLF2TEbhYEcDfmCRPkCSQrq6DNNE9Ky/bw1JKXD02eaxgeJtKzw+3HL9unKtwzNL5xPXFpDfrsUCprlk7RNJLpdCgXF0qTfbzs/TaFtLWm2b3QaDYW2XzS9GrQ9w+Ci38Zpj4k061NX+e2h/R4nbhtH19dvr6R5oHHQ7+62O/5kV1x6kZWummOnnXJC9pPKyXddKKSm0gDUR/58nnR/oHN1mJnmr2H5zv/hvArN3/P3EeF0/jrhryN+CH/rmj76efT6LJou7T2Mhvp8ja4rovuv0DEQnT5uP0p0f+kYi6qpaeqLepEJoNL4T7853daXlmXHZJQsX2PX3vO+ffDpQjtyn3528iHb2pp1pfa/901ILPWeNC/5at5y++iLxXb0vlvZJafuauccM9A6tGuR/bR+Wbu+zD74ZIH17NrGLjttNzv/+J1s38FbZD8FAABouPyD3rcPPCY7piI9KJx65vl2x203ukDOvFmTy2/w30u8qZ8xc5ZNnTbDTjrhWPdeD4Z6QNQyzjz7YjcuavLkKW6+mr+G4XvvZWd8/6LEB8VPPv3MvR526IHuYWObAVvnvuvTFz4UKQ2XXXmN9e2zRYVlXH3tjbkHV63nvPkLcp8vXzTNjdf34h5u5Z+PP2UfTvw4+y69NNtE6zXikqts0oejXXr0evOtd7rxcdKkX9tT2/XM007MTae/823rNNvXe+DeP+Sm03DXHTdZmzats5/GO/SQAyrsewUMdbxFH1BfHPVqbr/H0Weapr7SPnpz9Bj77onH2oMPP5Z4zJ1/3llu3/rtVei3gsbJn4eH7Ll7dkxh+q3qN3v1VZdlx1RPVdIANDTX/uqmxOt2TdD1ON/5/9XX3sr+tak3Xnk6dy3R8PzTj1i3rl2yn256vUm6Pkf5e5zrb7y1wvVd89I1C1VX2Xty7Qvdq456/rG8+zHNPWdNTVOf1PlMAPUh+/oHs23sx/OyYzZq2qSpnX7Y9vbAdQfYj0/exQ2/uXiYdenQyl4fN9tWrt5Yyl/yzUs2lJnLHCifrTVpkh1ZT5WVbnC1IZqWr0h9XxcAAIC09OA4afIUd5Ouh8E4enj4znFHlT+4DXXv9YB49VWX2gMPPxb74Dlu/ATbd5+hNnCHbd17BYJKSpa6BxUFieOcd84ZFR48L7zgbPeaFPTVQ62C1/qO0hWWMPXpCx+Mx0+YaNOmz8zNV/S3xukzUXovGXGB+1sUENN7BbG0DlF6eHrr7bF2yMH7Z8ekV2ib6KFNgWA9qPntqFe9TwoQp0n/v198xfpv3c+OP/Yo9170t8Ylbes021fpmTV7jvu7upSeYUOHuOPO69mzR95199tLAfT6yh8TP7ro3MRjLo4/prVvAQB1h4LounYpGJ4vUF9VJ590nHXp3Cnx/F+d+5Q4/vqs+7wkuh77QhfRTAXdlyiTMRyHyqnsPXncNo/uR38Ple+es6amqW/qfCbAtK+X2cMvfG6nH7GdbdGtbXZshkrp7z+kt7VovnE1enVrbT26traS5WutNFLaP9+87nz8Y9cHgDz0/OeuaSGNk6Ur1tnvH/3INTmk4Q+PTbLlKzftKyDtdJ/NLLH//tP7eZswSjuvOFrP0695xdWGmLNwpZ3+36/YCT8b5cYDAAA0ZHooePj+P+Zu1qP0QKFg7wH775sdk9G9WzebO3feJoFjTa8HkXB6zVvLqMxD34IFi2zDhg1uOVH+oTZf6VJ9T9/XfESZBip9FqahbZs2Lvidr5Rc9+5drUmTJrZg4cLsmAw9yLhmLi650Ab03yo7Nr1C20QB4LgStFuXp3fM2HHuc20HVenOV806mv4vp053D+Z6KPT0t8b57aD5JVUV96Lbtyb59ITmzZtv2207wK27z7QJ+UyeU797fHZM/aOH8UE77eAe7JWJli/IEvLHMeDpNzxo8HAb9dJr7lU1jnwpTF/zyw/RGlMqvavv+79VQ0w1bHr23WmT88Kq1atyNZo06G8f5ElKg8aH00m43CRKpwbNwy/PzzMqXMe4pkei2yBcbr7PgMrSdencs093f9/1p3vda01avKTEhu61R2IAWAFjXU80FEtcoQvUjMrekyfx91m6J5Q095w1NU19U6czAVauXm8PPf+ZDdy6sx04pG92bH5zF662+YtWW/8+HaxNq2bZsYXntfM2XezI4ZkHnl237WLnHL2jG6fmg669+317/JWpNnTnnnbSgdvY5zNL7M9PTXbTemmnk1fen+0eXn56+q527Q+GuMwMNWE0dlKmhkJl5hWnXZvm9l/7bmUDyrdB29bN7DsHDLBjv721Gw8AANCYJQXjFVzu1aunTS9/0AvpAUQByT133y07pvIUEFKAPaxNEIrWNIijoLfuH5VOzU+l1NWkTcg/BOmzMCAVSlr/J58a6b47fJ9h2TE1K0x/yKcjmimRJC79SeubbztERdO3ctUq99CvB73qStpfgwYNdKXf4jJtcpk8ke1VX0Qzz/SaFNSJqsltj4ZBNXdUu0ulf32TDMpcUgC/fft27r2GfM1I6PyopoFUQ8w32TV+zMu5864y5s75wU9cbSPf5IOCPDo3SlIaqkPNqui37tN/3TWZ5kb870TnDmUm6PzhmzCJNnemdQ0/V9rat2tX8DOgqrp16+pKaj/xr5F5M9er6sjDD3avcYUy4gLG1ZHmepO7Hlei4AfSqew9eZLofVaae86amqa+qbOZAOXHgT339gz7YMpCO/OoHax1ENBPsqBktd3+6H9s9bpSO+yb/ax5toZAmnntt0cfOyqbCbDbDt3s3GMHunFjPp7nmg867fDt7Nrz9nTjb7xoqB08dEs3rZd2OjntsO3suh8MsYPKPzt02Jb245N3tZYtmthHn2dKHlVmXnF6dG5jpx66nW3fr5N1bNfKTjhwgJ1Vvt4aDwAAgE3FlT7WQ4Wq+35r+DAXQKoMPayqxKZKXg7f/ygXWIprl1rTRWsaRGkaBYZ8c0H5RAPNIa1PXGaESp4qDZujlJt/0BOlSUG5pM4249KvfhrCQJ0o8KXgmqf5hcG+qHzbV6WGfQlalaitiltuu9MFGdTfQ5TSr1ogYSBFf2uc74OiPvLBmx0Hbl/htVCpPu1j9WtR3Yw3NA76TYdNhun3q9+x+qLQsVRZcU0+VHVeaSgzIjzv6jcfln5VCWSd37SO/hrkmztTcylKl9IXXqOU7mOOPjzvZ0B1KQNMmdi6Jtf070OZDPodR5tb8c3/5bs2hNfsNNdt1WbIN08tPy4TH7WrsjUCdQ+YdJ8VCu85k9TUNHVVnc0EGDd5vt337BTXOe+A3h2yY5PNnLvc/vuu92zSl4vtJ6fsYoO335iTVNl5eco8+HT6EuvSsZUdMKSPNWuaaVxfmQi7bLsxJyjtdF7zZk3sjQmzXXM/P7zxDfvp7991/ResKy2r9LwAAABQO5KqAaehYJTajlXpy9GvjXQPynFN0kSDpVEKUKvUpx6GFPypKj3Iqk1bPSSFQScfAFepvrpcyi0p/QpqPfLA3a6TNv/Qr+rgSX01RCVt33D/afAljKPNfsTxTY349CiA8MSj98Zu36369XXNL4VN5fjmDnwwsj6KlpzUq97H1Xq4+8/3W/uu/d220qtqpKTpgBnwwiZvkjomTyOuNLDOOSotXBuipYt9YMmXftXvRe1c6zzh6Xfhm73Q3wrya52jzQjl+wyoCboW6/cRZsLXFN136f7LN7eia7UKK5xx2ol5rw3RjoGjhS/C640GFcDgelO/qeCHznN1/T62rqiTmQBTZy+zmx+aaN/eo7crKd8kT8e2Cpq/N2m+Xfybt2zWvBX2PxfuZYd/s1/uO5WZV9SataW2YMlqa9WimbVskbyp0k4ni5eusZ/931j75Z/G2ery75100Db287N2t55dM6X0KzOvCVMWuj4FwkHjAAAAUDlxVcJrKhirh8vf3fSrTTqHVTBZJd2SSvgrcKNgsj5P+5Aa10a+Mh5UG0Hjw07ttHyVutb8q9usRVUlVQUPJaXf0/5RSf/woT9uO0RVZvtqmbfdfL0rlRvXhn/INzXi05Nv3hqvoIZvKkdDTTd3UGzaX2omQrUxfKBFg97HNR+hjiZ9cyV+/wFp6DesY0v88ZM2AzBKnXXnOw9tLtGgpf8tearppHX2JaDDppDyfQZUl66Lun4qEz56Xq8uXdd1/+XvmQoVmEgrvN5Em9/Kx7c1j+JI00yT7mFVMEP3T7rnSnMfm+aes6amqavqZCbApKmLXcn+p16fZvv/8BkX3FbnturkVp3dHnTxszZy9Aw3rUr5q5Pdvj3b2R9+tq/tO3iLCoH+yswrSiX2VQK/rHznlv+XKO108uGUhS7NV5w52K4sH9QkUJ8ebW3d+kwnxpWZV//e7e32y4dXGDQOAAAA8VTSUu17xrXj2aVzp9wNfU0HYxXsVVBapcJ9SfJ8NQ0UrBlxyVWuDedo8zh+XkkPpWG1dQXJ1InlHbfduElwVcFsBZhUgsoHlxRs0jgFmQp1plsZ2q56YNKDU1TXLp3dfomTL/1J0uy7fNs3SW1V//ZBDTV1kKa5g7pOtRq0ncKMEA16r/FpOwgG8vGZqApyN+SMIwUqw9+RH8J11jlM41QKWufzsAmUfJ8B1aUadCrg4JoFWl2zNWZ0DVfG8YSJH+UtMFFVl1+SqQWYr4Nj3W+pRo3uKdJkFqBy0t6TR2lffOfksxMLh6S556ypaeqbOpkJsGWvdq5j3nBQ57bq5Fad3ap9e02jDnTvf/4z692tjV13/jesX69NA+Bp5xVHfQpomnmLVtlbE77OBeWXr1rn3ntpp5MVa9a7V5X0F0078fOFroaAVGZenTu0sm/s1L3CoHEAAACI59sZjTZLolJmi5eU5G7oazoYq4CVMgDC0ulJNQ0U+FbJOjVzk1QLQYH+6EOpD377klMK4CvQreBPXAkpjQuDShpUQk4l5RR4yteOfmX5B71oAFjvO3Xq6PZLVKH0JylUYjDN9o1TWyW/fGnKZ58b5YZCzR3UZTrO1Q55XCeKeq/xtdnGOho3f/wVk8630SaDfCnW6lIQtDLBR50nlSkSZjZ7+T4DqkrXKvVZoVpyj/z9iezYDH/Oj2sGzt+v5Mus1/2XMhg035KSpQXbe68sn3ZlNOi+IIlfru4LUbPS3pOHdP5SLVYdW0kZwGnuOWtqmvqmTmYCDN4u0zFvOKhzW3Vyq85uv3fkDm6aL79e6krWqxT9k69Ps7889WluuH/kFJu/ZFXqeSUZPngLF5T/c/k8r71nnN395GS74rZ3bfrXy7NTZKSdbqstOrgMiHv+NdmeeHWq3fnYx/bc2zNdHwBe2nlVVmnZBvtb+XY5/ooXc80GqUbEOde/blfeMcZlqshr4762Q370rD066kv3HgAAoKHQQ5+CrCrp7h/69DAatovvA0lhh4qVoeD108+8kH2X4Tst8+3Z53sA1sOQOtzLF6D2D6VhCTb9rYciHzDXQ4oeoKubkaHtpE6O0wai4vhAd9hsgF7vf+ifuU4v9V61D3yTFWnSrzS99PLr2XeZtKrpi7BtWM0vrNWQZvtqPmHTGVrOJVdcXWtt9Wt/6oFXQ3WbO9icVLtFwaCkwI7G63PfzjNQVTpnKFM1zFTSeVY1mfLJV7KzKsKaPJ7OxeobpLp07lOATAGvMHCvUtc6n2ncPX95IPeZv3Zpu0jSZ1W5rgFJdE1UJ9q6vs+bNz87NkOdXSvIHl5PdSym6QDe369pvoN22iF3Ta9JSrvuB/I1C6TlqjlApSPaL5D+Vu2a6twfNWZ+H+e7J9d73YP6Wky+Fq2OrSRp7jlrapr6pk5mAqS1ocxsfWmZa/dfQf+/PvNJbnjqjem2YlWm1H119O3Rzv7nh3vZnjt2t9fHzbZX3p9tx+7f304+pOLNf9rpBg3obD8+eVdbtXq93fHoR1ZWvg6XnbZbrmaApJ0XAAAAKk9BcpUu9+0kq114PWz44LkeMKpT6kwlh+6652+5JnY0KPgSdg6rUk75HoD1QBR+3w/+IUjzefC+O11Ggv9MoqWi4tqT1pCmg1tPnVTGleyuLDVLoUCBmvdRGk4983y7/ZYb8gbV06T/ltv/mBvvm/jx+zJJoe0rYTNJvu+A2mp2RNtW21jLqO523pxUu0VN/iRlZOh4j/aNAVSV75jUnyPURJpKu+ej840y83Qeqokmz/R71fUjPF98s/wYV42q6lKASf3JSHgeXL58Re68OX7Cf3Kf6VVBfn+eyvcZUJPULFDcMa/jNNp5vz8W0/R1pGvJyScdlzfgG/L3dX5I8xv3hTOimW0hrcfo1zIdIPvflF8Xqc/X7c2t0D15HGU2+XvJcAj3d5p7zpqapj5pskHZ4JUwc26J9evVKfsumWarobS01GZMy44Eym1Vfp5s1qyZq1ajAQAAoC7xgeDaCpboIfOyK69xNQ30cFGX+bSqpFahwDoAAACAuqle1wQAAAAAapJKEL319tjUpc6qQh3yqvRqTbdvWxt8O9f1uYkaAAAAoLGjJgCKjpoAAAAAAAAAAFAcRakJQJwXHscCAAAAAAAAABRPrWcCqKR38+aVqmyABkzHAqX/AQAAAAAAAKA4ai0TIAz0tm2X/QONXngskBkAAAAAAAAAALWrVmsCKMiroWMnsxYtqA3Q2OkY0LHgjwsAAAAAAAAAQO0qSnNATZs2tW49NpAR0Ihp3+sY0LFABgAAAAAAAAAAFEdRagJoaNmyqfXqrZLgZS4gTBy44dM+zpT+L3P7XsdAeEwAAAAAAAAAAGpXkw3lsn+nMnNuifXr1Sn7rjA/+7KyMve3f63kYlFP+YC/rwGgVz8eAAAAAAAAAFC7aj0TQPwifPA/fI+Gywf6fUZA+B4AAAAAAAAAUPuKkgnghYsiA6BxCAP+BP8BAAAAAAAAoLiKmgkQIhOgcSDwDwAAAAAAAACbz2bLBAAAAAAAAAAAALUr00srAAAAAAAAAABocMgEAAAAAAAAAACggSITAAAAAAAAAACABqpKfQIAAAAAAAAAAIC6j46BAQAAAAAAAABooGgOCAAAAAAAAACABopMAAAAAAAAAAAAGigyAQAAAAAAAAAAaKDIBAAAAAAAAAAAoIEiEwAAAAAAAAAAgAaKTAAAAAAAAAAAABqoJhvKZf9OZebcEuvXq1P2XdVVcrGop5o0aZL9CwAAAAAAAABQbEXNBAgXRSZA4xBmApAhAAAAAAAAAADFVZRMAL8IvS5ZXGYrlm+wdev03o1GA6WYf4sWZu3aN7HOXZrmMgHIDAAAAAAAAACA4qj1PgF8BsDatWU2a2apLV60ofxvMgAaA+1j7Wvtc+17HQOZ8ex8AAAAAAAAACiGonQMXFZWZvPmlLmAMBon7XsdAzoWAAAAAAAAAADFUauZACrxraFkSab0Pxo3HQM6FvxxAQAAAAAAAACoXUVpDkh9AACiY4EMAAAAAAAAAAAojqLUBFAnwIBkOoQmIwAAAAAAAAAAiqHWMgHCIC/xXnjhsUBGAAAAAAAAAADUrqI0BwSEOCYAAAAAAAAAoDhqPRMAAAAAAAAAAABsHmQCVMOdj39sw897yiZMWZgdUzdMn7PcrvrDGNvvgmfs4pvesmUr6JQBAAAAAACgqq6/8XduAID6qMFmAvgAfdLgA/elZRvspbGz7KxrX3XjT/nFy/bc6Bm2bn2Z+7yYRpYvN5rOcNDnhSxcusZuun+CfTBlkR23X38bsmOP7CcbKVPg0lvfcfOsaxkYAAAANWX0O2PtiGNOtYWLFmfHbPTplC9sz2EHWbM2W7gh30P9qlWr7cIRV8ZO8/DfH3efaZqQlu3nrSEpHZ4+0zSan2hZ4ffjlu3TlW8Zml84n7i0hvx2qU6QI2mbSHS7+PVNkib9ftv5aQpta0mzfUM+3ZVNrwZtT21Xz2/jtMdEmvWpq/z20PaLE90PGqLr67dX0jwAoC7TOezwo0+pcB2oj/z5POl6GV1Pfw3Ld/4P51Vo/p6/HofT+euEv474IbyeaPro59Hrs2i6tPcwGurzNbqu0fZle9auBpsJsPM2Xeyco3esMJx22HbWo3MbG9Cng/Xo0tp1Uvvka1Pt2rvft04dWtrPv7e79evV3m649wN74PkpLoOgmLbs1W6TNJ911A4uvR3atbSte3fITpnsq3nL7aMvFtvR+25ll5y6q51zzMDy77bIfprx/uT5Nv6TBdl3AAAADYt/0Pv2gcdkx1SkB75Tzzzf7rjtRitdNcfmzZpc/uDxXmKAd8bMWTZ12gw76YRj3fsw+H7m2Re7cVGTJ09x89X8NQzfey874/sXJT7YfPLpZ+71sEMPdA9B2wzYOvddn77wgVdpuOzKa6xvny0qLOPqa2/MPbhqPefNX5D7fPmiaW68vhf3cCv/fPwp+3Dix9l36aXZJlqvEZdcZZM+HO3So9ebb73TjY+TJv3antquZ552Ym46/Z1vW6fZviEt68GHH8u+K+zQQw6osO+vuPQid7xFAw0vjno1t9/j6DNNU19pu705eox998Rj3fZLOubOP+8st2/99ir0WwEAbD7X/uqmxOt2TdD1ON/5/9XX3sr+tak3Xnk6dy3R8PzTj1i3rl2yn256vUm6Pkf5e5zrb7y1wvVd89I1C9VT6L4dNafBZgLst0cfO/fYgRWGPXfqbouXrbHj9u9vfbq3s+Ur19nLY2fZtn072n+fs6cd/a2t7Zpz97QhO/Vw4+ctWpWdW3EM3q7bJmk+6Bt9y9O53o7Yu5/t1L9zdspkG8rM1peWWZPyPdukSXZkYP6SVfaPl75w0wAAADQ0enCcNHmKCzDrYTCOAt3fOe6o8ge3oe69HhCvvupSe+Dhx2IfPMeNn2D77jPUBu6wrXuvTIGSkqXuQfCBe//gxkWdd84ZFR48L7zgbPeaFPTVQ62C1/qO0nXaKSdkP9mYvvDBePyEiTZt+szcfEV/a5w+E6X3khEXuL+lTZvW7r0yNLQOUXoIfuvtsXbIwftnx6RXaJv4QLoeuP121KveJwWI06T/3y++Yv237mfHH3uUey/6W+OStnWa7RvS9tQyB++2c3ZM5Sg9w4YOcced17Nnj7zr7reXAuj1lT8mfnTRuYnHXBx/TGvfAgDqDgXRde1SMDxfoL6qTj7pOOvSuVPi+b869ylx/PVZ93lJdD32hS6imQq6L7n6qssqjEPlpLlvR82p05kAs+evtN/cP8EO/8nzrukaNdUzZXpJ9lOzz2aW5Nq+1zSads7CldlPK1q5er09++YM26ZvB/v27r0rBMj79Ghr7du2dH+3aN7UunVs5f4Oab6qMXDAD5+xYy57IRNIj2kyaNWa9fboqC9dWpVmpeufL3+Z/dRs6Yp1dveTk914pXvEzaPt/UnzXa2EKNVEeP7tme5vZQI0axoT1Q+oCST1ASAPPf+5W77GeZrf06/PsNatmrv5AQAANDR6EHv4/j/mAs1RethQsPeA/ffNjsno3q2bzZ07b5PAsaZX5kA4veatZVTmoW/BgkXl93sb3HKi/EPtkD13z47ZlL6n72s+okwDlT4L09C2TRsX/M5XSq57967l98FNbMHCik1C6iH3tjv+ZFdccqEN6L9Vdmx6hbaJAsAKBEfXcevy9I4ZO859ru2gqvlJNTIkmv4vp053D+Z6EPf0t8b57aD5xVX5D0W3r6f9/4e7/mr//f8us169embHVo5PT2jevPm23bYD3Lr7TJuQz+Q59bvHZ8fUPwqqDNppB5fpoky0fEGWkD+OgZB+i2omQqVFNUR/05X9XENYmlnnQJX01fnCl0oNawf5cRoq01yFlqHp9ao0henyy/Tz1d8a5+VbJ6VHg95rvJ8m7vxZmXXX4KeJbkMJt4OG6PKqup28fPOv6nr47RqOi6bN76evZn2dd5/EybcPtD6DBg+3US+95l71eZjmfNvLp2nKZ19UWG99J0rT+s81hMuQaBrDZYWfFaLr0rlnn+7+vutP97rXmrR4SYkN3WuPxEIZykzX9URDscQVukDNKXTfjppVZzMBps5eZpfd9o698PZM23uXnq5pnG/s1N3WrC91nytwPuLmt01vf/XDIXb+8Tva2I/n26/vm2CLl65x04Q+/HyhvTVhjh34jT7Wo0sbN6592xa2z269bNwn88u/O8/Kym/8P/xsob3z0bzy6ba0nl0z082av8KuuP1de2P813bE8K3sv761tb3y3mx76o3p7nNPGQ23PDjRfv/of6xrx1b2vaN2sGO+vVWu1P2CktUu0+Ll92bZhd/ZyaW7ebOmdvWf3nfLjZo6a5mbdp/BvWxA38JNAakJpCPL0ye7bptpDknjvA8+WWDPvjndTj9sO+vaedOMDgAAgIYuKRiv4LKCvNPLH/RCyhRQQHLP3XfLjqk8BRAUYA9rE4SiNQ3iKOit4LfSqfnNmj3HNWkT8sFmfZYUtEha/yefGum+O3yfYdkxNStMf8inI5opkSQu/Unrm287RCWlT0GO/zryENtx4PbZMZWXtL8GDRroaqTEZdrkMnki6akvFLwJM8/0mhTUiVq5apULuCiDCBD9htTUWdjs1y+v/mn200wQ85AjTqzw+V/vuT37aSZA2rPvTq7Gj/9cJU7V9EQ0WPrMyBdzzYWphK+WrUCwfsO+GZFCTY5FKYNZNXtGPf+YjR/zsjvX67vfOflsd971adLfvrmzQussyjz+630P2ejXRrrPfRNrYRC6Muvum3LTNFpXlZDWtUtpEc033A5aXvt27dxn1d1Ocd9XzbKePbq7z6u6HkqjMlvPOf8nLtNY4zR/XdejQWztp5/+/JeuxpmfTvI1oadlK7gfNi+oc53fBzqGlAaVXNerplHGaNrtpSbhfnL51fbgfXe6abTO0eZ4tKxoU3t676fR/C654upcGjWcUH7tifssjW7durr98MS/Rm6SSVQTjjz8YPcaVygjrhBHdaS53sQVugDqqzqZCaBg+p+f+sSWLF9rv/3xN+3aHwxxTeNcccZg23XbrrZ81Tr7+4tfuMyB/7ngG67pn+/sP8AuPGGQjZs83z6MdHarTn5ffW+29e7e1g7cq2/5DX5mvF5PPXQ7O+vIHewXd421b/3gaZfxoIyC0w7f1pW8L3/GcB0HK1Pi8jN2s5+Wp+H843eym8rTpbSEXnhnpj1fPij4fsdPh7vpLjphZ7cMebH8szkLV9lvRgyzY/fr79J9Rfk8O7dvaf9+d2aFmgVa7uiJc2zF6rV2xD5buRoKhWh+R2UzAXbbIdO0kMaJmjb6w2Mf2+HD+9keO2YupAAAAMiIK32sh3QFbr41fFiFkuZp6GHVl9wbvv9RLqigYECUpovWNIjSNKp6rwBBoYfQaKA5pPWJy4xQoEBp2Byl3HzmiyhNCpCFTfWE4tKvfhoU4FEmhqeAiIIknubnA29xkravD3iFTQ1VxS233emCDOrvIUrpVyAvDKTob43zfVDURz544zNP/GtSE02e9rECn9XNeEPDEleT6JijD3e/aX9eUIZaeO7Yfbddcp/rPH7dNVe64Kunv9V0WbRJrs6dO1X4zasUsM4xOof764Bvcixtk1XqZ+WMyPnFfzepSbd86+wp4/LKK0bk0qXP1FSLz3Cr7LqrqRe/7pqn0uxramk69fERXg+1PKVJqruddA7Xul9/3VW572t7HXzQftVaD6VRx8aSkqW5be3XLdoEnPaTmi/z21jTaX20Xlq/qLh0Kc0KkBfK9KzM9tL8/LGj86LWz2ceaxlaVr6m9qLnY/FNFsZ9lobWV9s1zCSqKcpk0PU4ul+1XQpdG5Qp5Gs7aIirNRFSRlC+eWr5ug/Id28F1Cd1MhNg7qJVNmnqYvv27lvY4B02rTKtZoI+mbHEXhzzlR108bOu2RsNaq5HVqxZ71696V8vd7UEhu3c07bo1jY7NtM8zj9e/tLuGznFlaBXcF6dBz8/eobd++ynLvNg9dr19sWsZbZ9v042dJeeuQyEju1a2A5bd8q8KadmgCZ8tsh1LHz4Pltu0nTPytWlNvHzRa5ZodP/+5Vcmr971Us2c+5yW72m1NaXbmwTaEHJKnvjg69tyI49XJ8F1aFMFTVB1LZ1czvhwAEFmxUCAABAchM2aejhWm3HqmSdSmnqQTmuaYVCD+B6wFfJQD2k+qBGVehBVqUZFWQJg06avwLgYZChLkpKv4Idjzxwtyv96h/6Vdozqa+GqKTtq/10/0P/rBCgSUslN1Vi1adHAYQnHr03dvtu1a+va34pbCrHN3fgAzr1UbTkpF71Pq7Ww91/vt/ad+3vtpVeVRr6rjtuqvR2R8PlfycqsRwNrPqSvEkZqTqPK9ga93nYHJmn4y889nTMqkS80uDpc02nc00a6k8krL2k85kC6klNuqlGWr519jStvhPS9co3bVbZdY9meIc1tTRen6uUfbTkvVR3O2mapNLW1V0PBXDjtlVUdD+J1kfrFa0lKEnp0jzimpcLpd1e6mg+vD/w0+i6ouNI9xCqwRDX1J5+F/p9+O8rg1XfCeX7rBCfaRVmwtcUrU/Yl4x+A8rsUOZNuG+jVFPC13bQEC18EV5vNGjfcb1BY1InMwFKlq91Jdc7d2wZWwJeQW01+XPw0L52++XDNxn2HFixpLtK1KtD4G/u1rNCAFzN7fxj1Jd25D5b2c+/t7vtO3gLu+jEne2HJ+xsj774pb3/yXxbu67Uvl6wwlq0aGqt8pTG99N1aNfC2rdpnh270br1621heZqVSXDDhUM3SfPJh2zrluF9/Pli+2TaEhu6c09r27pZdqy5zILr7hmXy0TQoPcaH0cZHY/8+wt7a+Jcu7B83bp34uQGAAAQFVclvKaCsXq4/N1Nv3IP/GHnsHrgVkm3pBL+CrQomKzP0z6kKngQDWIpoK3aCBofdmqn5fvmJsLSlcWU1DxRKCn9nvaPSvqHD/1x2yEqafsq2KDAm/oBqMq+V9BGTUL49OTbdxqvoIYvNaqhpps7KDbtLzUTodoYPtCiQe/jmo9QqVbfHIbff0BIvxOdQxXI1W82zFBNcw5RR9xxn2ucPgvFlfiNBg798ZyWajtFmxqT6G9Ey9CyJN86e4XOcVKZdS9ENS2UwepLW/smb7yqbiddiwqVtq7J9UiStJ8KiZY+V/NA6velkOoeV55qMPj+BvygNHm6Zqo5Id3jaHlhfwDRzypD39X1U5nw0WOzunTt1f2Xv2eqao2FqPB6oxocaTs4TpORBdQHdTIToGXzpi7wvWZNmQtiR6lEe5eOrdzr7tt3dX0FhIOa/fGWrVxnH3y6wAb06WDbblmxRL2aFZq/ZJXt2L9zLnNAJf0Hbt3JteO/qGSNNW3a1NqVL6esPB1lm/YDnOOnW7euzNbEdBjconlz1+Fws/ItrvlH0xymQc0CjZk0z63jLpEmh5RRoAyDfBkIoeUr19q7H8+1ZSvW2gW/fiOXcaCOg0UdCf+gfHzJ8k37UQAAAGho9IAfdiwb6tK5Uy7IUNPBWAVqFLDxpfdEJdySahqEbfxGm8fx80p6KA0DKQp0+/aKo8FVNUegIIRKdvrAgQ9CKRARF3SqKm3XpJKRXbt0Tgy85Et/kjT7Lt/2VZMDKs0fBnYUhNM4baswgFITfFBDy03T3EFdp1oNCqaFGSEa9F7j03YQDIR03lOGmo4lNUOi80JcifQ4CsjGnfM1Lk2wVsHC8Fj2Q3UzrBRQj5uvPydVZZ2j/ZtUd92jlDalRyWudT4Mm1upre0kNb0eacUVEAgpA8K3xR8O+Zqg82pqe0Uznv0QZprrVe99fwjqQ8Nf38PPKks16FTAwTULtHpVdmzN0DVcGccTJn6Ut8BEVV1+SaYWYL4OjvUbVM2SaNNRQH1VJzMBVFp+pwFd7a0P59iXs5Zmx27Us0tr27JHO3tn4rzyz5dlx2ZKvasD4LVBEP7rBSvt86+W2uDtu1m3jhVzyX1mg0rc+8yG8meTXCe9zZo1cRkNW2/RwT6fudQmBH0NqKbCex9vvNi0b9PC9hjY3T6bWWLvfDjXZRqE2rRqZgP6drRpXy93NRO0HO/L2cts/uKNVa8WLV9jk6cusV226WJb9myfHZuhjAJlGCRlIEQp8+Hgvfq6fgrCQR0Hi5pB0ueaDgAAoKHzzS1EmyVRKbPFS0pygZOaDsb6ko5hyc2kmgYK8qhknZq5SQoiKNAffSj1wW8frNADvgLdCtbElfTXuGjQQEEAlZRTcCJNECMtn/kSDQDrfadOHWObaSiU/iSFSgwW2r4+yBUOCrAo0KKgXVxthOrQvBTcePa5UW4o1NxBXabjPK6ZE9F7jdfnPiMMqAoF73SeCpvNScpcyteci8ZFm2SJUiCypgOAPrBYmd9CuM5eXLp0bdO1S+fU6q57Pjon63zoM7ars50KbY/aXI+QMnr99cPzze3E1ULQMvMde/nU1HHlr3PRdCfRtla/C8qQjWaqVOW6o+/4fhMe+fsT2bEZ/pwfvd8Sf7+SL7Ne91/at5pvScnS2H51qsOnXRkN+TLX/HJ1XwjUd3UyE0BN6px1xPa2YvV6G3Hz23bzgx/aX5761L3+54tF1rlDKzt2//6uiZ8rbn/Hfab+Aa64/V3716vTrCxoW19BeTUdpFoA0UD5Nn072v5D+trTb0y3n//fWDefa+8ZZ399+lMbslMPGzYo03zQId/c0tq0bm6/+vM4u+mBD+3Oxz+2n97xri1dsS47p0wNgqP23cp236Gb/e7h/9jPsvPTtI+8+Ln7/PC9+7kMjjse/dj+5y/jXIfDtz3yH7vq/8aUr+vGec2et9J1RKxplXlQHcrkUE0BdRIcDuo4WNSRsD7XdMrkOP6KF+1vI6e4TBHVSFD6jrnsBZv0ZebipEyV71/3Wvn2GuNqUgAAANQneuhTkFUl3f1Dnx5Gw3bxfSAz2q5wWgpeP/3MC9l3Gb7TQ9+efb4HYD0wq9RnvgC8fygNS7Dpbz1w+4C5AhN6gK5uRoa2U3VLv/tAd9hsgF7Ddvf1XrUPfBMTadKvNL308uvZd5m0qgR/2MeB5hfWakizfYtN+1OZUBqq29zB5pSv7W7R+Gj73UAh0XOqP86U4enP6dG26lV6WN9L+lx/63xUqN8PnX8UVI+2ma6Sz/6cUhX6zeuaoI7DPc1fJet1Xsu3zp6C1uE1QOuka5vPSKzuuoeUtnv+8kBuG/jrpM/Yru52itse/vxek+tRSNg8jF71Pul6kZQura/W24urgVhTx5W/tirDPPye0uOvpfo7TF+YsRH9rCq0bdQRsfZFtFaGOrhXkN2nRbS+Wu9CBS389tV8B+20Q+6aXpOUdu3ffM0Cabm33Xy9S8eFI66ssL/0t//NAvVBncwEEAXhb7t0b9upf2d75s0Zdv9zU2z6nOXWoW0L9/lhw7Z0Hfl279rG/vrMJ3bjvR+4QPaph25nrVpmAucqbT9t9jJr3qypbd2nYol6ad2qmV122q6uHwB1zqv5TPhkvp155PZ23flDXHM8svOALva/Fw+1AVt2tKden2bvT15gF52wsx34jT7uc0/t7V9/4V6u811lVmh+b4yfk5vP1lu0t99dsrftP6S3vfr+bNeR8cTy6c47bifr26Odm0ZmlK+nmiPatl9Hl3kAAACAmqMguUqX++Ze1NSLgsY+eK5gS3VKnemB/657/pZrSkaDgiVh57B6CM/3AKxATvh9P/imFzQfteOrjAT/mUSbEYhrc1hD9EE2H5W0TOqwsTJUwl6BAt928alnnm+333JD3mB8mvTfcvsfc+N9Ez+Fag4U2r7Fpm2rbVzTzR0Um2q3qIRpUkaGjndl7IR9YwBp/PL63+Z+p76JMP8716t+9/r9+2muuvqGXM2uuM8V9Bv1/GMFMwMViFTb/BKei5YvX1Hwu/nEncM1f9Xy8ueAfOssqrGl6f00cee/6qx71PgJ/8ltA70qA8Bfc6q7nbTOukaqZoH/rq7NbdpmaonV5HokUW0v3QuoqRy/fJ2T8zXPo3SF9xMadG074rCDs1Nk1k3z8dMo6F6Tx1X02qpB2ya8hwnTp20Y1oQLP6sqNQukmipRWka0835/7KTp60jXkpNPOs5lJqQRrouGNM0a+sIZ0QyZkNZj9GuZDpDD/aW/pT5ft9G4NNmgxjkrYebcEuvXq1P2XTLNVkNpaanNqHzTYmjAtio/TzZr1szlhmsAAACoS3wguCbaMY6jh8zLrrzG1TTwbT/XVT6tKo0XBpYAAJtPbV+nGhsF5hU4V8YMAV0ADVWdrQkAAAAAFJtKjL319tjUpc6qQh3yqtmDqtY0KCZ1iij1uYkaAKgtCsaHJY/DobrNrDQkbCcA2PyoCYCioyYAAAAAAABVQ02AmkVNAACNQVFqAhDnhcexAAAAAAAAAADFU+s1AcrKymz2V2W2bh3RX5i1aLHB+mzZ1Jo2bUpNAAAAAAAAAACoZbVWEyAM7rZtl/0DjV54LJABAAAAAAAAAAC1q1abA/IlvTt2ypQAR+OmY0DHgj8uAAAAAAAAAAC1q9b7BFCwV02/dOuxgYyARkz7XseAbwYIAAAAAAAAAFD7ilITQEPLlk2tV2+VBC9zAWHiwA2f9nGm9H+Z2/c6BsJjAgAAAAAAAABQu2qtY2DPz14dBPuOgvVaycWinvIBf18DQK9+PAAAAAAAAACgdtV6JoD4Rfjgf/geDZcP9PuMgPA9AAAAAAAAAKD2FSUTwAsXRQZA4xAG/An+AwAAAAAAAEBxFTUTIEQmQONA4B8AAAAAAAAANp/NlgkAAAAAAAAAAABqV6aXVgAAAAAAAAAA0OCQCQAAAAAAAAAAQANFJgAAAAAAAAAAAA1UlfoEAAAAAAAAAAAAdR8dAwMAAAAAAAAA0EDRHBAAAAAAAAAAAA0UmQAAAAAAAAAAADRQZAIAAAAAAAAAANBAkQkAAAAAAAAAAEADRSYAAAAAAAAAAAANFJkAAAAAAAAAAAA0UE02lMv+ncrMuSXWr1en7Luqq+RiUU81adIk+xcAAAAAAAAAoNiKmgkQLopMgMYhzAQgQwAAAAAAAAAAiqsomQB+EXpdsrjMVizfYOvW6b0bjQZKMf8WLczatW9inbs0zWUCkBkAAAAAAAAAAMVR630C+AyAtWvLbNbMUlu8aEP532QANAbax9rX2ufa9zoGMuPZ+QAAAAAAAABQDEXpGLisrMzmzSlzAWE0Ttr3OgZ0LAAAAAAAAAAAiqNWMwFU4ltDyZJM6X80bjoGdCz44wIAAAAAAAAAULuK0hyQ+gAARMcCGQAAAAAAAAAAUBxFqQmgToAByXQITUYAAAAAAAAAABRDrWUChEFe4r3wwmOBjAAAAAAAAAAAqF1FaQ4ICHFMAAAAAAAAAEBx1HomAAAAAAAAAAAA2DzIBAAAAAAAAEAFo98Za3sOO8g+nfJFdkyyykwLACi+ep0JUFq2wV4aO8vOuf51G37eU3bKL16259+Z6caH1qwrtdc/mG1nXfuqjRw9Izs2Y+HSNXbfs1PsjGtesWlfL8uOrUit1zzw3BS3jDsf/zg7dqPFy9bYHY9+bMdc9oKbRq+Tvlyc/bQwpe+h5z/Pff+i37xlH36+sEL7+floujEfzctth+OvfNGeeG2qrVtflp0iM837k+bbiJtH234XPOOWpWVq2QAAAA2RAhJHHHOqLVy06X2ZghQKVjRrs4Ubrr/xd9lPNrVq1Wq7cMSVsdM8/PfH3WeaJqRl+3lrSEqHp880jeYnWlb4/bhl+3TlW4bmF84nLq0hv13ybY9CkraJRLeLX98kadLvt52fptC2ljTbN+TTXdn0aogGxfw2TntMpFmfuspvD22/ONH9oCG6vn57Jc0DqGk65g4/+pQKv9ua4M/Zhc4jQF3kz+dJ18vo78Zfw/Kd/8N5FZq/56/H4XT+OuGvI34IryeaPvp59Posmi7tPYyG+nyNrmu0fdNuz+i+iDuvFnOa+qLeZgIoqP3oi5/b//xlvDVr2sROP2I769Cuhf3vfRPshXdmus+Xr1pnv/rzODt8xHP2//7wnn0xa2n222ZTppfY96571QXD7/nXZFu1JjkYPnvBCvv3u19l31U0dfZSG/Hb0Tby7Rn27T172zlH72gHD9vSmpanKQ1lWDz43Od2d3kadt+xh1uPhSWr7Wd3jLWPp6Y7kYybPN+uvWec2w7fO2oH69+7g93y4ET7e/n28RkJr4//2n76+3dt3qJVdvKh29i2/Tq5DA0tO5ppAgAAUJ/5B71vH3hMdkxFeuA79czz7Y7bbrTSVXNs3qzJ5Tf47yXe1M+YOcumTpthJ51wrHvvAzlaxplnX+zGRU2ePMXNV/PXMHzvveyM71+U+GDzyaefudfDDj3QPWxsM2Dr3Hd9+sIHXqXhsiuvsb59tqiwjKuvvTH34Kr1nDd/Qe7z5YumufH6XtzDrfzz8afsw4mbFnopJM020XqNuOQqm/ThaJcevd58651ufJw06df21HY987QTc9Pp73zbOs32DWlZDz78WPZdYYceckCFfX/FpRe54y0aaHhx1Ku5/R5Hn2ma+krb7c3RY+y7Jx7rtl/SMXf+eWe5feu3V6HfCoDiGb73UBs/5mUbuMO22THJKjMt6q9rf3VT4nW7Juh6nO/8/+prb2X/2tQbrzydu5ZoeP7pR6xb1y7ZTze93iRdn6P8Pc71N95a4fqueemaheopdN8eleZ+spjT1Cf1NhNAgfmn35xh++zW0269dG+76ISd7caLh9ou23axJ16dagtKVllpaZmtWLXeflj+2Y++u3P2mxmr1q63ju1a2g0XDrX9h/TOjt2UAuTPvjXDps7etJbA6jWldv/Iz2x96Qa762f72hVnDLZzjx1oPz55F9uxf+fsVPlNmrrE/j7qM/vOAQPs2vP2dOtx9blDytNeaiPfmm7rg9L8cZatWGf3P/+Z9e7Wxm744V52/vE72a/O/4YN2amHywyZs3Clm0Y1A/r36WB3XDHcLeOGC/eyI/buZ8+8Od2mzoqvAQEAAFDf6MFx0uQp7iZdD4NxFOj+znFHuYCF6AHx6qsutQcefiz2wXPc+Am27z5Dc4ENZQqUlCx1D4IP3PsHNy7qvHPOqPDgeeEFZ7vXpKCvHmoVvNZ3lK7TTjkh+8nG9IUPxuMnTLRp02fm5iv6W+P0mSi9l4y4wP0tbdq0du+VoaF1iNJD8Ftvj7VDDt4/Oya9QtvEB9L1wO23o171PilAnCb9/37xFeu/dT87/tij3HvR3xqXtK3TbN+QtqeWOXi3is8TaSk9w4YOcced17Nnj7zr7reXAuj1lT8mfnTRuYnHXBx/TGvfAgDqDgXRde1SMDxfoL6qTj7pOOvSuVPi+b869ylx/PVZ93lJdD32hS6imQq6L7n6qssqjEPlpLlvD6W5nyzmNPVNnc0EUPD6pgc+rNDETth8zfzFq23m3OW2x8Du1r5NCzeue6fWtt+eve2TaUts+uzl1ql9K/vNiGF28iHbuIB/aPD23VxA/Ju79LSWzZtlx27qg08W2IvvfmXnHDMwO2ajz75aam99+LWdd+yONqBPh+zYTak0vmoe/OKusXbAD59x63PxTW+5dRz/yXxbu26DS7dK8kv/3u1t52262pQZJbZs5To3Lom2weSpi+ybu/ayHl3auHGqETFkx+427evlNmveClu4dLV73W27btatc2s3TdvWze3AvfrY/CWrbFLKGgcAAAB1nR7EHr7/j7mb9Sg9bCjYe8D++2bHZHTv1s3mzp23SeBY0ytzIJxe89YyKvPQt2DBovJ7wg1uOVH+oXbInrtnx2xK39P3NR9RpoFKn4VpaNumjQt+5ysl1717V2vSpIktWLgwOyZDDzK33fEnu+KSC21A/62yY9MrtE0UAFYgOLqOW5end8zYce5zbQdVzc9XzTqa/i+nTncP5noQ9/S3xvntoPnFVfkPRbevp/3/h7v+av/9/y6zXr16ZsdWjk9PaN68+bbdtgPcuvtMm5DP5Dn1u8dnx9Q/CqoM2mkHl+miTLR8QZaQP46BKP0e1VSESoxqiP6u/Tkk3+dqrmTCxI9yNZc0hE1/qETqoMHDbdRLr7lXfR4tFeq/F37m0xatUaT3Gv/cv1+29l37291/vt/VltJ3k2ofhTSNhui6hedJpV3roHGaNjrvpDSH9N1wGv99TRttnsMvww8+LXHTSnTe4fYW/70pn33hXv104TqgbtB16dyzT3d/3/Wne91rTVq8pMSG7rVHYqEMZabreqKhWOIKXaDmFLpvj0pzP1nMaeqbOpsJMO6TBfb1gpV2wQmD7NcX72UD+3dxzdeMfKtim/5R7bIZAnMXr3Kv1bGgZLXd++yndvjeW9rg7TZ9YFPwvX3blta6VTMX4Fdb+3Ht8au5nh//7u3ydVpoR+27lWsyaJs+HW31mvUuI6B759bWucPGTIo2LZtZ7+5tbcmytVayYm12bDw177Nydalt2bNd+QNRdmS5rXu1d6/5tkPb1plt9dX85e4VAACgoUsKxiu4rCDv9PIHvZAyBRSQ3HP33bJjKs8H2MPaBKFoTYM4Cnor+K10an6zZs9xTdqEfLBZn4UBllDS+j/51Ej33eH7DMuOqVlh+kM+HdFMiSRx6U9a33zbISopfQpy/NeRh9iOA7fPjqm8pP01aNBAVyMlLtMml8kTSU99oeBNmHmm16SgTtTKVatcwEUP2YCnIPghR5xYoemvv95ze/bTTKBZzXo88sDduc9VWjPa1Icy4M75wU9crSLftIOCOToHikr1apxKGutV0/haY1pGtFkIvVcQW4Gs226+3p7418hckF3LVQavxh952EGu6RCVpFZtKX1fy0pD8/jrfQ/Z6NdG5par5ih88N17ZuSLuabO/LzzpdlTsF2/T9/MidK52y6Dsp9WpPnpfOabVNH82rdrl/20Ip37FPBXs2B+er1KtFk6NX32k8uvtgfvu9NNpxLBtd3sDKqmW7eurvacjvXwt1VTjjz8YPcaVygjrhBHdaS53sQVusDmk+Z+spjT1Dd1NhNAJeNv+ck37ajhW9l+e/SxS07dxfr1au863F27vsyVZO/SsZV98OkC1/a/rFy93sZ+PM/9XV1qBkg1D8rKX4/bv781b15xU+nzWfNW2qKSNXb9Xz9wtQ7U1n7L8unUHv9Tb0wrf0AxV9L+ricmWef2LSs0GXT5GbvZFt3auSaFlAHQKaipoGWpNH8aK9asd6+9srUAvM7l28Zr26a5dWjbwiZ+vtAWLslcaJX+MTW0rQAAAOq7uNLHClCouu+3hg+rUNI8DT2s+hKNw/c/ygWc4gI+0WBpHE2jqve+uaB8ooHmkNYnLjNCQRalYXOUctODlS9hrzSpPemwqZ5QXPrVT0MYwBMFqRQ88jS/fO1UJ21fH+wKmxqqiltuu9MFGdTfQ5TSrwBfGEjxgUPfB0V95IM3PvPEvyY10eRpH6tfi+pmvKFh8b99ZZqF54fdd9vF/a79eTRsskE0rb4TNsUl0aYdNI0C1VpOkrhl6DVsFsLPS+81vdJ81ukn5aavKgWhrrxiRO465Jer9Gg5XufOnSqcr9KkWed/BXOVUeHPf1rOMUcf7v4OaXptp/CaqPnFTSsqQa3zs65/fnq9Xn/dVe6cGK0FpcCyT4N+/8owyVezDZuPMsZ0rOsYz/e7qQplMuh6HG1uxTf/l+/aoDblfU2SNLVJlNGfb55aflwmPuqe8H4ySTGnqavqbCZAqxbNbPynC+3uJyfbiJtH24U3vumavlHwuqx0g2t+59t79LY3Pphjl976jpvuF3e9Z29PnJOdQ9UpeK/29EeN/crOPWZH69G5YoBd1q0rs6Ur1tr60jL70UmD7KdnDHZt7f/u0r1dZsXLY2fZ8pXrXLNEap7oiH36uQ5746gT4abV3BPRTIpQj05t7KC9+rjmhbQtVaPiuj+Ptydfy+TCAwAAYFNJ1YDTUCBDbceqRKNKb+pBOa5JmmiwNEpBHHWSqofU6gSj9SCrkpfRKu2avwLgYfClLkpKvwJQKvmrUrH+oV9NBCX11RCVtH21n+5/6J8VgldpqURrz7475dKjAML/b+9+YKsqzziOP7YUsSi1lIoUqvJX8c9YdJkSTabLNOqyTZ1Tp3MxS9QY43TijG7GjGVGZbqALmpmdHMatC5jmU6GooFNYaICoojAsBIRDEXl34rSKqy/9963vBzOufe09/a2l34/ycntOb099/Tcc95zzvO+7/POavpj7P49onGkS78Upsrx6Q580K4cRVtO6lXzcQE9pUdRmhTtK72qR8qD90/r8n7H/su31k2qLFU5qnRucWW1gnfheB8ajyP6Pr1H69fnJEn6DLUgDv9W5ZPmFVzUa1zlX1epfFJFdUjbEU1hpnMnPG/SbLN6vyknusqifLRuVQAonVGaFvo63+PWHZe6TgOqh9dBfVa+nm3oXf5YDyvhi0XHrO6/fLoVX6H1o0svzHltiA4MHG18EV5vNKlM4XqD/qRPVgKodbzGA5gy/T/24aYddvbkRvvlT060o4PBdqsGVNi1Fx7rgvTrNrbarPlr7cSj6+zqCzLd1kbWx3dJS0Ppe+5/+h27+Ftj3AC7cQZUHuDSAB1eV23Hj1Vu0szyuiGDbGLHdrZs/tzl4vfpeJTyx78nSr0JNm/fk/ZHgwFrMF9P+2Pqw4vdWAJ+0ryWe+s3tWZ/ytiybWf2J7UcMLvkrHGu94F6UfxlbnPHdh5ot1w+yf3+yMOTxzMAAADoD+K6hBcrGKuHy99N+/U+g8MqsKGWbkkt/BVkUTBZv0/7kBqXI18BbfVG0PJwUDt9vlpda/0+3UWpJaUnCiVtv6fvRy39w4f+uP0QlbR/FWy44abb3DgA3fnuFczyaTU05frutFxBDd+iV1Ox0x2Umr4vtSxWbwwfaNGk+bj0EWrt61OF+O8PCKUpJ9QqU60zo4qZVmrZW+90jhPgJ7U8Dql8UqWqjvdiVa7mK8u8uNbK+bY5TVkZUu8KVbL6FtfRlERRcevWvJajvOnY1vVTlfDRcr1Quvbq/svfM+VrMJFWeL2ZevvNrhGEryDMRecJ+rY014lSvqev6pOVAM3rt9n8xevt0rPH2dQrT3IpgUaPOsT1AAgp/78G7J0z4xw3XXr2ePto02duYN3hQ/dtvZ/Wa++22PbWNnto1rt22pWZoLsG8hWlCNL88ubNrgJAAxW3te/J/+8NGljhejMMPnCAm2/NpiwKqRKhob7atrXu7HjwzKT1kbYvdtvmbTvtsNpBrlKhqqrCLj5zrM2YcmrnpHktHzV8sA2orLCPs2l+vJYtn7nl+r2o0uSC00fb36adZfMe+o5df8nx9un2nVY9qNJGJ/RQAAAA2N8oSKTUCnF5PGsPrem8oS92MNYHPcJWjbl6GoR5nKPpcfy6kh5Kw0CQAt0KAN0//c59gqtKxRAOUqnJD1ypAFZcz4Xu0n7VA5MenKKG1h4aG7yTXNufJM13l2v/KuWAWvOHaQVUWaBl2ldxA18Wwgc19Llp0h30derVoIBsWBGiSfNannaAYKAr1OI9rnyJjvNSiGgFn5/CykmVDQosXnTh9/ZJZ1JMSbmqo9Jsc1epzNQ61OpaZWKulCtxLfk1r+Uof+pBpwYOLi3Q54WPyxnSNVwVxxrIO1eDie6ackOmF2CuAY51v6XeL2FvIvSuNPeTpXxPuemTlQBqra7BbgcNrMwuMVvzwVZ7f8P27Fy8pSs/tucWfmCnn9RghxVQCXDcmFo3eG84nXvqEe53J4zN/E4t6U88pt52tn1h8xZvcGmKZMMnO+ytNZ/aUQ1DrObggTb+yBqXHmjeGxvcIL5Rx48bam3tu+3lZR0X4+w63lu/zRav3GSnnDDcDq6ussqKA+yYow61r00c1jlpXssbhlXbuMYh9urbG934A6JeBK8s22iTJtTZmBFD3LIo7cunX2y20yaNsDEj498DAACwv4lLQyBqZbZ5y9bOG/piB2N90CNsFZnU00CBb7WsU5qbpJbo0RQX4oPfvuWrAvgKdCtQE9fSX8uigSG1kFNLObWQy5VHv6u0XxWwigaANV9TM2SfVBeSb/uT5GsxmG//+gBXOCmIpmCaWsAWEjyL41tT/mP2XDflS3fQl+k4V87wuEEUNa/l+XKvA1FxabNCOtdVwRRXuavK0mIM6unLE1++JPE5xn9716+KliolLgCpa5g+J67s9NJsswKt3Q1wqlxWmZiUskfr9mmHQr7nXbEq2dF7dK1S2jyN/fDkU7OySzN8mR+93xJ/v5LrGND9lyoYtN6tW7cVJbVWyG+7Khp0X5DEf67uC9H70txPlvI95aZPVgLU1w5ygfO/vtRsf5692h57brU9Pvu/VnvInsFu5am5a+y+puX2yN9XufQ4P7/vVRs78hA7/4zRLkDeXRqIWIP3hpN6I8hXJtS5+cbDD7ZjjqyxM09utJlz1rgc+8q1f+vvF1nr51/Y+d84yg1e3DBssF1+7nhb8f4Wu/qulzu3V4MHa4yDSePq7Myvj9xrHb95ZLENH1pt3+pY3nG85TSs5iC7oOP/1fp/8cDrbmyE2//whi1b/YnbBj/AsCoh9Jn67HueWGbX3J0piH/87QmuR4K8qb+56QW3v1UhobRE059827574xw3ILN89PEOu2LqfLul4//0AzIDAACUCz30Kciqlu7+oU8Po2FefB/I7M6AwKLg9TPPzsnOZSgQpKCHz2ef6wFYD8wacC9XAN4/lIYt2PSzHrh9wFwPKXqALrQiQ/up0Nbv2q/RtAF6DfPua169D3x6iTTbr2168aV/Zecy26oW/GEaDq0v7NWQZv+Wmr5PVUJpSqq8KAfq3aJgUFJgR8v1e5/nGUjDl9vRXPRqIazz2pcvqjT057no3Fc5G44jkoYP/ISVCkmfoe3xZZZ+VkBRZdqokSNcORSWefo/cvXiSqJeSGFZr8/RNSxfhWGabVb5qsoEpYbzgXy9Rq9houUPP/L4Xu/TtTKs3A4lrVvz4bUK5U3XUg02rWO9pWVTdmmGBrjXOeGPN/HHQL6GFv6813qPnTih85peTNp23Q/kSgukz9XA2dqOa667ufNYFv2snjCF3B8hN+1b3YP6Hke+XMt1P1nK95SbPlkJoMD5dRcdZ9UHVdmjz6xy6YGmXDbJ6ofuvYOrKivt30s/skefXeny+F92zni789qTbVhNab4IpdhRWp2rzptob67cZE0vNFtD/WCb/rPJnWMJKIh/zuRGu/u6k612yIHWNPc9e+Kfq237jjYXfFdFwU8vOcG+/83R9to7LS5fv1r533P9KanGNdD6NWbCLVd81fUAUAB/a2ubTev4PPWI8AZWVbjeBdpXL76+wc44aYRNv3GyG2AZAACgP1HgQa3LfboXpXpRsMYHJBSgLKTVmQJIDz78WGcqGU0KlISDw6plZq4HYAV4wr/3U/gQ9MSfHnABLv87yTcInp+iD7K5KJ1GMVrSqoW9AgU+P/UPL7/KZtx7R85gfJrtv3fGQ53LFexSip98waV8+7fUtG+1j/WwWeh+7k3q3aIW2UkVGTreo2NjAGnonNa5rXPcn6+33naHK29F5YvShoX576Plblp6v85Ff43wFQ/RMkyTgoe6VigwpG0LKxj98e5SpWTLKx8UzfxtuvJGPbPU+8t/ZtpyTnJtsyiIpXFLFMj3Za1e/9e695iD3pI3397rffq7pFRtSetWBTtjf+xflBZIvQijdC5EB+/3x02asY50Lbn4B+e58yaNMI2fpjRpDX0lYVhZFaX/Y8H8TK8efyz7/0XK+bpdjtLcT5byPeXkgN1KcNQF6zZutcbhNdm5ZFqtpi+//NI+WJtdCHQ4oqOcrKysdK0rNAEAAPQlPjDTU0EKPWTeePPtLhCih4u+zG+rWuOlCTgBAIqnp69HAID+o0/2BAAAAAB6g1qMvbLwtdStzrpDA/IqNVB3exqUks/lXM4pagCgL/JpLtS6NDoVewByAADoCYCSoycAAAAAAAC50RMAAFAsJekJQJwXHscCAAAAAAAAAJROj/cE2LVrl234cJe1txP9hVlV1W5rGFVhFRUV9AQAAAAAAAAAgB7WYz0BwuBu9eDsD+j3wmOBCgAAAAAAAAAA6Fk9mg7It/QeUpNpAY7+TceAjgV/XAAAAAAAAAAAisdn6AmnHh8TQMFepX6pq99NRUA/pu9ex4BPAwQAAAAAAAAAKEw04B+nJD0BNA0cWGHDR6gl+C4XECYOvP/Td5xp/b/Lffc6BsJjAgAAAAAAAACQXpqgf1SPDQzs+dVrgGD97F+7+LEoUz7g73sA6NUvBwAAAAAAAADkVmgsvccrAcR/hF795Oex//KBfl8REM4DAAAAAAAAAJIVGj/3f1+SSgAv/KhC/wGUhzDgT/AfAAAAAAAAAHLrauw83/tLWgkQohKgfyDwDwAAAAAAAAD5dSVmnvTe5cuX26pVq6y5udnWrVtnLS0tvVcJAAAAAAAAAABAf5c2RB/3vhUrVtiCBQts0aJFtmTJEmtvb8/+Zg8qAQAAAAAAAAAA6AVpwvPR96xdu9Zmz55tzz//vGvxnw+VAAAAAAAAAAAAlFC+sHzc79Xiv6mpyebNm5ddkk63KgFqDiLPOwAAAAAAAAAAXdXVCoCFCxfazJkzbenSpdklXWH2f/og/CktNbq2AAAAAElFTkSuQmCC" + } + }, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "![%7B283F9496-4034-464B-9F93-DEA587D37A5B%7D.png](attachment:%7B283F9496-4034-464B-9F93-DEA587D37A5B%7D.png)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "colab": { + "provenance": [] + }, + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.5" + } + }, + "nbformat": 4, + "nbformat_minor": 1 +} diff --git a/cookbook/example_usage_of_fetch_scores.md b/cookbook/example_usage_of_fetch_scores.md new file mode 100644 index 000000000..95364d60c --- /dev/null +++ b/cookbook/example_usage_of_fetch_scores.md @@ -0,0 +1,1020 @@ +## description: This document focuses on retrieving evaluation results logged in Langfuse using the fetch_scores. category: Examples + +--- + +# Fetching Scores from Langfuse + +Example: Using UpTrain and Ragas for Model Evaluation and Retrieving Metrics from Langfuse +Langfuse makes it easy to log and retrieve model evaluation metrics, helping users analyze and compare various performance measures. In this example, we'll demonstrate how UpTrain and Ragas can be used to evaluate models and retrieve specific evaluation metrics logged into Langfuse using `fetch_scores()` function and verify these metrics extracted by creating comparisons using a correlation matrix. + +**fetch_scores()** provides these arguments - + +- `page` (*Optional[int]*): The page number of the scores to return. Defaults to None. +- `limit` (*Optional[int]*): The maximum number of scores to return. Defaults to None. +- `user_id` (*Optional[str]*): A user identifier. Defaults to None. +- `name` (*Optional[str]*): The name of the scores to return. Defaults to None. +- `from_timestamp` (*Optional[dt.datetime]*): Retrieve only scores with a timestamp on or after this datetime. Defaults to None. +- `to_timestamp` (*Optional[dt.datetime]*): Retrieve only scores with a timestamp before this datetime. Defaults to None. +- `source` (*Optional[ScoreSource]*): The source of the scores. Defaults to None. +- `operator` (*Optional[str]*): The operator of the scores. Defaults to None. +- `value` (*Optional[float]*): The value of the scores. Defaults to None. +- `score_ids` (*Optional[str]*): The score identifier. Defaults to None. +- `config_id` (*Optional[str]*): The configuration identifier. Defaults to None. +- `data_type` (*Optional[ScoreDataType]*): The data type of the scores. Defaults to None. +- `request_options` (*Optional[RequestOptions]*): Additional request options. Defaults to None. + +The returned data contains a list of scores along with associated metadata, which can be useful for evaluating the performance of different models or experiments. If an error occurs during the request, it raises an exception, providing insight into what went wrong. + +--- + +### 1. Setting up the environment + +Importing necessary libraries and setting up enviornment variables + + +```python +!pip install ragas uptrain litellm datasets rouge_score langfuse +``` + + +```python +import os +# get keys for your project from https://cloud.langfuse.com +os.environ["LANGFUSE_PUBLIC_KEY"] = "" +os.environ["LANGFUSE_SECRET_KEY"] = "" +# your openai key +os.environ["OPENAI_API_KEY"] = "" + +# Your host, defaults to https://cloud.langfuse.com +# For US data region, set to "https://us.cloud.langfuse.com" +os.environ["LANGFUSE_HOST"] = "https://us.cloud.langfuse.com" +``` + +### 2. Getting the data + +This section demonstrates how to load and prepare a dataset for evaluation. The "amnesty_qa" dataset is loaded using the `datasets` library, and a subset of 5 evaluation examples is selected for analysis. The selected data is then converted into a pandas DataFrame for convenient handling and processing. + + +```python +from datasets import load_dataset + +amnesty_qa = load_dataset("explodinggradients/amnesty_qa", "english_v2") +amnesty_qa_ragas = amnesty_qa["eval"].select(range(5)) +amnesty_qa_ragas.to_pandas() +``` + + +```python +import pandas as pd +amnesty_qa_df = pd.DataFrame(amnesty_qa["eval"].select(range(5))) +``` + + + + + +
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
questionground_truthanswercontexts
0What are the global implications of the USA Su...The global implications of the USA Supreme Cou...The global implications of the USA Supreme Cou...[- In 2022, the USA Supreme Court handed down ...
1Which companies are the main contributors to G...According to the Carbon Majors database, the m...According to the Carbon Majors database, the m...[In recent years, there has been increasing pr...
2Which private companies in the Americas are th...The largest private companies in the Americas ...According to the Carbon Majors database, the l...[The issue of greenhouse gas emissions has bec...
3What action did Amnesty International urge its...Amnesty International urged its supporters to ...Amnesty International urged its supporters to ...[In the case of the Ogoni 9, Amnesty Internati...
4What are the recommendations made by Amnesty I...The recommendations made by Amnesty Internatio...Amnesty International made several recommendat...[In recent years, Amnesty International has fo...
+
+
+ +
+ + + + + +
+ + +
+ + + + + +
+ +
+ + + +
+ +
+
+ + + + + +```python +amnesty_qa_df['response'] = amnesty_qa_df['answer'] +amnesty_qa_df.rename(columns={'contexts':'context'}, inplace=True) +``` + + + + + +
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
questionground_truthanswercontextresponse
0What are the global implications of the USA Su...The global implications of the USA Supreme Cou...The global implications of the USA Supreme Cou...[- In 2022, the USA Supreme Court handed down ...The global implications of the USA Supreme Cou...
1Which companies are the main contributors to G...According to the Carbon Majors database, the m...According to the Carbon Majors database, the m...[In recent years, there has been increasing pr...According to the Carbon Majors database, the m...
2Which private companies in the Americas are th...The largest private companies in the Americas ...According to the Carbon Majors database, the l...[The issue of greenhouse gas emissions has bec...According to the Carbon Majors database, the l...
3What action did Amnesty International urge its...Amnesty International urged its supporters to ...Amnesty International urged its supporters to ...[In the case of the Ogoni 9, Amnesty Internati...Amnesty International urged its supporters to ...
4What are the recommendations made by Amnesty I...The recommendations made by Amnesty Internatio...Amnesty International made several recommendat...[In recent years, Amnesty International has fo...Amnesty International made several recommendat...
+
+
+ +
+ + + + + +
+ + +
+ + + + + +
+ +
+ + + +
+ +
+
+ + + + +### 3. Evaluation with UpTrain + +This code demonstrates how to evaluate a dataset using UpTrain's `EvalLLM` class. An instance of `EvalLLM` is created using the OpenAI API key. The `evaluate` function assesses the `amnesty_qa_df` DataFrame against three evaluation criteria: context relevance, factual accuracy, and response completeness. The evaluation results are stored in a new DataFrame, which is then printed and optionally saved as a CSV file. Finally, the function is called in the main block to execute the evaluation and store the results. Refer a detailed version [here](https://langfuse.com/guides/cookbook/evaluation_with_uptrain) + + +```python +import os +import json +import pandas as pd +from uptrain import EvalLLM, Evals + +OPENAI_API_KEY = os.getenv('OPENAI_API_KEY') +eval_llm = EvalLLM(openai_api_key=OPENAI_API_KEY) + +def evaluate(): + # Step 5: Evaluate data using UpTrain + results = eval_llm.evaluate( + data=amnesty_qa_df, + checks=[Evals.CONTEXT_RELEVANCE, Evals.FACTUAL_ACCURACY, Evals.RESPONSE_COMPLETENESS] + ) + + # Convert the results to a DataFrame + results_df = pd.DataFrame(results) + + # Print the DataFrame + print(results_df) + + # Optionally, save the DataFrame to a CSV file + results_df.to_csv('evaluation_results.csv', index=False) + + return results_df + +# Call the function and store results in a DataFrame +if __name__ == "__main__": + uptrain_df = evaluate() +``` + + 100%|██████████| 5/5 [00:01<00:00, 3.19it/s] + 100%|██████████| 5/5 [00:02<00:00, 2.01it/s] + 100%|██████████| 5/5 [00:06<00:00, 1.30s/it] + 100%|██████████| 5/5 [00:02<00:00, 2.25it/s] + 2024-10-13 16:50:32.097 | INFO  | uptrain.framework.evalllm:evaluate:376 - Local server not running, start the server to log data and visualize in the dashboard! + + + question \ + 0 What are the global implications of the USA Su... + 1 Which companies are the main contributors to G... + 2 Which private companies in the Americas are th... + 3 What action did Amnesty International urge its... + 4 What are the recommendations made by Amnesty I... + + ground_truth \ + 0 The global implications of the USA Supreme Cou... + 1 According to the Carbon Majors database, the m... + 2 The largest private companies in the Americas ... + 3 Amnesty International urged its supporters to ... + 4 The recommendations made by Amnesty Internatio... + + answer \ + 0 The global implications of the USA Supreme Cou... + 1 According to the Carbon Majors database, the m... + 2 According to the Carbon Majors database, the l... + 3 Amnesty International urged its supporters to ... + 4 Amnesty International made several recommendat... + + context \ + 0 [- In 2022, the USA Supreme Court handed down ... + 1 [In recent years, there has been increasing pr... + 2 [The issue of greenhouse gas emissions has bec... + 3 [In the case of the Ogoni 9, Amnesty Internati... + 4 [In recent years, Amnesty International has fo... + + response score_context_relevance \ + 0 The global implications of the USA Supreme Cou... 1.0 + 1 According to the Carbon Majors database, the m... 1.0 + 2 According to the Carbon Majors database, the l... 1.0 + 3 Amnesty International urged its supporters to ... 1.0 + 4 Amnesty International made several recommendat... 1.0 + + explanation_context_relevance score_factual_accuracy \ + 0 {\n "Reasoning": "The extracted context con... 1.0 + 1 {\n "Reasoning": "The given context provide... 0.6 + 2 {\n "Reasoning": "The extracted context pro... 0.4 + 3 {\n "Reasoning": "The given context contain... 0.8 + 4 {\n "Reasoning": "The extracted context con... 0.6 + + explanation_factual_accuracy \ + 0 {\n "Result": [\n {\n "Fa... + 1 {\n "Result": [\n {\n "Fa... + 2 {\n "Result": [\n {\n "Fa... + 3 {\n "Result": [\n {\n "Fa... + 4 {\n "Result": [\n {\n "Fa... + + score_response_completeness \ + 0 1.0 + 1 1.0 + 2 1.0 + 3 1.0 + 4 1.0 + + explanation_response_completeness + 0 {\n "Reasoning": "The given response is com... + 1 {\n "Reasoning": "The given response is com... + 2 {\n "Reasoning": "The given response is com... + 3 {\n "Reasoning": "The given response is com... + 4 {\n "Reasoning": "The given response is com... + + +### 4. Evaluation with Ragas + +The `evaluate` function is called with the selected evaluation data and a list of metrics, including context precision, faithfulness, and answer relevancy. The results from the evaluation are then converted into a Pandas DataFrame for easier analysis. This approach enables users to assess the quality of model responses based on specific criteria. For more detailed information on evaluating RAG models with Ragas visit [here](https://langfuse.com/guides/cookbook/evaluation_of_rag_with_ragas). + + +```python +import json +from ragas import evaluate +from ragas.metrics import ( + answer_relevancy, + faithfulness, + context_precision, +) + +ragas_result = evaluate( + amnesty_qa["eval"].select(range(5)), + metrics=[ + context_precision, + faithfulness, + answer_relevancy, + ], +) + +ragas_df = ragas_result.to_pandas() +``` + +### 5. Setting Up Langfuse Client + +This code snippet initializes a Langfuse client using the `Langfuse` class. The client is configured with a secret key, public key, and host URL, which are retrieved from the environment variables. This setup allows users to interact with the Langfuse API for logging and analyzing model evaluation metrics seamlessly. + + +```python +from langfuse import Langfuse +langfuse_client = Langfuse( + secret_key=os.environ.get("LANGFUSE_SECRET_KEY"), + public_key=os.environ.get("LANGFUSE_PUBLIC_KEY"), + host = os.environ.get("LANGFUSE_HOST") +) +``` + +### 6. Logging Evaluation Scores to Langfuse + +The functions `log_uptrain_scores_to_langfuse` and `log_ragas_scores_to_langfuse` log evaluation scores from the UpTrain and Ragas frameworks into Langfuse. Each function iterates through its respective DataFrame, extracting relevant score columns and logging them with `langfuse_client.score`, using a unique ID for each entry. + +Scores in Langfuse are objects for storing evaluation metrics, linked to traces and optional observations. Each score can include attributes such as name, value, trace ID, and configuration ID to ensure they comply with a specified schema. This structured approach enables effective analysis of evaluation metrics within the Langfuse platform. + +#### Key Attributes of a Score Object: +- **name**: Name of the score (e.g., user_feedback). +- **value**: Numeric value of the score. +- **traceId**: ID of the related trace. +- **id**: Unique identifier for the score. + +Using scores effectively allows for quick overviews of evaluations, segmentation of traces by quality, and detailed reporting across use cases. Score schemas can be defined to standardize metrics for consistency and comparability in analysis. + + +```python +def log_uptrain_scores_to_langfuse(uptrain_df): + """Log evaluation scores to Langfuse.""" + score_columns = ['score_factual_accuracy', 'score_context_relevance', 'score_response_completeness'] + for index, row in uptrain_df.iterrows(): + for score_name in score_columns: + score_value = row[score_name] + langfuse_client.score(id=f"Uptrain_{index}_{score_name}", value=score_value, name=score_name) +``` + + +```python +def log_ragas_scores_to_langfuse(ragas_df): + score_columns = ['context_precision', 'faithfulness', 'answer_relevancy'] + + for index, row in ragas_df.iterrows(): + for score_name in score_columns: + score_value = row[score_name] + langfuse_client.score(id=f"Ragas_{index}_{score_name}", value=score_value, name=score_name) +``` + + +```python +log_ragas_scores_to_langfuse(ragas_df) +log_uptrain_scores_to_langfuse(uptrain_df) +``` + +### 7. Fetching Scores from Langfuse + +The `fetch_scores_from_langfuse` function retrieves evaluation scores from Langfuse based on the specified score name. It utilizes the `fetch_scores` method from the Langfuse client to obtain a comprehensive list of scores that have been logged in the system. This function is particularly useful for users who want to analyze specific evaluation metrics associated with their models or applications. + +By using the `fetch_scores` method, the function provides flexibility through various optional parameters that allow users to filter the retrieved scores according to their needs. For instance, users can specify pagination options such as the page number and the limit on the number of scores returned, making it easier to handle large datasets without overwhelming the interface. + +In addition to pagination, the function supports filtering scores by criteria like user identifiers, timestamps, and score sources. This means users can fetch scores that were recorded by specific users or during a certain time frame, allowing for a more focused analysis. Users can also filter scores based on their values or specific configurations, ensuring that the retrieved data aligns with the evaluation metrics of interest. + +The result of this function is a `FetchScoresResponse`, which includes not only the list of scores but also metadata about the scores retrieved. This allows users to quickly gain insights into the evaluation metrics relevant to their projects and make informed decisions based on the data. Overall, this function enhances the usability of Langfuse by simplifying the process of accessing and analyzing evaluation scores. + + +```python +def fetch_scores_from_langfuse(score_name): + """Fetch scores from Langfuse based on score name.""" + # Fetch scores for the specified name from Langfuse + scores_fetched = langfuse_client.fetch_scores(name=score_name) + return scores_fetched +``` + + +```python +score_columns = [ 'score_context_relevance', 'score_factual_accuracy', 'score_response_completeness', 'context_precision', 'faithfulness', 'answer_relevancy'] + +scores_df = pd.DataFrame(columns=score_columns) + +for score_name in score_columns: + fetch_scores = fetch_scores_from_langfuse(score_name) + print(fetch_scores.data) + scores_df[score_name] = [score.value for score in fetch_scores.data[::-1]] +``` + + [Score_Numeric(value=1.0, id='Uptrain_4_score_context_relevance', trace_id='95ad7bdd-b93b-4905-a865-938f346871bd', name='score_context_relevance', source=, observation_id=None, timestamp=datetime.datetime(2024, 10, 13, 16, 59, 25, 177000, tzinfo=datetime.timezone.utc), created_at=datetime.datetime(2024, 10, 13, 16, 59, 25, 177000, tzinfo=datetime.timezone.utc), updated_at=datetime.datetime(2024, 10, 13, 16, 59, 25, 177000, tzinfo=datetime.timezone.utc), author_user_id=None, comment=None, config_id=None, data_type='NUMERIC', stringValue=None, trace={'userId': None}, projectId='cm1vkhmj40jxlhaue9mntmwk8'), Score_Numeric(value=1.0, id='Uptrain_3_score_context_relevance', trace_id='f9b43538-77b6-478f-a5d9-c2be3b4cdada', name='score_context_relevance', source=, observation_id=None, timestamp=datetime.datetime(2024, 10, 13, 16, 59, 24, 897000, tzinfo=datetime.timezone.utc), created_at=datetime.datetime(2024, 10, 13, 16, 59, 24, 897000, tzinfo=datetime.timezone.utc), updated_at=datetime.datetime(2024, 10, 13, 16, 59, 24, 897000, tzinfo=datetime.timezone.utc), author_user_id=None, comment=None, config_id=None, data_type='NUMERIC', stringValue=None, trace={'userId': None}, projectId='cm1vkhmj40jxlhaue9mntmwk8'), Score_Numeric(value=1.0, id='Uptrain_2_score_context_relevance', trace_id='02185905-be84-41d9-9b64-b02fb45704f3', name='score_context_relevance', source=, observation_id=None, timestamp=datetime.datetime(2024, 10, 13, 16, 59, 24, 614000, tzinfo=datetime.timezone.utc), created_at=datetime.datetime(2024, 10, 13, 16, 59, 24, 614000, tzinfo=datetime.timezone.utc), updated_at=datetime.datetime(2024, 10, 13, 16, 59, 24, 614000, tzinfo=datetime.timezone.utc), author_user_id=None, comment=None, config_id=None, data_type='NUMERIC', stringValue=None, trace={'userId': None}, projectId='cm1vkhmj40jxlhaue9mntmwk8'), Score_Numeric(value=1.0, id='Uptrain_1_score_context_relevance', trace_id='b68fc2e6-e6a0-489b-becc-5441d9f1dd4e', name='score_context_relevance', source=, observation_id=None, timestamp=datetime.datetime(2024, 10, 13, 16, 59, 24, 326000, tzinfo=datetime.timezone.utc), created_at=datetime.datetime(2024, 10, 13, 16, 59, 24, 326000, tzinfo=datetime.timezone.utc), updated_at=datetime.datetime(2024, 10, 13, 16, 59, 24, 326000, tzinfo=datetime.timezone.utc), author_user_id=None, comment=None, config_id=None, data_type='NUMERIC', stringValue=None, trace={'userId': None}, projectId='cm1vkhmj40jxlhaue9mntmwk8'), Score_Numeric(value=1.0, id='Uptrain_0_score_context_relevance', trace_id='75bd20ac-3a34-4fa0-b74a-0fb7a454bfa1', name='score_context_relevance', source=, observation_id=None, timestamp=datetime.datetime(2024, 10, 13, 16, 59, 24, 46000, tzinfo=datetime.timezone.utc), created_at=datetime.datetime(2024, 10, 13, 16, 59, 24, 46000, tzinfo=datetime.timezone.utc), updated_at=datetime.datetime(2024, 10, 13, 16, 59, 24, 46000, tzinfo=datetime.timezone.utc), author_user_id=None, comment=None, config_id=None, data_type='NUMERIC', stringValue=None, trace={'userId': None}, projectId='cm1vkhmj40jxlhaue9mntmwk8')] + [Score_Numeric(value=0.6, id='Uptrain_4_score_factual_accuracy', trace_id='e5ad0a8e-3c20-4dc8-ba19-1f11f224ebbf', name='score_factual_accuracy', source=, observation_id=None, timestamp=datetime.datetime(2024, 10, 13, 16, 59, 25, 84000, tzinfo=datetime.timezone.utc), created_at=datetime.datetime(2024, 10, 13, 16, 59, 25, 84000, tzinfo=datetime.timezone.utc), updated_at=datetime.datetime(2024, 10, 13, 16, 59, 25, 84000, tzinfo=datetime.timezone.utc), author_user_id=None, comment=None, config_id=None, data_type='NUMERIC', stringValue=None, trace={'userId': None}, projectId='cm1vkhmj40jxlhaue9mntmwk8'), Score_Numeric(value=0.8, id='Uptrain_3_score_factual_accuracy', trace_id='2ed536e7-a583-401c-b3e9-1227985875c1', name='score_factual_accuracy', source=, observation_id=None, timestamp=datetime.datetime(2024, 10, 13, 16, 59, 24, 804000, tzinfo=datetime.timezone.utc), created_at=datetime.datetime(2024, 10, 13, 16, 59, 24, 804000, tzinfo=datetime.timezone.utc), updated_at=datetime.datetime(2024, 10, 13, 16, 59, 24, 804000, tzinfo=datetime.timezone.utc), author_user_id=None, comment=None, config_id=None, data_type='NUMERIC', stringValue=None, trace={'userId': None}, projectId='cm1vkhmj40jxlhaue9mntmwk8'), Score_Numeric(value=0.4, id='Uptrain_2_score_factual_accuracy', trace_id='8552536a-70ae-4678-a789-c0af61d3a436', name='score_factual_accuracy', source=, observation_id=None, timestamp=datetime.datetime(2024, 10, 13, 16, 59, 24, 517000, tzinfo=datetime.timezone.utc), created_at=datetime.datetime(2024, 10, 13, 16, 59, 24, 517000, tzinfo=datetime.timezone.utc), updated_at=datetime.datetime(2024, 10, 13, 16, 59, 24, 517000, tzinfo=datetime.timezone.utc), author_user_id=None, comment=None, config_id=None, data_type='NUMERIC', stringValue=None, trace={'userId': None}, projectId='cm1vkhmj40jxlhaue9mntmwk8'), Score_Numeric(value=0.6, id='Uptrain_1_score_factual_accuracy', trace_id='812d7ae7-f2bf-4251-9784-9ee248b469d7', name='score_factual_accuracy', source=, observation_id=None, timestamp=datetime.datetime(2024, 10, 13, 16, 59, 24, 231000, tzinfo=datetime.timezone.utc), created_at=datetime.datetime(2024, 10, 13, 16, 59, 24, 231000, tzinfo=datetime.timezone.utc), updated_at=datetime.datetime(2024, 10, 13, 16, 59, 24, 231000, tzinfo=datetime.timezone.utc), author_user_id=None, comment=None, config_id=None, data_type='NUMERIC', stringValue=None, trace={'userId': None}, projectId='cm1vkhmj40jxlhaue9mntmwk8'), Score_Numeric(value=1.0, id='Uptrain_0_score_factual_accuracy', trace_id='f4135b5b-d20a-4741-b777-186d37d1fa52', name='score_factual_accuracy', source=, observation_id=None, timestamp=datetime.datetime(2024, 10, 13, 16, 59, 23, 954000, tzinfo=datetime.timezone.utc), created_at=datetime.datetime(2024, 10, 13, 16, 59, 23, 954000, tzinfo=datetime.timezone.utc), updated_at=datetime.datetime(2024, 10, 13, 16, 59, 23, 954000, tzinfo=datetime.timezone.utc), author_user_id=None, comment=None, config_id=None, data_type='NUMERIC', stringValue=None, trace={'userId': None}, projectId='cm1vkhmj40jxlhaue9mntmwk8')] + [Score_Numeric(value=1.0, id='Uptrain_4_score_response_completeness', trace_id='1a54b4e2-3e2c-4235-801b-b56153c8e293', name='score_response_completeness', source=, observation_id=None, timestamp=datetime.datetime(2024, 10, 13, 16, 59, 25, 271000, tzinfo=datetime.timezone.utc), created_at=datetime.datetime(2024, 10, 13, 16, 59, 25, 271000, tzinfo=datetime.timezone.utc), updated_at=datetime.datetime(2024, 10, 13, 16, 59, 25, 271000, tzinfo=datetime.timezone.utc), author_user_id=None, comment=None, config_id=None, data_type='NUMERIC', stringValue=None, trace={'userId': None}, projectId='cm1vkhmj40jxlhaue9mntmwk8'), Score_Numeric(value=1.0, id='Uptrain_3_score_response_completeness', trace_id='ce78dce7-f4bd-45a4-b69c-f31fd6258565', name='score_response_completeness', source=, observation_id=None, timestamp=datetime.datetime(2024, 10, 13, 16, 59, 24, 990000, tzinfo=datetime.timezone.utc), created_at=datetime.datetime(2024, 10, 13, 16, 59, 24, 990000, tzinfo=datetime.timezone.utc), updated_at=datetime.datetime(2024, 10, 13, 16, 59, 24, 990000, tzinfo=datetime.timezone.utc), author_user_id=None, comment=None, config_id=None, data_type='NUMERIC', stringValue=None, trace={'userId': None}, projectId='cm1vkhmj40jxlhaue9mntmwk8'), Score_Numeric(value=1.0, id='Uptrain_2_score_response_completeness', trace_id='103927f0-dd9f-4d94-95d6-a4a6fce3898d', name='score_response_completeness', source=, observation_id=None, timestamp=datetime.datetime(2024, 10, 13, 16, 59, 24, 709000, tzinfo=datetime.timezone.utc), created_at=datetime.datetime(2024, 10, 13, 16, 59, 24, 709000, tzinfo=datetime.timezone.utc), updated_at=datetime.datetime(2024, 10, 13, 16, 59, 24, 709000, tzinfo=datetime.timezone.utc), author_user_id=None, comment=None, config_id=None, data_type='NUMERIC', stringValue=None, trace={'userId': None}, projectId='cm1vkhmj40jxlhaue9mntmwk8'), Score_Numeric(value=1.0, id='Uptrain_1_score_response_completeness', trace_id='6e7ae4f6-aca0-4152-b299-5b1ae06bd7e9', name='score_response_completeness', source=, observation_id=None, timestamp=datetime.datetime(2024, 10, 13, 16, 59, 24, 423000, tzinfo=datetime.timezone.utc), created_at=datetime.datetime(2024, 10, 13, 16, 59, 24, 423000, tzinfo=datetime.timezone.utc), updated_at=datetime.datetime(2024, 10, 13, 16, 59, 24, 423000, tzinfo=datetime.timezone.utc), author_user_id=None, comment=None, config_id=None, data_type='NUMERIC', stringValue=None, trace={'userId': None}, projectId='cm1vkhmj40jxlhaue9mntmwk8'), Score_Numeric(value=1.0, id='Uptrain_0_score_response_completeness', trace_id='3c100175-8e20-4d1f-ab1b-a7e4dc870cac', name='score_response_completeness', source=, observation_id=None, timestamp=datetime.datetime(2024, 10, 13, 16, 59, 24, 138000, tzinfo=datetime.timezone.utc), created_at=datetime.datetime(2024, 10, 13, 16, 59, 24, 138000, tzinfo=datetime.timezone.utc), updated_at=datetime.datetime(2024, 10, 13, 16, 59, 24, 138000, tzinfo=datetime.timezone.utc), author_user_id=None, comment=None, config_id=None, data_type='NUMERIC', stringValue=None, trace={'userId': None}, projectId='cm1vkhmj40jxlhaue9mntmwk8')] + [Score_Numeric(value=0.9999999999666667, id='Ragas_4_context_precision', trace_id='1441c394-fc54-42f3-a798-7ab1b338748c', name='context_precision', source=, observation_id=None, timestamp=datetime.datetime(2024, 10, 13, 16, 59, 25, 207000, tzinfo=datetime.timezone.utc), created_at=datetime.datetime(2024, 10, 13, 16, 59, 25, 207000, tzinfo=datetime.timezone.utc), updated_at=datetime.datetime(2024, 10, 13, 16, 59, 25, 207000, tzinfo=datetime.timezone.utc), author_user_id=None, comment=None, config_id=None, data_type='NUMERIC', stringValue=None, trace={'userId': None}, projectId='cm1vkhmj40jxlhaue9mntmwk8'), Score_Numeric(value=0.99999999995, id='Ragas_3_context_precision', trace_id='a91146c0-09d4-4039-828d-adf308d09dd8', name='context_precision', source=, observation_id=None, timestamp=datetime.datetime(2024, 10, 13, 16, 59, 24, 927000, tzinfo=datetime.timezone.utc), created_at=datetime.datetime(2024, 10, 13, 16, 59, 24, 927000, tzinfo=datetime.timezone.utc), updated_at=datetime.datetime(2024, 10, 13, 16, 59, 24, 927000, tzinfo=datetime.timezone.utc), author_user_id=None, comment=None, config_id=None, data_type='NUMERIC', stringValue=None, trace={'userId': None}, projectId='cm1vkhmj40jxlhaue9mntmwk8'), Score_Numeric(value=0.8333333332916666, id='Ragas_2_context_precision', trace_id='16bf0af8-b988-44d0-a9c5-35a0ffa69ffd', name='context_precision', source=, observation_id=None, timestamp=datetime.datetime(2024, 10, 13, 16, 59, 24, 643000, tzinfo=datetime.timezone.utc), created_at=datetime.datetime(2024, 10, 13, 16, 59, 24, 643000, tzinfo=datetime.timezone.utc), updated_at=datetime.datetime(2024, 10, 13, 16, 59, 24, 643000, tzinfo=datetime.timezone.utc), author_user_id=None, comment=None, config_id=None, data_type='NUMERIC', stringValue=None, trace={'userId': None}, projectId='cm1vkhmj40jxlhaue9mntmwk8'), Score_Numeric(value=0.9999999999666667, id='Ragas_1_context_precision', trace_id='976e6974-f6d7-4ff0-b961-5653ae58e9ef', name='context_precision', source=, observation_id=None, timestamp=datetime.datetime(2024, 10, 13, 16, 59, 24, 310000, tzinfo=datetime.timezone.utc), created_at=datetime.datetime(2024, 10, 13, 16, 59, 24, 310000, tzinfo=datetime.timezone.utc), updated_at=datetime.datetime(2024, 10, 13, 16, 59, 24, 310000, tzinfo=datetime.timezone.utc), author_user_id=None, comment=None, config_id=None, data_type='NUMERIC', stringValue=None, trace={'userId': None}, projectId='cm1vkhmj40jxlhaue9mntmwk8'), Score_Numeric(value=0.9999999999666667, id='Ragas_0_context_precision', trace_id='4e0edb60-c6b1-452d-ae58-ce7449dc3f47', name='context_precision', source=, observation_id=None, timestamp=datetime.datetime(2024, 10, 13, 16, 59, 23, 798000, tzinfo=datetime.timezone.utc), created_at=datetime.datetime(2024, 10, 13, 16, 59, 23, 798000, tzinfo=datetime.timezone.utc), updated_at=datetime.datetime(2024, 10, 13, 16, 59, 23, 798000, tzinfo=datetime.timezone.utc), author_user_id=None, comment=None, config_id=None, data_type='NUMERIC', stringValue=None, trace={'userId': None}, projectId='cm1vkhmj40jxlhaue9mntmwk8')] + [Score_Numeric(value=0.1428571428571428, id='Ragas_4_faithfulness', trace_id='8c3f995f-bc00-4935-90e5-069478987ce3', name='faithfulness', source=, observation_id=None, timestamp=datetime.datetime(2024, 10, 13, 16, 59, 25, 300000, tzinfo=datetime.timezone.utc), created_at=datetime.datetime(2024, 10, 13, 16, 59, 25, 300000, tzinfo=datetime.timezone.utc), updated_at=datetime.datetime(2024, 10, 13, 16, 59, 25, 300000, tzinfo=datetime.timezone.utc), author_user_id=None, comment=None, config_id=None, data_type='NUMERIC', stringValue=None, trace={'userId': None}, projectId='cm1vkhmj40jxlhaue9mntmwk8'), Score_Numeric(value=0.2, id='Ragas_3_faithfulness', trace_id='424fddad-f617-491a-9816-d9642f33d0e6', name='faithfulness', source=, observation_id=None, timestamp=datetime.datetime(2024, 10, 13, 16, 59, 25, 19000, tzinfo=datetime.timezone.utc), created_at=datetime.datetime(2024, 10, 13, 16, 59, 25, 19000, tzinfo=datetime.timezone.utc), updated_at=datetime.datetime(2024, 10, 13, 16, 59, 25, 19000, tzinfo=datetime.timezone.utc), author_user_id=None, comment=None, config_id=None, data_type='NUMERIC', stringValue=None, trace={'userId': None}, projectId='cm1vkhmj40jxlhaue9mntmwk8'), Score_Numeric(value=0.0, id='Ragas_2_faithfulness', trace_id='c7b7e4a1-ab80-4951-ae16-293265970dc3', name='faithfulness', source=, observation_id=None, timestamp=datetime.datetime(2024, 10, 13, 16, 59, 24, 740000, tzinfo=datetime.timezone.utc), created_at=datetime.datetime(2024, 10, 13, 16, 59, 24, 740000, tzinfo=datetime.timezone.utc), updated_at=datetime.datetime(2024, 10, 13, 16, 59, 24, 740000, tzinfo=datetime.timezone.utc), author_user_id=None, comment=None, config_id=None, data_type='NUMERIC', stringValue=None, trace={'userId': None}, projectId='cm1vkhmj40jxlhaue9mntmwk8'), Score_Numeric(value=0.12, id='Ragas_1_faithfulness', trace_id='77a2d6ae-b840-454f-b4e3-52edb8909bcb', name='faithfulness', source=, observation_id=None, timestamp=datetime.datetime(2024, 10, 13, 16, 59, 24, 456000, tzinfo=datetime.timezone.utc), created_at=datetime.datetime(2024, 10, 13, 16, 59, 24, 456000, tzinfo=datetime.timezone.utc), updated_at=datetime.datetime(2024, 10, 13, 16, 59, 24, 456000, tzinfo=datetime.timezone.utc), author_user_id=None, comment=None, config_id=None, data_type='NUMERIC', stringValue=None, trace={'userId': None}, projectId='cm1vkhmj40jxlhaue9mntmwk8'), Score_Numeric(value=1.0, id='Ragas_0_faithfulness', trace_id='8f61a293-836f-4cc9-84f9-996c19c42620', name='faithfulness', source=, observation_id=None, timestamp=datetime.datetime(2024, 10, 13, 16, 59, 23, 894000, tzinfo=datetime.timezone.utc), created_at=datetime.datetime(2024, 10, 13, 16, 59, 23, 894000, tzinfo=datetime.timezone.utc), updated_at=datetime.datetime(2024, 10, 13, 16, 59, 23, 894000, tzinfo=datetime.timezone.utc), author_user_id=None, comment=None, config_id=None, data_type='NUMERIC', stringValue=None, trace={'userId': None}, projectId='cm1vkhmj40jxlhaue9mntmwk8')] + [Score_Numeric(value=0.9891308706741455, id='Ragas_4_answer_relevancy', trace_id='21a3c662-a494-4029-b95a-8fd25f90a8c6', name='answer_relevancy', source=, observation_id=None, timestamp=datetime.datetime(2024, 10, 13, 16, 59, 25, 398000, tzinfo=datetime.timezone.utc), created_at=datetime.datetime(2024, 10, 13, 16, 59, 25, 398000, tzinfo=datetime.timezone.utc), updated_at=datetime.datetime(2024, 10, 13, 16, 59, 25, 398000, tzinfo=datetime.timezone.utc), author_user_id=None, comment=None, config_id=None, data_type='NUMERIC', stringValue=None, trace={'userId': None}, projectId='cm1vkhmj40jxlhaue9mntmwk8'), Score_Numeric(value=0.9795341682836177, id='Ragas_3_answer_relevancy', trace_id='f398dd78-ccdd-423c-9662-92ff548183e7', name='answer_relevancy', source=, observation_id=None, timestamp=datetime.datetime(2024, 10, 13, 16, 59, 25, 114000, tzinfo=datetime.timezone.utc), created_at=datetime.datetime(2024, 10, 13, 16, 59, 25, 114000, tzinfo=datetime.timezone.utc), updated_at=datetime.datetime(2024, 10, 13, 16, 59, 25, 114000, tzinfo=datetime.timezone.utc), author_user_id=None, comment=None, config_id=None, data_type='NUMERIC', stringValue=None, trace={'userId': None}, projectId='cm1vkhmj40jxlhaue9mntmwk8'), Score_Numeric(value=0.9916994382653276, id='Ragas_2_answer_relevancy', trace_id='65d48c73-2fbd-4577-bec9-7a46858e0a6a', name='answer_relevancy', source=, observation_id=None, timestamp=datetime.datetime(2024, 10, 13, 16, 59, 24, 834000, tzinfo=datetime.timezone.utc), created_at=datetime.datetime(2024, 10, 13, 16, 59, 24, 834000, tzinfo=datetime.timezone.utc), updated_at=datetime.datetime(2024, 10, 13, 16, 59, 24, 834000, tzinfo=datetime.timezone.utc), author_user_id=None, comment=None, config_id=None, data_type='NUMERIC', stringValue=None, trace={'userId': None}, projectId='cm1vkhmj40jxlhaue9mntmwk8'), Score_Numeric(value=0.9652149513821247, id='Ragas_1_answer_relevancy', trace_id='116c5ac3-7931-471b-83eb-da6c91725621', name='answer_relevancy', source=, observation_id=None, timestamp=datetime.datetime(2024, 10, 13, 16, 59, 24, 550000, tzinfo=datetime.timezone.utc), created_at=datetime.datetime(2024, 10, 13, 16, 59, 24, 550000, tzinfo=datetime.timezone.utc), updated_at=datetime.datetime(2024, 10, 13, 16, 59, 24, 550000, tzinfo=datetime.timezone.utc), author_user_id=None, comment=None, config_id=None, data_type='NUMERIC', stringValue=None, trace={'userId': None}, projectId='cm1vkhmj40jxlhaue9mntmwk8'), Score_Numeric(value=1.0, id='Ragas_0_answer_relevancy', trace_id='e7642418-7f1f-4c4f-8480-06dd8c276fbd', name='answer_relevancy', source=, observation_id=None, timestamp=datetime.datetime(2024, 10, 13, 16, 59, 24, 59000, tzinfo=datetime.timezone.utc), created_at=datetime.datetime(2024, 10, 13, 16, 59, 24, 59000, tzinfo=datetime.timezone.utc), updated_at=datetime.datetime(2024, 10, 13, 16, 59, 24, 59000, tzinfo=datetime.timezone.utc), author_user_id=None, comment=None, config_id=None, data_type='NUMERIC', stringValue=None, trace={'userId': None}, projectId='cm1vkhmj40jxlhaue9mntmwk8')] + + +### 8. Creating a Correlation Heatmap + +This section illustrates how to visualize the correlation between evaluation scores using a heatmap. The code calculates the correlation matrix for two sets of scores: UpTrain scores (`'score_context_relevance'`, `'score_factual_accuracy'`, and `'score_response_completeness'`) and RAGAS scores (`'context_precision'`, `'faithfulness'`, and `'answer_relevancy'`). + +1. **Calculate the Correlation Matrix**: The `corr()` function computes correlation coefficients between specified score columns in the `scores_df` DataFrame, indicating the strength and direction of relationships. + +2. **Create and Customize the Heatmap**: A heatmap is generated using Matplotlib and Seaborn, displaying correlation coefficients with colors ranging from blue (negative) to red (positive). The layout is adjusted for clarity. + +This visualization helps identify patterns in the evaluation metrics, aiding in the analysis of `fetch_scores()` performance. + + +```python +import matplotlib.pyplot as plt +import seaborn as sns + +corr_matrix = scores_df.corr() + +# Create a heatmap of the correlation matrix +plt.figure(figsize=(10, 8)) +sns.heatmap(corr_matrix, annot=True, vmin=-1, vmax=1, center=0, linewidths=.5, linecolor='white', cmap='crest') +plt.title('Correlation Matrix of Six Scores') +plt.tight_layout() +``` + + + +![png](example_usage_of_fetch_scores_files/example_usage_of_fetch_scores_23_0.png) + + + +![%7B283F9496-4034-464B-9F93-DEA587D37A5B%7D.png](attachment:%7B283F9496-4034-464B-9F93-DEA587D37A5B%7D.png) + + +```python + +``` diff --git a/cookbook/example_usage_of_fetch_scores_files/example_usage_of_fetch_scores_23_0.png b/cookbook/example_usage_of_fetch_scores_files/example_usage_of_fetch_scores_23_0.png new file mode 100644 index 0000000000000000000000000000000000000000..e052e88b75be7102ada8befd86257791ed63b4e0 GIT binary patch literal 69461 zcmb@u1z1(<+Acg12}x-rrIZelknTp24rysArInBlML`J>X^;*{rCR|hK@e#aNkO_f z&sb}_zO~Q4_Wyn7T!(9Wt+ic~ImaC1eV^xk?sy|Kt}Ei>P~o6ZD12olIZYG_y$=46 zV`IYK47No!!auIL$?LmmIa|AVn%}iTshhjG+;MihV`p*E!|LumJ7*_;ZXs?y&WpBg zZZ7vkcz7KDdI7idT^pXSIM`wECg)s~4DO*&gyzT}v|P#8b|^FyN?A@?+belx!c$vY zks5Q|#!l5aFd#h5Oj@3(RzaSDk==sl7l|ro1hIgi1!sWVnxGu9I$ z{Li1;57A8+|M<~VqFE>Y^93@q0SSNpXHsIUI=Mf7vYrZ0v;6tWkTx`)Ki`UtnZPUJ zk5?)&xHhT&`AVD!h_YMzbnTZ)hL=J-DF3{5A$0(ik_dg}noqydsFhCR?9UbR4 zQCBCX_EHd^oSa-kQ&XldMSQBZCoSz_xE$kI42*hD135YEx5(#a?0TG@_&&P8k6CFy z9Qf{?h?~3nK$W8rr)dKXk7>hm&uxjsBBN@HFK?_iibJ29w}whH6HDvqRkw{C{G6yg zA0Y?-)32}{FiJSxTGZOx+q=lgxq?2VyCZmKG{DqvAH(->r#(mg<@)jNR6VP&+VTY&8azEcy~LL!kh77!7Vf1+9o1_VK}XkUnQ zoj0m>YJW^E#OpdMm*=Lcs#^D8pEy51|88DFWF*cNety^KCbX@!DbuCVcrK%~;^OGS z!a`5>!^Kap*SEJr;^N3wR#!P5O#YhdoLcl*TW*UW;T00<9L!ej{wV5qd1mul|)xQ<83i`v=QN#r#@ zgNKKAo{TKy)9V|S6Yt#jmI_KF-n+x|Mjo&a;mw;jDTQ4wa&mFG&bFOPeDUI3XUAje zu=~3|XZq7+*L-Os1!~|IpJDoRc$;MNQLC6dZhZVR<>>C69yzUE}c%wZda6ofWJX zR^9Ooe0(>(inFq|q^C^j>FI|`OzD60rSj~EurM<}C|!R3y0DLoC?;e2xiws`4K4+@ zoR5#l$=)1cUb7PsH8r(bBCoVpNZ)A3V zPPnd&@?CZKj7LR9rC)CSxHSIm;m&H}wR@L(K7LHk%ZsR}xQc2D!KLWWR;5^2T$I+* zB7sLQrKF_vc6GGcnf{&oa;W`qzBIi1*cg?cpWpkwK8g)t5s_KAOAdoz@Uc>h z4qi8sg&%sXj!CPk;vO6vz*AF{lMB|SgYO1gV!YOqur(AvsG&h(Yio=5!Jf-)YwLKU zT}D&iZL(;ZYk@;U+6=3+?NK%Ncby`LTAx2BReNy-!^6X)|MTb2;$rSw#>TFzV*(5} zG&Ig92{{v>C?y`$^#9E85D^i{fIU<5VE@WkwKJi*y86-H+>@3vp^ z>O5K3MvpOB$E_i}>a)M`y|lbM2)6vA$Bzf#4&Qp`ru=@hA(aEAq^{l$i#=pyq@x29 zmz+~dTKb{(g|F4lil1`S(=#*Cjg5^*zkD%=x3H>82vfJufIA^MP+DRe{_7DUR3m0`Pn7p zDs0Cp*sS|f9@G2nNx$c}?7$oS`nC1_du;!c{mUmun|)VCHct-M8eLpnrDbH!Jb3Vc z*KUwGS^Pe^-BYcFE3#cw}p#%5{{0Jd^Wu_sHTO1 z%n*-i=P47`%h#@5C@wB8t*-8TW7XYXX4y%+T>W7GE+sX! zSJ8&@F;u0@OuV%)fUcUrEuX+`TzdNh@lcTw1$(*Gf=AaSWS{sR#u*!nPJHCzJDJsQQ;9KgN}8H zNjyyyb1E%dd<5~};>(|LmencW&^gJnPa7~SHvastJS6A0;rvPU1s1WzQ{r!D- zQD{|_;L_)!C=R`1?Y$(6GRoF4!V-< zL@#N=?h6(9sS>j=tlyC3!yJGV7Q^{Ex$q57_J7bLt)Qx^%H{6e7O2o&VtUHT=T1&e zly2MzD=6UbJ6sh~OO>Ggm?Xfl`;JNBQPV)C;>^NA`1G{d-u`|%Tz{@{tzd78ILEiI z_4ko#Q&(Rf6~{mvfqIbGHw;%d0Jnsak`g=hRaO?Wu&5}Lq$K_88>yHmXx>arOz3E6 zXy2=1!WS%?5%^e70@WF|ds`%QK!)efpPN})GQ~OB+vE89`iec+(_pW+{+N^%2EDN<3p= z3v(L3Bdv582?fv=6GH?&#}y!4wSD>9xBEtp8kNxID5XQA>mG;q=l{BrN6U!nAvhg+)a(b8|sa6g(Ny zL70gG4!R*FtFyC#mYvZI0s>@k$2w|U=hoL}WZeJ>jn*td)z8%}N*a1{>2#YxLJ#gn zJ3N~xUytNhuh8lyl^j+^%W}0|6F_&rS?}X+K7Czoi*JtmqnzBT?K%;knN;jici#@h2@UEu`};EG=2|CSNP9stSdETYT&78KfyQ zwbIAFd2=^nF;?&86`f${_iK~&Wpgyv64Gje} z-vX_9D*vN%ZR^@_fnErjHZ&ege5x(oAKfZ(>^l9KiiAkxfH^?eeTkG#;sI;nHkbOq zYC?*HZ{)Xcw-b|+8iw5gGa~D%!eN9!K|ulVZaXw=UMO4D>_2=Z^e`|m_BOhC_@I{) z_vOJ&2x!5tY-wq60mz1+T*YXbX27H~Gcym>UkcXi_(p`Y<02!?R_{B{wP<+IvoIvt z!cuwR&BeuaQ$r)5)^kn8k(rd9{>jkL&|NHYtFo#pObuado=6oPZ2(TO&z_ap^wH&g zOw7p0i2Po(kd~3l6%!NF9zD_EOAQyM;?t8u9+NsR z2D0y5Nlqsc{-P{)p9?QseP( zXhbn$t}6VnL(A3h6#&k@YAO#TK~g&Y?9mkm6 zU#3wDIZf~Vnrm@jz@-)S2u@9<*DW&Cv97pjVDMId%j-w)tM<>uPcRFh~Ha29` z)bQXpgIQGLn*cIH$KvuhOg>#2tK@*jP-Z{Op0|~)njphW+&nzIU9?P0K@kSy6`5+^ zhY!+bW@Ztef~QDfqJgE7aU)e?51s~sTvw(V>0#dE-W_}R@F7bMMNubL63*1?8}v%d zvBaLs+&*g(Z9nq;PfvtBf6_$Lit4WDLxY9uL6QD^e|(9Bh2^UK5H_mImoOsyTL=*{ z9ofL`7=7o?fr&?nGBPsq^72Z9?(qJ@hvqNkHf6||MJaTIN!~=xwFj7pGLlhPo zY5~x70bY?;U7m*x?~BwsKxEKo(LxF73GUsyC+59z_VSICV8HVPG{PFQZ(;4jRilLx z&_)7Kf{}ZsPx6%0mE9HI3J@HDTGG{XA72WEL0cIgA6Mbr1#I#VO1@#W)8mrH6DpXW z+q&X7(qF&Uo7bM(MXJ{eew+B0CD8GaZUdhi4fp(_m>7*w)g9>~!^*4;0~nS}P3ap? zPek3^+|shML!gSrzwLO(eEE8ElXK%Srn9s2jG!_+-r&qkCZssPfE4dj3@Z*=eE0=^ z>x&{HRM4V25H#sLC83rqd^3E#@p0!9`b_yK@`a&1lH}xMGkg0;82?~G#2+a(ZiSMP z%{bu<10*G%#o4P@ua^33+oPHi`7BFe@%QwIGq3yhzW^-;Gm+d zqr(DpNGweEs^4RjaGX;I5n^M6?VWfJG+EWcPN=3V_4jw0X8!>uz?Z(s@JU9q&VUtca+n4rVw`>Hi}1E&}{Q_8M$=!}KHIZ4jab z*@va2ys+_zU>!ey*XTLmcnqM<^?MiDRi|-Em}!8*c&fvXLXBs?_>&J*f%#$`%1fF} zUrP4;uZ@is7>8ZvI`A1Br<)!k135qwG!&Onl^pCeq#mPSDo5kwNB6)Ha7lG-}Jo_#j>%n$-7EHK>^Ey0QD4F2T)V0-(kT7mY0`5 zRn*nKZ7A|5_ZZjJYkoKT*6SODv@iv$WW$iu+S&P|zB@W9DhS35?WBl^bAy9}>l@!y z#qRIm0k~$Fe+zTcebYuxxHG<4>;;>d8zH6!cu_ZTzZv8Ed>;_u+4@p(YjQYE&x7z) z)5#JOv7Z$mrvlG&Pl1IvMTghvhwp%2#H_#TG9>4%CtaL#BQ+Xkd*$qic8hDnIU6qj z;y|;e+bqg@Fl%yha>AcHNl=M;@+1uEH59BgU^=Xx?6mU40Oerg;gN2<$NA01ZZPI&bs7P7SJc<11iXVHo%CP@ zPzrMp3g@-reJ?NU{l@)yY6PM|8)yZR@7Gu7#+kLo(+*?@etU7%ju<{949Xe7PU=b$l@rce|e1F6Ldga#029C&_cX;9RK-4@O_oSxiA zXjmvqod?^?Gqbad-!AZ)p`dK=-QT&>*52McIZ3DZgpR8!W;m?lH+6iDhL)BgMoC5d z=h~X->@~d-6Rz@GH*VbU^6_bK-k$v1H}&b>@7U7)>qe0hGyRK_-e^IUsPVP@MLQ#X z7y0ov57x_}{MRC53~9suldX;!=WXLqMFv9TCq~91_|IFfbe$P*y^HksyJkK8{j0GQ z3SL%`zu#3;>G!XGhze&gG5G!K;s1dn7x?QcS?aE||LYov*q9am#h8B!slD3$kDrS9 z&z~A0H%X@9^7|tGcKs$bs^$ND9|Ha-_W{U$36+6?0bt0nadDq{>in_QZ!2mmKj|ZV zeU&2@a0@b-030}G?qX>l7)mD(^%l-(aCFxe_}m(-Ozq0J5L#D|{WMfWu$eL;p7--7 znYPTcJ(D{;Eg6>G;w6grjE+R!VMQC)2gNiVqoXu#>b4A}toG-n3)oXG&$M^nNsjOe zPxVZdIofnH5Rx~?t8m8nF@~R>cS+%Pi&mkyKXDn4rs~Hv%@G1_cdBN6BP`T9s{n>* ziD}dDWx^1#25#T}{)%@)-kprCWjjabUR2E7YdOi^z;nM7$oI;KbVu(=)ImYb-M;04 zIyyhvVf44C^tJzYFUxd*5Xh$yb6KoE1mS!beG@1IfrB8@=4bv&jyQ2fRAxD zb+&q%#49P@(Eh~l@ykqibqDPce!1&@bd0l>GxSuCF88IL^WGA;%9mj!dX=vP4PQq< z%GTZV>QFD>Xp50czm9(4iRY<|q zrALPK6rV4Jj!u6uivOs=Do!mZuV-|>@S6XbPlRhyx+dJ#zF$c4Rl2fMo+ZabHx>t* zjWw?(df19OwTTDnDGKQ?P^)~$ts#jn@hl{v^EV-gcfTiryHdg)W>oHzI9$RMPm3o# zk}5d!IaBWFT6*BI&eSa2Hrq%YBA?xJ^Q+fb3hX&5Bp$zPE|MlWqM`}^a9G8}Aw+TS z)_rN6w_7Lq=`XGkOw>iQ9adX@o)Oo$sTr8+z!R=x(%Ex0e8j_gu|v9GG_j%Auh~OU==#uG*r?^zr!l z`JrIo{Ah1$YXZzSHa6BjJS=~Da!f=|&qK5O>(@gVH9nV^J^^SY16mF0X;M-oOpq<3 zqm+OW5R?f(L3ieWPS^#7fMkSce)OonK#yl;6qthPnHe--4Q%c0TZV_pVDu)7J_K0{ zpf3Q$prRr!;KvYBx~-!F$9=NGjs&JJED*Y4l!8IVLN#S7KIw1t_Xh@~wZH%T&!0cT zqoXlV<1i>DB_+XlP~cJo*ozvzV2%5-?u+m7Ikxs2fKEXez{)Ksu!Lrg3IM>;`uQ_C zu<*HhC3L{lRA1?S=Q@W8Fa^kEd=e58ybD*(0$GR(fPppxARj9$>r;_VxFJB~K=*F+ zr-zT`<>Pw@GXN0((SU~a*c(AP0-in$rgkZyLO{l98mn~3-VpOUq6FGIFg=~2qN1X| z(18C|jf=E!1Aug4VPPq_i--mX2omO>t~)Oo&q>^;=I|EUBOfuz)bd z;&T=1>YFRF046e0Z$$opRfX{|;_LbYtHn>q<$L zc4_0myZaHakXNqx)@AAD6FB^L$)vaQ5ry%=~EXJCD?Y#i}k@3%l^+c@obNoigH!7Kbu2U8WXP(Ba55 zkYmvdM{~Y&hZA^@V7Sc}q0>rBOD_Oh&rEzyx5VTz&_w3If?yL8b^?Sqx3ok@!Ltjf ztrgYO)O1-IVmo{GEa-Mvl)PpE+WVkIwSt<7&=2P7c8z|=PoF*w0PHpmOcMwg0neV1 zz^`=`tpO-QmayCE7#TEHd7xztD{L8P=mqak!mJZ~e7HLYv<0HA1x zJA;OTnFhWE2TVV%+e;K>bXA1e(_L zhi8{Z8~r6=_lF|$5&9~>O>YzE2PBu&nqc56wf;y20=6a4%w#^V!r5hX49wjW#(0S=lxK3bBOvz@nV$dLA}ff^w7*SslbY!mEGd<4E}-7ArEuNizR(0 zQg6@CPdi!AEK$AG&BbGh!FDWKk}{UZh=~}~`t)@;Kk6~Mf~DP)X3CX*O#7}|F>iDRqDX&+9$bFS z$}^Z=zfK_NJc(yH*Rn|2+}wA9)!b5>f$-T2S_2lW(^X9y7t-8te_4Uo*Y8FOH=mT2pnh|!Pun5;bVsmS&4Hg^< zh1B={ekl(RK{a(#{{axT8#REkg90hb%$___>N=-@kj<>D*snxAJ4VYaUH8__kJkK8 zgOZY{kixgta9G@Pm&0PVEn;EfaC=AzXbMh~I(?-AgYq0+DH;(s+pPcoG z=E;nO;!~TMn?Drw{Fw%OgE$XGv8{Yyc{ z%FFc!x`Ge(11caPfg+yUI1)Jb45x{A2qgr_*cI*`B^CMgYn%sY7^nxnzP~`pz;?{l zDIh;OI^uO4L)65^VFv|mDp^PMTviSSJ}y~yaW*az!5keGvDa@OU&Hhpz~;UusJlRA zL1v}4HW%(o;mjZ&HPE)P;9!e}(k#D{J(y}^h102`CEJKI@4iYXU`2NO`*(|(53*iI zN83+cHxn|(B*uh3@4?fjqBK|fRF#|K5MUZe;JX)k-q)<;kYlk=VK54BH1R^bS9HJW z{=S|JzN93k{PD2rqQ9)BY5bHa84()g@H=#;4)Nwzn-4MvflaOJcb6hp>82PCD`aDz$BQL;-cW*%7T!euN`w@0kWzpG`Pm`gV2x=^P$|E z*`Jl=`4(N1x9nE#(|0)9IH7a7rM3O29}d)=;|#`n1OHOB%g5{%8gk+ zWsJdw8L`EI8pI=5a@au=u}c?-i5bZTKKAt~>gtk%%9x&K@St83*8H3DY$jWI$*l9f z*oGDYoQLm3a~vfiZ5DaDKbB+^1`k_~Gn`qUGwrl8ZN8yVo8-=y<9>N&zpm+c?bhc{ z6*h@?%{Z>=wA(sbq4)7Lw5?>;hDbX%O^keUwA6g|YsCulf$>3;oFd^bo;{XW(x`ZS z{B8xe)(T0E&!#u`X^NIDZq<%Vh4?=Cd4KInqvO|e@t6vU9@EZwTc-jJ_yClxX~rH` z6eieOS>f}%c3Kx%uO4bj%)P?a7NBQfZ~@dGVbBqy=_RA%IP@$)4TX{R=;C(=JLS`{ zxRewEe*SXek&-1adKjgIhIZT^Q3kGO=`DCgv|*>T9g%-#iB9^J0vW%R)Z` z*b8WY>1zhHKjZL zjP0pY0soT+dA5=$g`hk&w#66kyLkf2iruDeXB8N5F5#l$b+&J|D$!GmA7b07l=!`m zJn&_wu_)V1MIg<%x=(%UodE@&gQX-T-+htT?AOH+3(woG zba!#EN{tshTn>7Ec2t{Bx?1n0X6;qS!6&Xv)>9))*iE+mK3%}7z?60X zH|+v?HDXL4ARuV@1q}x%UA57RoZ{lfqooBIR08(F&_tM6ShCw#OM-&X8JU=}bFL-W z9BeHnUbTzWPSWS>_<1bZpfjLmYoE?br0{)Vqwl=xZv9XrUPApI`J0i(ATy}pN-+Fr&1LW$nC}C02*52OhltUq* zp+J?R17-9yDe%w~Xn7FX1blW@BIY`uFah-s1Y$e*`CJwUv+pi1udY6ZMb`ZFD>VQ@ zKpPZ{35W;_I2aa92x!o^YCZ5z52sGeoSX$FTq2u@jDiQCl&MjdGPr7Eo5bY z{DxTFK)*nIYcPU=Fi!V`p2F$U`bVLurk0j70Q1^FxPo=Yb0<{C@a{&dWl>1C<(81Gr$Yj)Pi?d z1rq^BR+au5g^OMv)-xshI{a1)nW6IX*pTlG3l3r8Kw9ho6of({;1@=(ndRjuke#4E zodMTUCs-a-xwJURWx>I)^o#9=-RFJ{*$I(hjq2+&*33Wx=Ni4HQd8glZp4RC&OObD zS?Tbop@_PrqXK6h-{WCu68ni?Wpno+(Zuv{fjH`-C=Y$ijb~YOc0A=VF>yifUn{@= z$P*CxhWPV?Pb7~y)qhPKplj%A29_0*KXR{3%P%~Cs{MYvIlN%uYc58T!H^vOF+1g{ zyp33QkCbiCG7Hn>tNX2$lgm~lL9}CO4ax$P4vT4_eq?wawn3OV!>$L?GYa09M0}86 zx4)npQWj4D@6xvC@yeC|Cm&q{mHww%OMjhfpD}Lv44VoBJkDd7$N$MWVT!+I=;0st zBIMD^2n=Nl4*8jW+xfYU)@MAEd{w*1D3RCsjyAQB|7RX<$5~F@75R z;^93)(_OuLwL1#C2PL}_`&EvL!egVe2_%Y7U%W(z+6Q1rW_6g*?TJ?E%;Kia`cca{ z_ebhx`I%uR9t5RAB@Z_VyG=KC4M-x`fBbr(8ID~7MD6udiN}b&kc$f+)D`_YFFu&H z(MXGL8ozU6%TarA2K)?Lt6wRkW=a-7^=S2+@(qK@UluGC@CqW#wrrvZIpGI;yhzak zRfvg?j|lp_?Noy}RIDyB3KX!PhzJPQiW$I+h&c~jWIQxeHLgsT)Di;#nJ~d%g?KaJ z*Q3-cxw><2W+Ju`fFum!;tM+}p7#J`ajXE%4Vm=VA3_JI!my z2sEU|IydZNLhb{YFVLtVS7FG3UX8FoWbY>F{f{0#M8}eW@rqp>hG(4u zU3u_z{93J^V!U>3e}Y;E?YETpAwrHh|9R)p{wDYZE^mVs)i1&w3??#ueiBgHvIf=F z)Xq~-=sCTVk(C8@3;z+#HBI(R$a?Y~P=N^`6APYEY$ z`Y%20gZ=ReToszAs3@5BW!QazIA}Tj`sGXd%}fRGCn801*@pB(((NF z=OBnd%DmK<^IUqtH1A0 z%yY!+3pWqgEE3o>>&QKXj|I?+g#r_Z86e8`-ov>klKtg2HxLP*T^!0eVm8>{{6R!Z z`?#q|s;0KK6)eplz+Q2{`b#N(j)snT5gG}A2ZdX=XuxIQy0viAoT(r&k&=~7x$_2m z86p~*M^JGoIBvkmHBw^Q36TZ_kc0g^{oaq>budpZ)_Yz1SCS)^BtnUKjs1Dor%xm) zDJd*;xHvfM@w(Mc#)$7_)4|qu8aNdCH$G%7znA#G#Xx@l<;KRZURz!4f7pR0lr#Uh zV}7YVnB7yUr11zCA4Ftruhx zF?qmrSnvcJ{;2N7wdeA!*!=O=zfPqmbyzQeNYVaV<@?)rpbqu2`s+gerW&5}w2SBZ zy&!SaIkMJe!>Eu+?ug9lo`Y(0mF)`i;A;j zt|iGMSG#kT;#_iKDorbnr;MB;RpXmJSF77gGVf214vSLmf0aa`$gEh@U>bWxWtbUS zMrTsj)A1raY|nd_txfVqg1eRkwK}c6d14sT(pOzY9ZPYw#0sLzfllvh4RP$=C#dt~ z+*hSswqs(vL^t^|dT#7ER+8TL>sRvuAtz0{FW0s&(}!T~~( zGPic=;N-`o8@Be5GuNtclSKrB(;pHzDM~c=HLkROG-63m9u!Na;qBNS{=sw!t^5?H zsWNv%lHQ5S@z-+oPhpSm1PVo?Oj!<*I=^Hk6>EftLLXLP(y>T%cKGwmlsq%Pawp`> z46(@zX!Qypf2Kjk$ixaHf{Q{z6i_3Bpm<{CUx=HRt+R>jDKZf6S(-X0dE!o^mzgr_ z@WXoVo`t_~uVEMv?Aa-L^^x4xJImp?o>`5-wz+v}=J;Bil5XVHbSzRgRB0Q~lS`Y+ zh2DLf;9Q=6Ab53X7^XR`qjDb7ZVJK#Pj^z?UEQk0eaXu`<1VCnYvS$LBlDw2tx|4D zb(kOQSo|dhuar+;^?tm5OS2`pDy{S|@!fpdx|k@>Y0!u`)LpT&1Kt~ZNq@)HtqhrdrpNM@7x`6OdA`C$X*2q0%7(gV}|m|0~WZUXsEs3 zpM=y7T1UbT)WpQ8nfFI>^s9aFe0Ge(gWD>)oMtb#7s-qFP>r6GbP@?I#k%p!{m1;C zLl;W;q_k?KFD!=6nqVOuH>TZRJ5l`oImbI(eCDgtV%L45ckm0>pM~Mhre-r;TuI@4 zDXU%F=cKX;11UnUf<+6O3iq3(>9qTy3rh0qQ(t_!f-LpCieET(_{B!Dys z*nczpPfx(HLJ@tqx7P%=jpdONMX-dY7Z(%!5x03C!vr>Kq{$*P0PwIJ)hS>ihp_?d zDv+rGJ`us8#6ix6&LV=Wna3w9rv4FW?#FhC)=bLY-_C%r#n0|bM~ zSrk~urNH3?;w}os!BJqLm9x6K3QlPzF;l=nD=RDDGQ_~e#eGC8O1`+bw$r_HSdsZ2 z<{ZSK2bYf6xmU+3TLEXHp}-=RDD0Y{?G4!l(lMhUYY2Ej_m$GqqX41`6XoUYoep$< z|Im;e_!)T}K68GXpI3=H0>Zh!w~A!Ssn*>{sTqSPXbntY8=K}|D%sEmT=9Uz55d3MQJ=GP{R*giXBx4n4!)$52E!+%XAjGuvsQX~r=x@ZM!n zP6NO52_<5nSAWp2pBJVRzupqy=g3}emzovB%~iTOB(Q=<&^ht?Lt?`stI0fk(?f;q zluUSD?UX{CU#K4?whdWyz8p)m)Ke1for-Rr%la|uvqZ&6$CBpCg?Wcv4%{T3>p-Em zfNd9UukDvNEPxPIKQ6DW5rTzoo0W=$4E~uYeqXSsrw0j#ffZ~V*t-dKJ?Yfp03ks^ za+p0@!iktbMSKX<4l?u-N1QFtD?tqNygpmD2zLY8e`#468j6&Z6mbLqd5GA{&zv~} z^gKF58>RA(z{p|_QYz^Cgot$t1qOdvP_2*z9k|U}o14+DU%#%TtjtzkjE;$S9y1_4 zJw5#K;}BT4U~V1&`!fj_}Aa@{^&y$caB`<@;94IXF_DC|o8%^LhfH4Ul)+<6t zqRwBq5CP;R_@wGuN>XEEiFFJ09|HA**nN=*8Nf8%na!y!iB(hpjP_|Dhn$aUNB#@9 zX~QE#I_BY7D_TOl%7`@&L|rn>EJ*FG@9uUYY9&}C3yrD?0A`c*UISAW%+euH0g#IX z94i+^9&&0+aqI}GpPTRfK_{rM80IV3NMPU>kl@TSIN9&l z){|Y|a22i{Bw4<+E$?_Q)56>Ei{b3x(mCu~S1~0YFP!mp#5cGqoeuhYO>Qo0COC+a z8`lqTi{u!a_i;V@YhtV-e&pumUlcVu2%BG7xplRy~IXm?zRMsGsaJNcHrMoTq6BKjqsr!LEs}8MljqCRfmwf~@ zKDD7>mFsC^C&<{(!H?6^MijIN^BzQIvr!y!=5Q-^;b#DRH zRYtCiS)Rxi#VaTn3REI04JInv@jdr8BxZ4Xv`Gl^DIu8VV2r~8PlpgJ^XZipyfj{! zTWv5Pq9AWMTy4^NXx%o1xNSqnY_{m+|$F1j5>hH9a<_P`<9L zs9uoIl5%h77PHvNNII|2q40$w!=X?uMNw7`iVnLg{N+R*TvV0{B6H0_Ud*rSq(->a zVO6qN(6M}|Q%}9ps(Db5Re`7fGHzo(*O(T4Oh_i-OSZp+^(k3EYM6U-yH(2jkKKw7 zEst^i}OyNb3yJhQ{gdjpdg}WgY_U72KZ?(M6mv%fr9tQ=mY|MW)NIYghVlP zO*GQzJeZ_QJ=aX|z~6sqb+3@I4$Qlu;O>Af*k58QiEMSq$|FS!1XG;LmtPb2MTLh4 zK!xHR#RvfP1#u_=10a)>ot=&R732#L))0b&U;(OH508u_&Y5f|0#WT>v9SJ;5hNf0 z6Kn8$Tkw=Zs16cAVV>-boJa%(5o>{Y2jd4~HG+8D`yNi;dPTd*YFcx1bK8;PSG=RX zdPsOIz6v&21>}8U;)d992awv?jD7H;?2{r?6Ofptj$Z{K1IYmNCK7yydam*@6~<~v z(B>(6?7XJs>nAQS|1vVc=eT)OOx54O$q(RkA>AASQ2_m^2=^fl@rN&QwKqzC^x%*C zBnIGCTdsc`oKRBkZqvK29xR5{JJHgp_mgqsCS$beyC9;dlhAs1fr@<7yV{Q?@u5@p z0l1Y{QzPD4`_&SMi_1GvK(Rwx6CM~iBDtlOT1f^N=5qA?xs82{J$o}znrj|p#3z(n z(sp?T=8FqI*T?jCepn{n)4Ez#97@#fk^b_Dq~Dm|89&*EHj0%J33lhrSN!nZ5dZj@ z8&WfOZa^PH%VMU2?p=3=WN*6*iB%JrpuJjwdQgiPX#ePLxO z6wl=;UGEN#i$Lq0eB_tP&T(}|k3PXB?*dp_6yr_{-HR=9AAkEsk)6VCzM%k|j+E&Q zl5-Judwvgu#Qb78zj+@CUuac4#>96Qu(gYddA@a~@ks3K6Z*>u`j^O5*s>e13=Yf8 zZfZ)!rN>+5|7=m zU8?_fi$0_4OU~PhwPfd?U$h|cdJgR8V8Dw}5#r-(23lX0vk`HFAWlZm9wCEl34R&G zV&ybh7Xe+HiJSX6>s+H1IqkEMKKmwI($FuUz(zrk9!aa0R#eD=Yz^l?06WEcXKCva zM2y6Iwy;5oCC;d;cAAiZd=gkEOqVKYXlQ_t!y+Ri(>E~ieR>cU9Bc-k+j2=6oKs*& zB#%aDHHg1JXg&5|J4M`-ul+Y{4uETnTBt+=bovBK!$5a9`kiyDy zxT~YB4Jkg2JL5G(kVS)IB+Om}eS@rn6;#_#bYn~Q>ysNiDLGlvh52U$$gJ|P#WZTLqBU9Y zzvWt}9QN*~S2#^j0nj5)sRoS&N;n)ufe%h0iBb2-&o%iat@55ZmmF<>Oy1-aRo8nBZh z88iT^W&nb1!Qum<&TzmqaCQkjtOD?t3wy0!eCM%>0|g4?^Gskp0l=YlTYgHmj}&vI81M1;nDt>#_D_>Zq69@n2hg88q`EJ=IE1=98|Op z^nX=S`zVD^g06O&&y+Ez<#KR7Q5mwBq3-UI7ghWSiJCdtj# z7VKx2JQTIv0yQqhIUSd2aMBIa&fF}+zJETdL{um!M<3rmm2IUYK6=SyZ-3Ms=gZsu zn$2&LsZaE%E6K8d%>S4kU#0A!>?bmK>+Kc0MZ>i`ER|Y?&u8;BqRVmovWlj1BW~SC z&+C8E`l=Ign5fygIaTA#LsLMmh+FjM1ji9y^+Mg=o>!hxaYtuo>*QpEj8#Jvl+OZC zM3F;m0A)emC@4Fdg`CF(Il>1e1s*HJo(IQ0G=VoXF_ayqcW^o*I|PwyA()OF>r!~@ z?VFxuIAH);Cj8btO`vYYBqm}*aJm8qX&+m+2orE|bk5 zW;x`|F>uKd^#Hl5`My**I)(6UMJ7b4|Ck@IzlsECDFv)Q9Nl9J$Atv6OvIKL*J8rU za&vR1VGHpHy~9O``)oBq00D^3|V+-?yr}z!2xh^gcG_lKt#q!>V~EFv*V)ngOtmfgrnq(&46vU>%F?fWtl3?{z3un#Y?VNM#tl)?1^YavnJ>7> z1W#IG8*ea$?ap#h0NCp;n=|LV+TT*+Y;2}2Pf^X3I!)c@u5_I(xyZ~qpJ#jjd_mrH zZJDvgL>(NpbkF4y^BKwB@kolrlFTKMv8BZ6FJzZ49eACHk({Q~M3XhrNt@95KVa>9 z*x%CEnPswSR`@!^i0>Tb8!xO_lL`JhL$ZnLNy@%^+Y(;es{v$|<7p+?(VZXc^lJ{U zo``tskgKPu01X-n13x2pp@5z`t3g>wh==$5ox6hpv`!*Ax@ef(&!Fr-7oLOV1ylnL z`Z$1NFyW&iIcm-%G}L+Jns=!SLC=(!kwY0eqG^rpEGfwwJThE==petg1bQ#18QhXg zI+6bqHG{|7#@xH0ura3E@f7T=NMAhd#IxLqtSPMveAS?_E&OG7+6CA1u z47vS~GKC1@MFOB!@VPR9itO><@=@J5R02m`d@n|@ArAPa5LJ8q&tGD4$A~4e2M>Yh>$+2l>(a!b2b3pk6@z9B zWP%Z!X56hzLdBS`x+#!4ZGjjsOh+LPr58nu|B$9J4z#2Coef0fh<^|gH(Ibu)FL3=DmNMT$0KAspc&r#nV|CadQVs0 zUxHzt#LM{ZTAZz}pXnrKe^UupXfAcvQf;Y#N(eI`V{O=VsUkng5AauAL9h7DNA5&| z)>IN~Y6x=cQyLfiKNE@n{HT+|YwY6wp6B~-z7W-a{zCtxjG71NRsHrD{4E?=7fv}B z$MO&IGL%E zuFK?6<}fdb!Etw!4R@XYIua2h;V)jo!z04`-rc({`x{o^o4~aL%L9Bn#LdU?u3yVOw2{@JA;JX3?>@%vX zp74EvOH_ai4|tga05ZeL7Gy9@lCf_ZuUGw{U&_hhIQ`A38vmgZIp_+ht#BhD6HYM* zM<1{rH3Hm+Y4faug9Dtd*!%C4SWiN8*We2By?1RdEcXS4?} zwPBFp-mZi5A6kI5gxrois3=|az2H-bNlu0cUpb-XTCB_ON|ziyX^!>13px4>IT-`m zhb&~1O7DERg4FlD^%*!ilaLV3Uc_AvK>7?EmSG9e>C!jgYdo-baF8`JqK3&9VkYvb z628a*5@6o99ILPcS>PcYBhWMU+aE)u{EsS`f41_ct_k3bf)1m+$&>J1pyewezz$oBy>xu)Oo=D4Q6c`9Ok=xAw;tqmaNC+x8@ zij{BB?)qOP;P;;U_RZ3`wSe_+d-M03{aZ))*DuB-yWp4H`P&BndzBbeL@c&2umbP4 zQH+ChkelDn>kQ8EgJEGy`JS6wFmzV1MPFLWe;|lCRvmb6HMC!wgz3r*+vgO?2uRgs z&wJ)MU?qq=HY+SbM|nL@3Vb!fGrjaIOoq-hLBiJ7(0HlNGG<2q{zrsbmO6DRX8LiKxt)q(UWArp!^IWT?z4lre?OW3wTm$ykw@ z%;Wn#T6N!R?Y-81_kN!D^Ld{?p7q)HUftbXF4uXU$MHM9qeb2muZ*beT;}a<1>Yr7 zKL-hkTDOc{Fc`UVOZU))y&T=k4)aNwh~1T(x^RLgw6i{Ynl;a~$~SH1cyf}0(9$0^ ziY_0!@1K0&OM88LyJ8K4qrQe2h*yWDww9OoNgpaRFj>2Tv7;@kjWxB!`OryMb};2j zyO)IBw2Qs>(Bqzebz7&~I(hv88cO8Hcg0;C4{OqIuGzEHPUKiy%aR<2dzq0xp0906 zWAI_H_1eeGuGoB~V#Z{ye81PA+dLmGSu{ zKTi5oy!kw5zvSDN8I@yw8ky*$8kX-d!?D-S1^F-SDII zNAHZ(!5y8~-xY)k9hO5h_V7 z0u4c{v$A0I*h-;5Wlf}q8?aIzJGKa?m$rP!o*85a`@n(rJ?BT-!Fs7a?Um@TZHKrZrKlHtHQQG&=*8S#6iFnE@^)zV>>u$HfZOF4Gzq8I!4#6J&w@X z<>ck<#z(Pn<3`r4N0uO=jzR%zU520|LJlH56#v&I&etOqBeE3^Uk4Jq3k|P`xVU#v zP*8n#OXt8B2n|Up6b5Tz{Ed;P!D%5bER|VCqbc<0 zzL`J`( z19KNvZQ8pvS-=XD6^DtvwLiOueuh97TR%wZSJ}QpTQ{-H?s^{4H?x3n6}6o6 zldea_1Mcfui??36a-||h-jj%+u_JGQh7wz%4`@w5xuVEA4CIhz!x5i2PN93CP%wFb z15iPB5Q*|aNF}icfNZ|TKaaT1CIsw}EYAlWy|6+uF)`VEdA7n3=qubSK&^JGtG{qd z(T}s=d=7^h!oh7Z&iBK~s{^c(JKzv)g!63t_T~;zfphclEI`~C5Y`x*8Jx*VV8a!0 z96o|bI2wz}z!Dr`Y=^(7CFM;{O%e46@l*h!yA0DYy&bTD)j-y~Ar!|@OpV=;gyK;M zJO?hcrna_(I4zi%h|GgHZ+GteIv+pH*_=ZBa?pxMIF0ZDvi3ouE)DcPW!UmHU zUPh!69cIBlxOt`APUiOzUE>Jdv9E($RaOyAK^Zv#ft(Wo&AOrS}VMCjXju$;;~XbeBi)Nsm4@dYIQF zVJdcWj5V-i+3A?OGqro=f+fM9i#@RPxwiHv6%9`OlEUd9I@NFgn`F3$>fI(27bz^k zWV70xszPhYM7#W~G@EAkjZY>!ccgfx*mIQGA7SxIz2(Oppki?+J54r>k=U&T?Z z`=L|UU)bvzZLGLd6xXTmn@BDuEYQn`cUT)wXzat(2^-G}r1(O~Kq-c2r54MAA(0V; zA)E*IR~eEND9a%`#qcFz61BE6u zdPR3Geg!ehx&=_eudG9uI0YXRq2ukk>&X->CN7Sn#ngdLDmm~Zt$lqAF@w^^*(aHS z)(?FRGbtQzQG>Gz4*>T?87%U8-<*dx*EH5pQxcA;X~{ZAg>GIapa~;Rcw@FK4BRB; zztvUGqp7J;?(>Y7nw@sO1o>MZEYN7>3OkO3^fUzbt^t# zZB0)-kXU~1e}_=7Rk;j#Vf>>x{_l>v9=z7*PZQiTQkxgcJhrf<*l+TqndM2po!n35 zln&AgT)2}Icv3)+#zhDe3HMGVr|z?7U(nY-N1PGtln`#E_0-d#^IY#y`C3vUrQj;MB^3fG2E&P{y-Djst}mQPLx1D-diW7ZxD!5#HCY zBQZcpQ4z+j-K=s{a=6yy8vFSzFxbk*I|?}uh#e&I*EBi0*kYMa4l9)dYVRi>4Ddc>nTt~ zc}*1#v^)nJOjP-V6~^&X83&xpMro=)y}?0J;+P8WJ3nd@ELn(n@5V5g(lRr*;#sp9>pi$m)^!~Sp>j9|!FW!{^T#Lh&Zbzw1dfje zwkTb}H0XI>y%-r9Dj~U>;DFk&{}5~e&}A()E;^&ExaQj%8CIp*3i0t#D43VpG4GIv zov3Dz@k_EeK*EwxEu8H#K#G|kE!>$S?C(?Q8xduo^ZDh;>Zc?w_qVMW4E#ab zZ};jCPg?7Y)qWLBdxBgboS832YZ%E zv?d0z0Sec*oDB_*+72$=`q}~tZPNE=F9qb}OL`)B$2m5|CVMQyCUouAcz=tKjD5Av zwre0i`F-l-J@|cgsqWq4=sqPVPP6jvgo38#!YQXnRnd?YaDdU^>ZFFbdXZlEXjJcv?-$C>YUa6ccfZ*pMr;vZBd>iAA zYU7*v9|t?PfZ^T|XI^{PBlOxvCMqz~YD%^*<9L{2qm=Y`ZVY>`r0ij^GmUw;?-)m1 z5EZ$QXN;-NNckzPecIR~t;7{`-FECL^=s z$9*wHb|706xgg%)4oL3&gMC8&IMk8w(I{zWvXDW8Pzex66nXebRGlCB(q2J3QwsP5 z;FSZip}_!?u#qJBh~#Ac!s&iV!i3;UD$~u%2m|rx#6F2^(y2kjkeIh^VMr!n_jr>f zH#YC*H>@TQ5pv6O><2iAyux!aBb^O=6Yjt`G5`$_(^VF6D9?#{R)7 zTT^9B9Nw{KZ7biG^({U0kFru|1Cpmsm>#`!w8N?RlPb$ct=0WfshbZ}jHK;~_16^F z-BG7-YtaFN9l654DP^&JoR%l<$AZTu7G+8?G_iI)x}Hf%g%<_xx|0ESPQrnT=1ydc zy{~fm_B86EeMYf(#Z>*-YOZRI@TrC#>AjEF6)lxM&G3q&|5D^JpRO)b&y0c(?bQ}( zMbnnaDW&gTEO>liBZY!Dm!7>Zex#|Tr9ZB7Swr@qLU3rPH{ylOA-5v>aNJW=t6VAA zVSEuRvkW2wUr2lN&VT1xnyJps<3v3 zCEeiQpxniaQY3Zksl9d5=6k>pppq{o+Zd4oBLfY5v8-1I)}C@4e24~^B;A6`Dkss_ zU0nukPRU70W|$%IDB(=M2vdYF-VA-Ctjm;GettfAVQ9CgzkT~gL=UNFCfR3^MIt-l zthW!_W>cYyBsfHRgsG7#milM505!>}4$fkd%>vmz5gfto=#^cH#EcSr?>@}Sq^AaC zHIP^S@qA>Zwy41bNX}W<{s__nD>O;jkbP#wr{!#I=#zJuztFO80ir_ARLOd`6gemM zTUsK6f_4#HyTKuQqBjmqR;Y+tvH9bnc|wV%G0goLsv&%D$ahxji%a zSi+`kQR7o**?eAqz8s-YRNkf(PvEpUU*Yy~m*d`27qXMhZVfDNn|y`fhztF6c|Mj! z9QPA$x{8F>i+vFg%KUswX zWmysnHUid?IOp?m@~5%4wzKW})j>#vSaWl8c{!XL#S6c#LCy!PwHvQz%HF8!x1y)u zjt$iho^S1SB(EJeZ|bLiSLQoa8f2}oRqxA0Ca*ow+vA@v{nt5uWqZ23fKm9NmeX&H zeV^rTP(5Vj3WdLLj{gGRk=p%tyx>`6jQ$yA|BJ!!zs+5G;nW@Q`&<8H3H)aQ^xtfV z#Jz)m7iM}J+)w8J_8WlR^3N~w?@xpCA3hDE$UpxgzsbDk{`W&T2HN4PC3RH5OKUTa zYGA*-8R3RKl%y8o@5nrWl~98{?C)$I>{j}szh5r+zv2c-a0sBb!O=#O4(#>_OW#By zHjp&F#F2#OGYcGOg=C=$;1Y2RVIqgx`1u3&-!K0Br3zcS(SJo0B2tPV3U~M3p@Xav z%nlT?R4BWl)@J=|giYbto7=R2ZAs)in7K*_i!$H>c#>wi@V8eop%wj6!N`{$efH+f z7ExU$W| z7G<)oj$i$Z@YnHn#$8#KxrD#&<=Evh+n~bpGg`oyZ{TE&K+wCr3gdP!f5s=b-uE9) zy=15f4b%0Fnjz{d11ioYYkqC}RVJspm%m2_HuaoR8pA(iTz__F^F~>mJbCEYT--d7 zZh=wd4=N~dQMxts?qA8j3n1qs6-t0kydObw2x&|lGQfGG-U16unxQOTzI?-%G}N77 zqfH!6NK9-i^`=j}Ims#VD2mcY-=x*&rVyT?k_ffAlMC+S^za;8^*O?)epW@2# zekFkS-cmS+Dj;-TIf&y5y1gzARj?2k6wlJpcgudOCBA&&W*DTVKpKhQ`h)EmNU}G# zB$g)RL#hjDL92&K4+vM@_$Hg@{_C^+cZ%{^or6!s+){t9kbjZ{{9|5nj?dpq2t@ui zQ~?3Wzq1^k(;gRl`6n^K?;jenviYX!pH&I}Bj)q>!uoUT`TdfA`aSZI`~0`@5Xepb z+qM0lBohDhI@oRgWW2^A5X}zL4DPF5&(5Dw=T3+JI7!{En~BKC%p}z)*qqC?;tUVw zI1F(CvX*f$=CA+1!OH&&!O9xZfpDiV>Ripp5Cz&Qix2X@6|KDYy;~Z#5A$P1S95GS zgLU(KBI(%PiBt?L9B=D>LK}Zzz&qQYbGyUX&7<2^ssEyPt=>czkCaIg6!xIWm{)Sh z*`!XM;|U#U0-WI&Y$Wfpf4I8VHmJ3smSOdjj}BpWJ9^lAysDzZJdb|9T}?fm@}li$ z&~uO9(ZvciqxUp(M)_8_?Y(d6*6_r^Z6PJnT+gf7<&vZG-sj05=pJfy9J8^iSx~fS zvH5Ue-?JC5E7mm{YwK+(C^~uK*j0rcX%;W$`oirT7l%;lc%l*{j zl%kGl(KF-G5-cu^#(RzSrChc>D%SJ1VtLvg+v4fq&3t^tSRP5_Y=!}dl#`}7=2F}T z2W^P6_gCUFS$IZ98iT_C$H!vhB`7=qH|<1q=D@W(mSJ$CP#_#dUDI*`(LfEZXg$-m zc=6(RoLWFp!jZHPT}bPJ@Y-RnP<<6#ym7i>V%!ZK(vk_ zV0!pj!j;k50xwvjopRfAxLCCBb#* z0<*qpKf^84ss{R;!9l9H{UPZ*U93yRvui$Nj?BH7?lNA`T;Lske6ydrT4~+>s(pGY zEZdbg?&dhWa@)F`H9nI5Lw;_-KJ5Am!NJ!V*2X7?)(XZkk=rQ(SQrr1}Z zdFe3NN`(rb4WR@0T}dA9G7c#}08s6)R1l%Hz)0kBJ+I_Urd~nK73+qaKBOp8-}d)Y z-fsmG@mANn)z5{uW^hk9d8fw5b1KVwEU=7t54WV!@wkWdpx_PN*tipp{$sfC?1`s` z>@sYNPYCvjvLduiPBTIvr0XrB-WEJ%yQ@R<7A_ag$al#Hx*b< zV!d1XlmOR0UTGQq8I~X1!|fIHuspBB>|6@WfQo`nq>1(b;q)_~cVQ?u17}tmSqE!M z2`ptOc69ewYfG~tU5y~f;6Nlgz4JZq7(6^YNV4iu1_n|T3g|XGvT%-iJ7mbn{4+3c zL%_#rLIomiuo(9a(h9C(B8!36o&b8dqi9f|N-C-->bNVgYLVAJ^!OAlg{1TV#f15m zf2lU~eSbJ|S@wF3mn&4zDg6=g%f;ZrekQj}%wFN-sa>HTR;ri0S0Sq$po^nz8!) z+K{QtnYm=YCB^sOvD<9xr{$2*SY5}mfWs$jzy7K5iPeq^C!f7}S@y}D#!u6EuB2OQ zdC7ATx{eWjxj+GyFS-M( zQK{*Z`>B7>ep4E=P(~1xmLdmVD`bm$vAf6<4>_m;6g0%$L2}X&8jj4+xmvu&pM13R zc3Vycz>NtHEnSPJmsj16I-KZ~FFZcK;Nb}otr5->{tfB9J^kU2C;6fhiv)KR0Zl&; zWb3=6ILM7X%w?gheBa4;72)shcy<1u9xpm~Q0r}!*$a<{HM-34*`W+lMH5U}LH(;2 z6;RomXg#^2rdgR4wr0@oI}PyM@}kx-RUJW+^}Du~;qBZ512?6w=N_d7*!CH_JsFYC z8z^`=^Z4{8lHUBmqbRX%zVU(hqx$l2+Y>wLGL7RxL&fuN=auvnx9HGVOa)c%oH;~G zE(+90`Sxp|6Va(w;#z@-s~1w6U=D^FB>2$NLkakZO6S2Wvb}imf-J$x%0Bfmdk@S# zRXF=szD>sci8DKrbx61Y>DR(?M^sBBP7teKa+B4;eb&<)sM9s!XJeqiaW!!M^psRW z!f`I)B1&am9sHfd7i#iXU#L^|JDKkBB%9mW%NSSgr^@H({cQ{VEL2gU!f3PO`{=SP zrL_fJDOOygUwc$F;*ScA{H%JdI^aAUT{~lyQ0PJ+C=+1^Vjdt~B&{tOzx{ zfRU`_k*(qnHu0gdk~^wz916k$ldf`nVr#PKO?~a>cwoZQNLQVSEj%*b*|Ty&JY4eS z^@}#e(<_o714G{rNe_dgOq~=_dKVSRLd@nRZ>p-gR3YDgA$0< z&qnje48sJ0!!@E(`s|jJf0bN`H6ZQx99++RtXpj9Xl9>z(!0{eWVZ zn8egY(S05cks*s(M@^p`)1w(NdBl*k=3vE(xZRjxN;hOb`^k?T+%R>Ji6W<<$B=zR z(^hb}@7;#Wig8=*)w8$q-5wqO#-bM&q(>~27VR~Uqj;}+GdD-xO)tvyntv`(G29ZQ z;geOpDCtp>^hbG(2aBTFky)Oc6PBCn5Fzl{BoQlJ^C#+kX|C7aYU?Q&S?phzt2f5M zNUo=qz}h{sIrKxq2`vF}pCjpcn36`Q{TFcgh`>dz@^k5ebg&F6Y<%n_JRWUr0r0CJ z7KzRk9r6pj&+E5XSYeQU$(BLV6S|Ae)9@2^arvvHc6?Ej{f)vA&#c#(T zL?NODfFA_@BB&R};8xgYOO^E?nD)fmBaZ#kr>`K^j|i$}!U$osOkB^B)(9hFd2G)L>SfA?N-fGl%cr@RX@%=V?yFh-5k>35 z8D!ttyyQx*FZUDrBHd-kpH0z<3l5*7MlR+F{gf?i;Rk$8ij67m{#Q9ZG&~3p2#O!# zn&uUpuWoixQL@c8qqyB{zIACsohaQUy0NR5F5ho5=glbRSYah-(p%Yl#oy>blcqWS z1?}3V``Z4ghtvy8M97#bMPYinxJ zQ%o%kCDuynQ%7p3;Pd2A9kDSnzL@Yv|7SKtoo znpbs;Mm1lH4%Bxt#&4X`?HxR@6@ZWz$SUIA1C@uvu7vS=FJ}x%a1IkqMVs|RlJ$n=}AEx8Q7&!=M1~KAKza&(wAcz-1Jqz#i zp}HY^TiX)Q$;5ny#s*e|-;mnYjI?|A?)ef18kG(Rl=Ow<1_y)#N3IS|kI#WOBc&w7 zJdJIRq%J_PI};tP7ge9J!*k%<0B`lZJ>82a6CGU)ufnsm?i+0FYk z{doVUK{|tdku(l-$?4t4PsaS%SL8derpGc?VK$QD{x+-V`iFPU5$ospzsZF2^o@Uf z5_2~paNlcit8tg7wW3Yu-nRrF9vtstu{dpXB4tjxZ@0cCjm6;$UWIv!GFu9jW&%3H z-M-m-ZDLLxyA7TzZ{x8pbN%&@gs8rLQEoECXv;UF?CmCVu>6N!1;q1779pKae>8Ng zy7+XgbyIX2CB{Yi@Pl>joQ`unOSCA(FD&E@>;&)kmcG1SX0{{tZh}|FL%M2x`)HXG z!TFYJ(?PXPmAjm3_DxS;Yu1g}P@i27IF9WC|Nws-U~*v31K;gkW+bL%oYH^k)1Io>=Z0 z$rU96rrR(2*NArAQMq+5uJNk)?y4C3WsGc9KlFH+R^(G39+ z=$xKye$$qC7FwOv`L0GYvp?YALB4=H?i2k}eB`URLIipTb#ftdX5K~p(+82bsj8xp zu7vYUrljLORP0?3xEGNu88twe|iId1RttywEgv$!EzG5PcCNsE}z@#&-}|^ z=8;}{_+Kv)r-hQqMcBYm_$dcmpPX)ldF@A8}gkU%z^zQJXaG;OIis-DrZRl9eqoA9ox6LK`LJcW4}v>@aXddKEnT3~Y2o{;YEZooM;RiPK&nhlx|sr{7*EAgm}uG zwHw=9-TQ@<9XoblbZ-R_y?%BVel;%yvgsaYp`iA`6Q;{JEHF)vPp>UEw@uoX`5T?@ zKqL|>AGsUuCMVPB={0D%zDDB@>zXxc*{~lIPZ{X)^`mUn(XvEcB?_^1(irwjQcjMg zsu=s<5F#nK(Pl(ysb4&!`{M!z%PBIC5a zmKT0`CB1ay$J>Nn4<1!eP(ac6T&F8BKw<7CGHldHQ79zw0OSWWrwQd97$-@q^!?=I z_O9A^?fv_wtH+V9;9Xegn&fMm^($CcG4U9p0C6WExqcmSQlM!CLbO^$2|cHK4R(Um z+5nuXg$EBNs~FroIOS9VCxOJugMfG5?581&Bsv$!E|oA75d#Fa5K~Yr;ZlxgaTS04 zES_t_hvakPFuyJ)84GrH-gvVljtnO|^~asxzHy=W8j1pnJ5v3h)4jp`s*}dNb}c=^ zhY|nKfpTIZQ71+ZE2{uf6#~mw;+v}952Fhc`q;q9h30&&tJCSeup0-$c}HhX{C04I zgsI8={v;O+d$TwQNH^ak zzqLzBt&4SJui_w`!T8+IKfWqiBW0q;h5u|JYw=FgSh5yN6wTAJ$2tfO-4uB9yBRa0 z{9g}Lqn|Nrts z|Nc$Jrk5X1{k=y2Wv^If`Ez^X`cK=*|Lcc+yNv7{i8|m-Nxe1pvJFiB%hBaqGTYJK zE^|^ATsF|_InQaHO`GBo5s3Iouc)YIm9Gp-mbgRO=j1e{(x>(F9?SG#Hs%)xs7hR* zIGB^nY^cj+bBd7r33m|B^uh%TVt~aU(y2nl{!q(dKw|iN{5U!zqt9BiOGf+`X?D|?v@6rW{s#HI_MdVO&sc>#vX$m)UIVcA7zNPk+m5_FMIrQg7~xl5+N+{HVpffrpJ!^X$z!ZmC+@Y8_nKvv!ohiavG{>!$a&%EUKV=iyT3?alUnsHO=5Uw6*6$z37(_BP zRw9(5&A4>`t7cm^vs$%^{%Jca6~XllddWhar#VhC81pwA+h0I;chovyV?0yFpsJ~3#m$54lJ!-LE2T5c-dc{VNvC6si!$vH=Ei5J*E?rXG~kuyEMA7s zKX$rN!?v}C`GK*_f^4e@^|1)a6vjyLNxJ!4xh&GtTgpO1<56%zCjoEo|S?I7Ztnswm#I@FZpVslG*C2p>pT?Cv9hT z(_Prxqu)MBN7wkH9-=}YZIbZ#*4poFHNDm=W_g%rI|n?b9|=uNKH2c)%eT<+ zs#x_6Xy`y{51dFIU~EYI5a=mJ4m>W@BvcgB(2aT-VEbL4a<`F#E(+V$yG~F!IwsD$ zU1m4t55=x+0iOwquJHg}LNE*t$V9x-_5FJ+vQ>x<1Y%C!s+n`D=McIM7=WHavhq}U zNwgoJQ31ydF_@vsE~sE%H7@FT(%6_3k2u; z5*s&)O)=0C8<9O@Xfc554t-?4n<^r|1L*H!lH$nC0q zXqz!@|NRr?@Z&pWi80d-x5IsCd{f(XYNVG=J!YWD>FLp)>06g^_OKwC_5gQDF=t0w6mbl<#Z z#&IQMU^m~gMLr#7?dN84Mz!+aJXeU`KB_LGx>U+Jg4a>1`dP?_83hv-!zEWL+Y4B1 zHqC8j(y6oEESNUtmD z3Rs7dTTFB$_!h+*R1}~>m6*m!e5az4QX5oLzVQ~%O)?7?ytqtfBevt_RNSW3G-3S} z@g8=gOhIc~5_jsD9JO%MR$Q2HW4*fi<@6^h9!052Y9Em2JeM~{8SOr_$~h3A4kr1; z5BPs=x-E2aZK_Lod6n{A1YEw3yuKy%Tt-*wDDOfEgIgQ;qz=?=Tume2W@|I`;!%^u zCpK5_Ym0+K?ZYKgtvP~Z^#hB?r4Px;d(eE8VX4+vZT{w>!YMLJ04=B5Zn|tx#61HNoU3P825>= zoTT}Jj8;Kdo(PbLncr!r{6mQhUM5XM6eERtns>Lb*z zX22mVcB*MPBxEqR+{|aBkZ(gytsK})0zLvWF^6yoR%34WQqI-j!4$!CAP2w$m>)5C zhMcaftRyyHlm(Fv5}07z&c1t5ET=)Eewof;EKMN0+T>`7wtiNV1>5_`IFpxo;h8ZqY%6UhPPs!!mbFv+$DDVHMT`LNgs9 zckX!Bq)P;@`?jboc^9(uV*`A*bvIri6FK_U zHqgLv`AXNFbitRF_;xPy%8+ksxs|*t68&oxU8%2^v#!445is6fe`Rr#NFhsP{dVE; zY94wV3HcatF7w8|!G;PiOV|-Taa6%$HCAFlidslG5QKkt>JUrX(%FaOZE0=o3KGll z$PQLPXvT6-;gq!XY%TxPDF~s7TNdB$0|A}}|5NNb=;Y;VuxfaCSid{h-=7xMysrC} zBl`{z+Nx<8lui=s1BlVYUCBUPL-vkgOCbtzlB7-^cx*m^U?~(*7>u@H1_XEDj8pap z?JZ=x>>PB3c*qhy=<4ac9QkoTOjD2f!CdOLyS>9z0k0Z&S8-AT!e+1T+&10X6`TY- z+F?Y3*=^lZkNzk(Mvo|&w~RlIk5^2-%>sQMvL?B;Wzx6I`(ibAS6vs7GFjnbV57@*DV~Y9+FD7v^8Hb6k>Ung0Y+o5 zuFnSVw>^nVAFW=v^ugSkj>G=B--yJUj2=%Lat)a!Hdc5=lV(>j zGgDFUD1qjxAmzu%l8VCt7f(kS!f#1eC^F%0BgB#vMq+skB1wrNBI(bjsY%wV2t=Go zkKrz%nHX&6XWlHdZ7nQVA~TJbR_kSp5A~Yp`%@K{YBPS*8*P=m8+Q>&Wp3Vik#u6&xs_xb!PT8Q;0<**<`h9LPZ1B`+^QZjErCPa+t zc;d`qvLHhf;6B7(8-B4PgL>|82Wa< ztrX9&cdJ<(Et~L>bOwaEn#7@Ay%3L@3P6 zChbw5dUNnLY}0B&f``{($$%Y>WzCfcC}fZ#hyUVs{_(idUF`j(=orFY0LOn`y$o*q zh3+~9TZ)$nyKICQi?l`{zU>k&DMS!xB!0xmVSx~HEb(yhlQjq_{xx;{u2CP|_UY^Y zv`oV8h(IW!oIyn5L_*`#JrXeta1#L?WX{EMMf_Kg0+|9iBeBK^x`y>~0esk`3=VGw z?mRLh6OIbTe>tRpKrcoVVS<8}P4;x1^9|9x@%s1~^RLSpy{a~Gi*2V>_{_H3NNLUD zW}(5%lYWas-fqkI@+9CHWZqv^eitZM^WK^wm;9S=>H93DvbLjC_Gb0g%t679j#ROi zDR-Q=n3sHV%{e!|f~%jW^&{0o2uLoq1g)O4H4sUY)zL9Ff1P(7Lbt`|Sl4_9e6>PZ zIgeF3lY5mS*Tk8k4UVsIvE_NF+uNf`K0V;ycy-`XQ_iaARyxlga}@b}wUAn|;*M9k zuRm*DE-g71b?s)QnC3p&6m_?tbZb$m+ko^v>$bz=KH=gC+!y8?X>M*@G*PHRf68sg zy5$tH`Wt3uGvh3(+qk8h4jw3b`Kr;OR5*Bj`HzM$H6x>i-;TKn`y4rW(*2N$Ue(LM zQ#_mQ(X;HSJhju2T|n7RNpTO;?)Yfa6Za}>wD(t*6x&dWFV`9kiS;qx>}RAm-g6Pf9etYd&>=rlea`4;lD-wW$NBxp zue=r#!nJ0r%ePl+fQO@AWG>!>#nd-U<~sIWT=d1DQ^8BeV4*NTWe+rf>Qa@cZ6<0P z;I$%0o-HTIuLz=_|FRVEUuD=jNgM&$E+G#KeRXeE7qV$jkXV>?e8@o$UMidO=gYyb zQjzj-1JpMnj6df7eLtui+R$@O>ccSs5REq$3@%yO^+2i-(!`4H=;4DAUKe`5xv-u{ zu?RV?!PvGy=698@q@)iUEI+_LZIh_e zd}kLs9gT}-;F`}X^isN7U5{`nJ6bEBJk+-Q&`Jwwzj;x^1A0od7De_d3~%|Ly>SiD zkRKl`TI1>vI;or)^!O%QrK5AqA#v&aixF3{I?FP~!eoQ1E_b-?vi-UR?tYP2>$SQK zZ_5jE?y=^ZrX4X0@7A;1HyG3slu*BPsd20C8qW_MUxrtx?sfL=+hlE8wqBoSTH=s? zRda5OdQ>&5p@XsHs^vbLi`J#YXpJ3hpX`3ATh+X@@K#ZnRP@%QwUpMN_#Gk^Z)9T4 zpWp6q`;0x`2uYi#qMu3Ah6OHT%cZ?a@9m=ZaoER#A|t-_3Yx@DMii1HrE3GSah8KU)^ zSn;u`+Z>$%-wv0yInL1}Oc=-Tw$9GQpee}G1YK3Qh#56(q(TR)?*XtTp+6+l9QHhP z)~z8Kt%#jgH$s!HhI8enI6AZK=HJ~06q(y=?{2m^AH@UWX%m;j!UxXtKmYixb!k)@ z{|fvk%&(O>eOAvhZu(|2up@xl&ZjKv=pZ+ zUTz6s4#=GV*SV#*qGBPbL?(t|+^pOPHAWx{@cG3^ap$zNibF(gAXH?4<;ZalW|nlI za7-+hglK<5)FWy*A0Yl!zx@Jm@uYp?c!4G8%dT$Bh7%d(46>5zC4a%$)JgaCBEN=S zs-gM===OU-^ZR9}&Hf&}{AY;ufBN-*g=GH);ieb=n*{p@bd=>G|KCFDf`5h7f0IMY z-~0mv|9{%oKlq3D{|6TM2LZtIZ_?4v@4CawP*uUz0p830Xd~kZx;vHj@Y?vn_Wu2x z1N+~nmul#$*}cy{L@@uMwhl8HhYSMgd-c6-ZL-NEfAqWc(y=gE@hanb#+Ov|-dE)Z z$|q+TufDnNg+D4TNL#*ZcZNZWkjd?T6BPftR5o<~GjyKsKOo=#1Z)3h8;>yg{%Z21 zRV){M{q^$ipZp(qkBVO}wBk9>Zw6*T>CXIr^CVL|82m_o)YYrY5ROb@YL6T{b~DEf zxSS%_zKkFUbJWKK&P*d9MEy?C?;qoF@%ut!P_R6_ylntPp1pou0j&;6Y66SI{PY(d zp6~%8WKs_o3usQK53X1YEMZcO2n(?L7o~K+9+cQ(fa(O1L5s%%3V{q@;3a`X`>+&n zRq^rjmjX0M2F>TH01+K5XuJ)n_wMN*X{l?!cI+o5&E?^z$o%8?=`$)Ji=IN%huYf3 zKz?Mp#R=7iG##WLK6>^Tw)hw@#bgCUlG36K1H`FW z@Lb6;RXE@v6ir|h%;~<22+~m0UaB*&ete*1zPEaAYSfB+euqEb`Tve8b*caK5lcBI z5H6a<%Vw%w{+=UU5T`BwQY`G)L}qL(Cq%*X=ZYX>A^j$#_yCep3I#`S6|ByYVwS_v zRo0*Lm{D)Je$*IQK>%-sN0*=a%@W?PN2dyrYy$?d!0>?E!yD=;#K&zq7`szcbOo~3 znsU!=0#YKla|~ZZ{5r@bJ@~~g2!8&1TG4Sh3jv)iLlRax!rBm^lv}^%{cladvoP27 z&47W50psGOaFKs1YA*C0dOn8zP7xwLNy)?AIe>>^F_OSq6bT_u zsSL?TB>MzOT^e_Sep78zJkUv_&r`tmX=38hj3+A(<=AjS31-kMiY*m4ukiJYzo|#s zg#7+s4R43Tf82gt|I;V$zyI~gk4T>Yo)UU?&!4+dp*C*TeMt`DCoW&jW+$>3XRYYg z#+RK#JlqB4v(AlHUdIk>zaMMm{$$cIXIzZ-W15L_`%9J(myvq$L8I#jY_^K~=4H}x z6kYV7;cT?!?KfL^F;2KqPXBmdZ~X#TzjMN_T{`%*dV}Eh@3KKXAIg^%1@`;wFJTn9 z*tbIMsZa9OyQ3H6RXQVU8g;7Tj|;ask8QkQvP7s#i&JuH^vuHVdCh7w zTWqG^#G8-n>F5@xbEXdV)=`vw^85naeDq|a!FMiv-Na^Zl`wdIzZ_XV! z6RmJ_@S>jM#gBzl$`>rD6^w*FX*gVdFS(anFmK{VL*qmCjElPZNsn(oal9|?kfeJ{ zbCf^)U6D{^Q-p$=Jk>t`YEh@r6;f)i`JPmBYOzTiwiuLS0Se+`T4(wUw)yH=EP8&eRbu5g;Aw%_18??mEZQN zr=BLBu}|@gt7}G;M0j|6`5hZYX)T{PRVtdb*~K&VRp^kTqHN4N?{)Js|F>wF%VE~W zWfhON-_3I}Egf)Paee9mmux#ryj91C@b_u#b5A-}?Y4+AJ>jd|B%Ld4c=z<~?v!4p zpp<=jEZe3YS7bknW6wA^YgGH`4RyzM_NtCf;o7{bysm6bE3{0GwC~|7dgZ2CH8wg} zwm|EZ$$8ecCo2a}&mU--_+fLtFME}x@YaA{*|F)pU7wz>Imfb2@suH5AR*S$Gmd8o0rtZ zO9Q*aOW#<|)|{zRPB^y8t?>!$jhSP9S$5ER!~D3x)+wdS~G%k|K2%I8L89c`^>lI^uSr#K28uPAXN9I-Rq#GejR; zXld|_9+<890+CJ(R2KL3QdU!1Nx~$>0;uwubG5bIX?0@*E3Sc;d~uC9@r#WP!$*FXU9X_0^D2+{}XYg*F}~t z{A${IdfosFpev!Gw7873lNgL_=tQ?5+2W_VZ%)#MHgBhdncFjQ!+;=p!w=^kER|SD z!=NdamA-i>{QX=}hhe=DPrj-{V*j2HM*Kg$g@uHh0NzY`WW4+?JAa{wv2K$L!$VA3*SulG1pB-U;P7 zrulN}eY~%Z$>d?yZ?&w`TfEv$O(i%s%2Wj%o-gmYEj41fKkbWWd2v?Q!H}vSfr3e| zWk>8vylYMfHak<^b#EKo(&E>#YaMpH5q7wckmsuSoJLiWJ0=JmhDifDc=Be?4pnQA%TUC%=VO&6V z9}$+2ZgJR7DHH%Z!RHMs%taB;y#T4yhKQM@K($V)Et)=jpr+u0+M+QKsx(F%x(F1F zk}@O$@;(Q=e}z}$rYW8Y0O8951LvlLX7Fx^9{}2*R-C%AohpIVBECNo9mL0{T9%f3; zgS-s5KDhL2!LiQI*eAbAw(KdEQ&<`6@20;f>s$-h@WHJo^`|G61%G?m?RxCZTD6Y_ z_tZ`t{lWZ5SC5mr=EIc0eLj9puJ5)HU&D9_U-n3>^6OLEknI_)ITtrAd$av6FUO9; z!}OpbE9U|#^p{vm?@^qd65pqpHaJuJ;PK7}$=^HL`*O_3?;+6ha(de7%SEZu*B(J{ zKVv6N_irk#SzSNwZ1b1Wq(VLaf!d0ADpyITg5FCnMQ~PSJgNjDEn-90`py*@tV{CP z={qAKG8U`XwQ+pSYB>3R?X69&S0eA~@qYZT*f76B?R9mAw4kgsx+gJaf_Cx)?xwyg z6)rtx9Kfk40AZ96ojW+#ra&y}gi~)wVZjpd)72Hycoy;Y}rWexB$bn8XS9g}iSX4E@9v zh94@jV+R=rfid|48BjGoJ~J^CGXMC|qjD|TSuZG^+Ynt5`UvVYbIgG08Jiza1BtL` z&UXyy``PLUeIF!?Y9H9d`5&|s`xX*%N`XA{uv;Q(0ZpWbhqGpMzNc7GQ|e4KOpa=~ z-C-!O|2P-0qRiPTj}|Oz!d*2+qrIBW3k6=b3okLA6kwuR{HXF_E31^#?aOzsoNoK@ zX2oURJ&d+?w(dZf<|Hm;z54Nzi`+`HOmFn7jgOVwbsFkS2~QB)^Zxw0@s&C;4^w^G zj3QeHKY4VC9NiZ3);Ko#>c&U)dZKw&+a5@;`c*hr$7>p`J;mBWKkN3v(`sB+YB=zI zX4|^v;fiI}yvv!Hy}^yQ0VQ#mo5@Ycymjpw1=|-z?sJ|S<9;#G&H20TgoIqe|4wwU z@S{|MYi;}X&BwUFNo~x!A(htBxhl{LWny(sqcwNFP$!9MB6qV?rXU1(h5Tg zcSjw` z^w4@zNP;9zN{g}fkbq1fbE#0ChfFi}N9+zCPaA}ARlJ*5z`SasJ^ zxwayEWcs?7y8R%c`i6$=^6Fg(EIsw%5iQY>f=e9gjCN~>dX=|78gCW1Z_;*1U75zy z__l1%7P;Hd5`8Xpetq<8Wc=Yrp5Cr{dv;!sOP;;u^Ew8z^Lnjy%9XboPn@*$OiH~Y zI@&~)Bpf+nDb}Eyeo~QT&*&(j{doI#G(DuceJZ)*X@l?J#H5B;(ovtumd90ZNAz

Q`LeL$<$Uq&H3haKHLK7#Dy6=sV!euW%+uo?*y?H@if%FSFVE^U47?{HW%B%H z>wU!qD!l4ZEtj1FvtBBjx~Hr>z>&|FtL^&jz^cbUtSL4-WEQ?Li70*fng}05N^#k1 z{*I#CApS@nwC8ZkfY!)>WF?+81?&z;LZBtNyyVlp%q&0@`$T?&t4=x%K?V^{lxX;| zqEz6Jk2{JtX%L9m?tS}K;K+9gkgjf}+ks6D4Gp|&WNzNQJHkAQ1QD?lH58~KHfN^A z#+n5`9{+Jl>$U{d{{7!MwdZ@+IXOD2?aD{r5jp6ee+T%ESOEzxN1Uk0z$VSRU;*2a zq!qGk08xM*rEb@H!3iTcHZZ7wH#{E2`^Tohibj|+8@_fpNljdHyzg7sUIbLrV44x4=#@>G32 z^_1z@gNFgBcHJG*3X;KtTnv=ux5n1l1!~qN?v3krxl?-O{=ze!D`eM~Os1Cx>>Xb( z>sjC^9@tgy#oo;55FF*5pMOzT^cqLSz6!auNxTnMPh+O(*l6vG*1wVS;@5@+X;xNV zsO%_@W8b*a!bR+~;mVbFd-=j;?8Ev~zJ24eYcKGuk3>W)a z^?vj0?q*p>PXFsqEEXd(*_11mWV^i@y#Z2{kx)nb8^Fb?DdC`?z0ogl?8MY&@7}#j z53d}mi{Ic8-=E76i}$p*f7avk&u8i*-gGTVmkkfHI}>W6klq?Qzm=X3aGey~AEzLP zq2bnE1vZXthO|VuF?{4m5$aIJ&p1*pC^J*y0ly3^*BJJ)PC8nMEu6S&$vZow?EabL zRmSF*U*x+bT@P;*y=C)G|8M&y2KI09JuU9gffXZHU;gspb-=K72DkI8Tx&VQ;>Q=m zZa$_D)dmeQ?^a9a`?MO@)tR35T03yIaFbeF*6M!RY-!+Tnc{AuKJt%IV=~SZ7?s;M zi%ENx(aL2;kFu$?T6NUPel%BiU|u^J;np$j4Y&K^8D6WU`h(wz(c|Z3MsSruAC@mv z>bsjwyMIM@NuA0*Z&9^;kf(^i!)w~Jz`>K!*1Wv=@R(MfyJu0+(U_LM|TCHib#~U}EDzU1W5KNunnm88r@J zrKxPMVyvL|pg|j51HO#Ewyk|NnUBK#Tns1BjYus!XStf$fwQuqg#pgc>88#@h8(Ql zYip0o|KkwX#T-5FvP-v5Pu5Qv^(EcszYcNj{l6OG>bq&kr~#uh))bDetF>cQ&Q_C} zuX5`CmSAq_7610?_k_aH8^0InY}VJX8!*$l(f9q@p&_F!*H-u}nOQN)?R=zP?X7OyYxLSixoR3lT1ywYZ(KZ@4)*nEObOrZxN@V7 z+52SIc9a$yS~W`?pB{H8FwoIyJvb?~1u#Ng$*x1Xy-_0Ra3cEh^6*N+NgxAVVm==AYG;d8foKbGBZ zb;*8{0Pf z(&2q>qSUKEtOX1*iHP*vxvsE}ruQD#ac-jouWq@_NLk=0Jjkc^QES z&Y${hE(~ZvQF`!JtNG^QLMDSAFqR;FrbCyC5f?%**_vZvVF9zf664c~&nZ70Up+%} zD99@?=ceCQxB(cjVNjcul^2LGVr?&fh+k|uygqP*Zrnfe2YI`!gMTa4-vp<*C%YOf}|MOj&|C;xDeEyhEVbR3kbDuUZ zJ~%`zc6RIMt>33t*;@RwTGfs-mv1xZ7Dde3yLR3I4NLzW8;Z=I%=HOcKRTrjWof^c zxf+7B?bx_t*07fu9~Pc^66fAK)C!2E&xy*8iMer>fO&Ti?!~*5LV+BKPluYmQ9v zn6uyTrn!|%O5?NJrw;FsT?uyb%9X_{1OMU%_8dwE}fNBYM?QfBYbSrLml-Uh9ujKo83Hx z&27F}*l)9bo!$d`?;8UbuWP+y*p?Y)-#jw{HUxYvNS6sW?UMsnj=z}s^Stqp!2cUM z=8l{DD8o1H55)}hPZ~JkqDC9%hUVZiFy|8QsDB)5#j6GhzI7JnsB2Q$J?nYC_Xw58 z^7T>^`qAYI-6+OARIr0wiV_=0Umr5)%Zv!?QIw-W4=Q{#4M$9xGNs0K)mFOb4e3Is z7`T6%&d`mmeG?TLY`)@Oi1KnF?dq?pZS#wxa&7dl@doYc&;H*yt^e`&4{dT)@2Ahd zX6gPJulfIr+xvgy>i+lZ`iD*Hwf)ycRZi3J{92Uq_u$~)gi2cP{aK6x{JOPejZ+RK{y0?f;Df zSRUBq&_?@3i^@N>TKxI-I$%HFG7E5)bi$hmMcvLVsD%PTHr&w48sE!co_*o#d|BGz z_5I6ifr5svAbrdTiiT^MX}&#Lc=3&febZ%y*8$)(V6g&5Vg^xM~h7^)5^9PAxpk5a&7&e|GTn2&()jO zay6^e>m=`DA2HfElN*3if6dnZSeb!UU@B5ALqo$jkCf!S=h-mJKUm*6Fk&Ux>sU4! zARqAeT*81RpW^klpeI`}i&wsRH}D^#Ft4Tub`+~e=CL+fYF+jzMbglDPx+U z;k#JGvYNf}`Df>AvM*CnB6|4BhCFubI>tZR5Ij`E3(>Hdql1IZFKZm>x*;mX82e%S zQ(V7HH`0%XR7WC~A} z^S{z<_kYd5X8GgJGx5f*YgJmC*Qn@buJ@n+D@kEo>PL?^7s}sE*n^uHuV?@Rrs3Xe z=?7)qcGt#w2UTIy2vtLuzg}mPus{A8sr%QQqD(FS9q0%YPm4(65_F^6nSTr9Lc7Foq0T%pfo z->S&U)hbne8{9qf1ocbbiawA-dpI59LPS4>$;7H!&0wCbq%Ke%~R(vV0gE|@HLWj=yN@k{(Rj6BeVL;=JoMi<@FLkeD zSV3Xoa^7X|XXk=>@0%fS0qwPu;ihTRG!Y!eR~r%mjVlej;)hPguu~^pSmO-FI^Qyp zuMsi8nlD)kwV#AEEaQ#l=||s4D~BlDb_7cjakYN_T!V&emA}8N^5zfQgYFGa*S3M8 z;Ck>|b${~oX%tc+vB$`Xb2g6JlWEYZRjd4DpWkKUJd0XqK2BaIY_g?ggGP-SISd$} zYZdKQ`Z%SBtX|=urr~*D6yh+o{PgVN%1%vvd3RLkCi}ODihl6pXs*|Bp|T8QPE;VR zt$QOeaR(46W@363FYD@>4OdX0F%Lbw#M>?=+GL($6l%ak?cozATIIR(SRr}Uv_rze z>P19Eh>eHL(4sDoJvUSD9$E*$FpjaP9B#PPKDR;6&LK6mx-I$C67xA$+_Y_5pto4< zJ3e8u^=fg>dse5GKG~3*Y>j*g z?TI4y$J*zcl-)!HR1S(CW_=PW)noS{Ylz~#6<-LUowT%;%dNb8dG*`_rNQV>IjRJK z3oz%h%N_i7y?&P!!qZ<^Q3b92=A3s=@@VB{sZPCm^~4jMP$4G&JYWb4e>kz!j12pd zt#iiW6v5;|8h2YZwXsl5-RwYzv**rfMhvLHpr|pYt0=8oxGXh3jG4gN1{Ui4Kq##$ z3W|<#pvmg7VIF8?(?#hKJHP-}yC%lQm2f(@pFX{%cD;JJu>%{^Q#zDvwfh+~*E=Y# zANJ=pq%*~JinLw$^5t5thHp^Y);_E&D#O#hKdr@Kg)7>_P3gV5nze6*KH?1~=j)o8 zhP36x)HN`ub!2$WU$fDDXVj@(Ti2|inho>dkbA4v8=evcG@M-F{>0=osExK>1*t~H zMjV1M)2C;rG(m*k&|Qe7==kSoqkdS-gpEEKlJ3QJ0=8R<0CdHJlt3 z|NWE8zkN&NOt3sFWaPbwED!R$|9YD@vQmLJtK`9{HhyVy@A9q1;17Nv8iG;1*`^+R zbJ!a@ZlzOxMovy$HgoB0T~l%s{gT~;KY6LSE*nN|_THDhdv9XI>PJwOS9v;L0*s-}G3xJt?@|2V zW)x%2{I~usb^ET~KnffB{+LDk_7~{~{MRwcDO=MUFjk>gCi&NnKbDZ(?HH2NAeIG&Z42>!74rD5u zzI`=q3e)rGzun1SvUsebqN4ZxpR9r!K5CTa#=w%BvvbXPX2fwkW;*h{3lXU+Y%!5_ zuU_bvGxb{~G@v>Oa~;6*uBHeuCF{>Yr{{#l)kwKx?_B!Lp|L;E}?`I z^E&&U8{NPdf9E^BgTZk4@niUraaAPS@K$L?Y%D20Ld7t_oXiS--ID+Uv~pdj4rG(2CQGKbkX(b9nK`se)`%i7@rk zm%XW}*PtMf9T>c%=%`|I zw4P>B6c&`01~GH#&?mCn;3gi^npaE>~FJ)^4Yp z%(FWKw%(qpxW22m*Yla8s-bj<_*98aAi<6ry;?#T(l*lxd7Gb~&rHZ#WWll?lQ}ph z;bq@++cBx4+^AvT{2B%%0&<5cqnaYeXK3|(YsPa{__%1sTU=6pryO4m>!jysM4d8W za8O+K^hZezxel4BmyvFUjqf$p4*H|;;25Al!D^rf`~W|Z=nS2@WaP;0HknUu;c8GrkzJ3#o3c)uXjfGnnYcC?=zNx5O%0)l?zy^ooK1LL zGs5065V09GoBmFARk5GvHm&3I7lpuez{D+0(BJ)*a_ zB|}%z2uQe9#rEjzV_0JI#yDdu%wY>Z9m${#lOa`_hRtF;^MWL0Dks?nEz_Fw=5>%} zj_ch`{by^xsjKP1aRbUs>G%S(vWW<}l!G`LJC&GKw!!2~`c!5e`9Lq;8+_A@NitLl zE}#4Ed;gihv-HQuyQdd@Xeu-#4JpWBLrhmLqM<K|sJFf|uEg*`%Q-EKYHJ-B-f`+J8^Ue&wQG1T zuY?J_c<)|A@`fzzq>@>Wmoc8VD?zA@yLHn?l1UZ+r;%g09ZOYcImR%1gN`Vw_=*9% zHmHE8B>7!f%xP1jOK6lF$`MP$7p26~F47+bta*EVqv2;gBf;U$4~D;naJ3ZHL*u2%X8NGC`!>;ad)%p z41E+|1ka`?B^I9+Jo;l9n%jD2+m;fqh3$n(swJl!FYDplopIyG<0pH5+^}2w-sh5V z8JtFxdG3$L>!@F9Y+4)WsrF1dkj3A>SfH>P`O?ROIq&9!%)jno<2Ro-o@i%lAGJ_M z6{H1tFe^pJN<&Q`5j=o3DM9JZ#zP=0ek>ZLY^2diMozPhs~I=zQBw2wpWP_2c6YFg zQDxz6NGdMi=!Yq;l!E&D`s{zGMzzP9h^XSsoruGVxmD6Ot>PVjlyOQA0eS zAjyp5&5}L3y(9rK{C1KY7|cStkg?e&lu9kdwy0WdeH-5KkXQN>2Y6`HkH%&9i)1-N zvw@ePxkQx1WnH{-r8;Q<7L?LHKc4jo()I4%-30n{_mvs5PETEs&VXzK+TY>x6HT}Y zm8w;%CSjY|zs(2S4#mX<0)*7yV!e77WKDv7ktd3xYy)XUR~l8y<0H(NxAu1M(8qly zy4@arG{6Co!v?yDe!dUVlDfLOtAAMCoqqYUhQaa*!*1Q&+S$JY^KyAmao(X$_y$Bq<1PhiiK>^I+v9W_dmGmXpfF8- zw<(SjJTXP%*^A_q5*ZtZG9GzlvR%w&Rb=KRETTt{eU$+L)xfw`v5iu{%bd!zygF8m zLUyYXSmiUPuzwV65BE>(@62cS2ywVndsdaARx`~TlQJ(|zMPhyug^EROoGk9m`NH( zP(a%ZV{;wwy6ARX(MniuZj2tB`qmCpLZ2ijA{3@+_LnqEk^lL^tE4yk+p=UQu%u+N zL|lgUm;*lWHZ;HawHcA8jl9yu_=S*MSX{hP#$V|~_zlwivA0cD7e^Uu`*aX2!_$?j zeD5wqGDX}gS(8Zakj=!)Lo;J<-EyUjtESi5O^j%0MKQv9_i*9ko;+Ws)9YFpIr}>g z8uaCcX7@L3s?P2`rZ7DtqZq*ujdE|gGynCyT+Q|K`q@pG2uJ(n&mFT0ii(Wp)mMKj zui2CqK;sP15IK#>U!90rctuHOTCiY2=qCjK;}|H!*6=VfJc<+xACur(4#2@b*J8Ag zKI8rJUf)}sqAQ@0?e{)EEp5e~<0Zi|br8OdV^>HjZQG%P9YECEYn>nO=7VfAqJ4wb zu3bgu#~EkUdZS@$*R7NN#Uh=gs>3{dB^UskXJuC`vj`dn&WAAV5_t!Kf74VJk@~SL za+kG_`Ji@2h0V>)qv?0$;$(YGFO)+i4t9}iRdL$)`@3qwi;|_&ZrrHDbF?F=7Qzz= z#8a^*+>Yb}#Y@w-5Zr5bRFw1H?yXw&pHpXef+cwX=%9Jtp#ulp628WieZ|D$%Y|3G zGKY4XlszK1GCCzlmh9B!P0x_gBx3aYrM*4$fm!47Sqa{NS|=Ux7xIeq0Yj_ou$&!z zYc3eDc+XkRR;S@egPR2@iR{*`n`{S{##wGdojL(nlK=z+Ak?D%ln@@njhFd#s58^s z)|0O5%kf34p>4M9JLkYG@6(O1=OZq*(B}sr=3<(Y8~-^y8Y3|hI=JdfBc@DWi|5KM&sB2J`D zVNK|zMYnah1LI3@O~sYnkF>-5_s*^Xgt8(KjFLy^&mC5KdW9q$BM04x<=NCemncJN zws?r&Vu>_Th*0JxRqyFhUxI4C(Wkwlu7r;vFCU+Fcl{}M!!uG=9H0lJnz{mc1n);n zT8TGSs&u&^ByX}5k-=8@>|m&E!R>7AjTIzETiGnL|CPEVB7!b;Q~*HC9>4=3#KBlr zt?yHotEzcfnX?9t0AvTN+Tgi9m34prJs4%utpg(lCv+zRVc{Gxc=QD!izZGS`qDp= zk`%*1&5di~-k&Au5ZJF&d01H-KzIbgX-{oc`_Qd^9!9EcAyqE7W;Hi4$GN%<^T2YS z$MW!9UJ0@UYA8#0`nBy6Ll)qmpuccD5xZ|6ZbpHjjS zOE8wn3}B>zFfuM^gDP>s>wFT&nJCl(5ZS)IrpV2j^Gd8H4agUJ_oh>(_Mzdnb`zRn zC@Dw^J%X5Yu^^kEEeC@FiDpg$@ESaVC~(&tPg(jk^!6oP5Lw#i?0}plQ_FYbLY|_ZMTahKA zOS4BW@yCg2dgOdbMiQ-$N54p|r{xnZ<0Gic>AYM#p3^>QBDYiv%Zw%Jj%U%W%gzS~ zXds#cJ%*YO0$8=RwZ(Q1jNfokBW>*!vUPzd2p)1S$KvUADogBNul&=zgeqFbCc7uRzOWW=RRW34iT@U(!BvdFXv|g*e#R&pNdQa!Ni|4V8R>1z!h8_Y0$(22lUD=A#Xt1x6;^1aI&g0NX#t>JAP_%t~wIW zFu%+|CmF6WZ%;CH34i#Rh;e%4F$E|=t5KuYXKJnI)CnrfR;>oeqYVbWM!KqAp#M2b zc9l|vUL;W~^=lU*qnExc7bDH(H#3uofKfzNiYYY?Eh7QD4;^xUnN0t`zhGW{L{K~q zy(xEZ-+ub7PFcE?(pmk)5Ep9^39vSWdRGXmEk~cN57`49urz_*Js@(3Hq&sT#(s8s zm^K+U6$NW8V`Jl_Wj}u7)b<3Z!c}ZF7${%$PaHpg=R0=O0-#?6~oQyfydRVUkV z3v7W?q!OIk!~1O$1l7U$hXS+i((Z*I>io;p>aVsN%ip%Br>H&cNfC@ARR1SF@=C5+ zZ?ceM?DgT#{)n%7mzb4ZXI$a%lFu_)OIeHOnL$gYg~*44J%&0Ii|PY_e%8M+3G2F# zi)!A`w!A{~2`w;0s?od-XFl8><}sEcvUkD@*&!i9aAV^tWU&8CY^U=z%7%QAwD`qZ6C$-od)kcOe}5%y;SAXSSA4bIZNk0<$*JzDe61HNLL2 z{j{+&1U>nkht!Bzj1KwPt25>yRQ`qB1<{uF?793_r|X3Wy}`%XZ(z(~ zgKDx*hZsoA3IK7<$qjT`$I1NGlBCo4JkxCRuUgdju>&nq+Qo~(*%vf4HH&k4s(Gzn z^7K9YN|Eo+^2TJg^xpZEJ3;4)j}*g-V$PvAd%qq0A{%wuKnLAOqg^c<0rpM^d+QOa zO$j>HsmcztET7&ymK}1LQ+IIRgkq6`WjxF-KyRCfV)rv5$O5dAaXE57`&MF3(iIRR zD_Ao(hA{T!(}P+5>y7TBiusyb-l)r*z4~Ew!&^~olpLeDrSNtV10`UJ3veG!PX4jw z9CKdFjV(HB3SYnkPAc`rZdwJN3TxHE=H^$)12_)~*4 zp|kl@8}kG1;?tw6t7~hI|F1}Mm~;>ZBx+CHkeVu(015j!2?KnSB3k~#3{~?t@lTRw z&|pKH?QHJmLQbN1X(_UT2=mqI5f0YEdcA*4b`da2jtt+?mXI;^F`&}WdEM06n=SHm znvL;9aH9ETQXf6a#q|9p!E(o4CrWQ5^d>5FO#YX9UOxm}2K;xecA~-<&{|>{#u`s(Vx54!BXYL!FxM95*kv@@?w zk{C3nHjp~GOP4N_A18MQpgH21sm;vj7 zA+wIVve8gfRVgVcsWpODeW-Zzg29Kjm;|buM6)P*TWFo+)i4_641$~BNXx@ABY`pY5bqjb@*w&(+2KNua~WHw-4Khk zoYFOsPErx4@JfeGh5YEW0GqV=Jy&E!LM4(@s12K)8ThgM=bc-(Hr?+`+Y=brZXk@H zQApgSS42*JKss|z!Qrly7fi`Bk+B0=@JK)0CFS@E6n{+s=)|}96^B=r zoAM1MsVsQ;$GhC}+P`&((+|6nn3`(CSD+!NP321IyWDffnl&1fNR~-%HrRdrk>cAU zEiG;1wrw?NRRjt^D^dcEph9>XViQK_*EmuC zyLJ)of#P>;z^S$V0Ra~Y)-+A~3K-^X-iRExR5M-#{=1 z<2C(9FtOoBULMwuGJ^!^{xl*mZqAw6#Z^Ia{4o0FFNYbU&diCii4Qanpe-VH_nhG8CibvABPRarmc%sZmc-5o9DB%;2l%++@K+Gv=QUz5G8sE&33}5 z)v#F8MYsZ0swFjyiRGDH_&@uR%T0H?-j9~$`7up4*1Q?uxHbN*Th=H!%jH;=gF z#W;yzb;@BzNn{`e*iU`$rh$SX&)HuG@%r+-E6tF{$V?_Bxh^QQj2rn(KIQP!7t1 zZ$&riqB>-LdCv&wy-8n3=z=6~ky*x&VM3#Jn6xBXqBzr?(t~720XFL0@+bWO_H*Ds zDZ3fPmY7c`)B00SoxbDx5I&{X)PX(Teo00C_JfYM!JGG&unocEj-q(K)0h`5ma)o~>D2Hh7Q-yumZHsntF@bP06MGiS{n|`vJBW$cOk}eQ@FJ?z%DpF%>{wNn4l7lTx} z)B_$Vjj$pSN3E{s)V+UpUS(eAQPFzO8tCYv+s*x1@k3khNf$5xD`W*1f}T9!{lcEB zI#yu9$uffBKfGlhrpSjLatk7k!PmB?0n+3mD=FOMY7lwq%|Zuq8yYa`L&}h4AZ&&n zckk!~scul(4)VOxMN7+Po9cw`VfBnuK@d-&CmFw!FeoG=Q-PKH*^@L*%MPv?GtQW8 zP(*dXj)cmUD?6CKlwzBgjQE(LGquH5o{81M*K2949F{c_Ltq}WFe=O`j;*9!qa{!k zGA}Xsr2G`$X_VXb{n05=`lvS%%H9>M9)fr=WAk2oe(Cvvjb!J9( zoHn$Iso`#~*{6ggfLe2TMfqxvfdCj^YXHE{pI(g;(gLBXlat&1Rn--NA1Ga9Nd{d| zA5;u*0<)=n>E-HeXxsx;Pp*COww-}l`QV!}h(VD|_h>_1TjDUM6gDqx@h$*h#C2xq zdJ%>hJkl6So_U!xh=fPptxkh*o?@JWTiP*|2u=8X{zce7IItlFtL)OyVfsZzdW0+h zAL-^>;pS&&7r7qEc3ieZP-G^^@6x$!;fG~Z6Wj^@c`dB$0AxS6iiPfQa$12IPSbu{ zn{cmhqQ#K~xC3`}3psAuw5d4mqI%G2yKU+APBVU^tP@ytzVmfvG(ef^wQU#zd{VY? z(?9@$+zRlzHa^BVu5u{)XbbV>arocJu?d&SEDakoy8GNsn#+wYDxf_De z!6jyMCUN?~wM2a(S&#L-teQrBQ@~uQE(G3JHlQ3~zvl7j_q0(r=D8zQqZifOy4HcN z{G(mXAcyTN*bpuPU-JD4$f7Lyy%=%vRVlFd)GA+Fd6w;>YAoFjhpy`Sj zv$xII*j3!fYS+FDY^_?XsFL*N=T{!kG!pyas>a59j9v+fW-!KR(Q!O+);4Tkl|Ldg zR_D)mC%ao9zTgGyC7MZ;@quyuo<4nQ*rbWgoDF@+Yuy&TuMDo2lb5HB+Hl0V1qc5{ zL_l_G3MRW?nQlmuXmdpOPRJH*2SFTVa~jWH3pf_66D+hwYkFVQ8&cdOryB&u7-g&# zu0o6^qNy#UX$7tk4<+5@u<`o1(h4pB2&BV({db0;tQ&*(VaUdue1sz z{RB|nk0Vv3RSp|0OeTR(2qc-xXwYSj3Dj^fWDfg1>!PZL2MYn48pmq3e-q@24G0&2 z$fkF=`4E#+7Bcq=9l~{(iu?eyT-LkvwsHaN<{&+pVO<$z;5sTuvUg3|6|@4Ed9sBi zC1&$F81)2N+s!nkXpJC9B{RZ~Y8V8UgdG-P(LS8*RZRWu1k?GClYznic<{g&A0m?5 z)4w|AHLi1zWymZp;9Gy_Gn`y&aVJ~9k9i01L!L^Nkm=ON&ZHGHQFz&j_>Xm94C9J} zFNTd(DVx%{o2%A4l;xgwY7f!InL}HkH^mojBjAR{nE%=fht8sKNx!c7dLWPh`#cG1Wl!1vt;xG4muj(A{7l}$~PE;k)R6(q$ zDWIP8;ucFjO=m=*Iv_Hy4Bkq;TIv?lueyA0aP7toffs{E@7$bqm;LM_GDBP^yM+`# z(&*UqH98R~E&M{Oo__k|iB0d`F)MD?9nu=%?dhdo+aa~)jrSwyia7$|$ZPg&EvrV( z@m}mm3g3oWa1TOgh*jxDsTFy${$#o$GXG1@A$6-%@vrk}Xm1nkv2HxobCGAus?{d<_C-glYieo= zXpy>#h%IU>y(Rk(i7){FaYQTXCSg8rhPBzSVS_!xmwQ*Y+0TYTURe=jAoE-W|8ZJ0 z4B*O;lT7UgKY0fpTf<;o+^=GD?murCA+G^;CMM94+(uy-pt7alg%J_-VO|I11QMyT zrFh*R6dxatcVm4KC9+rwI%fFZhX^SUj$>&0WF(p$S&zoKF*G#=EUe=4fUQ++gatmx zpdW9GoEk~zbed5}Z3LU14!kU9iv;oU6A@s0KsDFn)8<5IZG=NbkZi0 ziL>!l68^KKyvij=7(IS`)6_ben!Sidt7`Oib(A!Tn53Z9&A>Ins7D#o)WZ;#9HYNg zH%m&-!b-Kv(lenY$m@mT0B#%6wk4+u@Vyt5dgTH3rekA{jFTmnckT==XCsbz_o2uAdl>}jJRlNO=QfS~DA0-~&R8hX7oIsjgD8E)dEsz+>GbFue+ zb17HY=f0Br_|B+OZVILk<8Y@&Tgxn4WuVbjc)J#XZ;DRliEZcHEq*G5P4wJ+ans<` z@8xA_L$>?BLl2C60wl(OssL2Du2pD$*43-M@G-%ERMHkHpqMxTtl9k2t|ZrGi_1z> zv&^Zf3c}^(U`Dq-{lXUiMq}541q`^1CQvWgg2+LjZ;Xg&snV#Z5MgmmBM*_| z>wz#F*zT$=bJEG*p0}W_KmY#;<8Ep}i%5nD$gv1CH>D-@oHVJDa(!3#U^pptMQHPo z5JS%n(Jlf#WMz}aXP4%gB7OD{mWBFH)B612ja}%P&p5H z6o5p%cbdTp0LPl085LjNjhCcO9Z5wg(5Q%t_%%fm4|P!!0h5`gXHv$Dw*(qYT{a|hi%^6bWppmd+7%F{{JVDQw*nDYELqm@En9R!Gtd!1Y` zo1qYTVTb!1S%}N^40BLI%z2fVQjzATR*8{&56^^92a}@FdaxTR1=KI>q#_DYm;^cT zS7cxaLvq=FVZUC#C$rQ3>zgfv^<94Wa9cS)zi7ZqXg3kOh&h?`{IsJ;mk&C~5<1WM zBaIfJpfr=*(`-OQf&91(d3E+tPKuJSm{vpa100hjxjZ}dW??-nEG)pP?WmZg7v~!k zg5iQiH06M2mcI*in>&BLR9w>VgH)&~?kUUG@%0VqugLv6mWCl-P+L$*RY#2)1$*Sv zNhOPr{#{0jSY1l1pvX>@wrKSUGSuV7Ubgp`h5MJlRyGSUiyUZgUsQfo|zBryV?sdMOmrNbIvceWWu^&h>TNGmY; z?jZy4I}Iq_1McU4qecnf4*((=A%PH2Ek3ybxJpsFcI{f*qM1sHH5QaowB_t|9qy@> z1^J~RNb0ZFIzB!K4<}7Rr^_oIsmwT0bODX`K=o?D+eq!jf@%%8XFG00-~27+>lw3> z$iVguQ7k$-I?4-36;uf@g+Zu(g0~=65S3+e`RlInpQr)E3PKcKHkpB|Vt4NzRMe^U z$le~m@qcy``V1MO0~%zWw+mpMNT{Zr8Hwl97+!7W3|Avg!^dIGOMtMi{=F3? z{>X#H3zY|`uE-b|uq@Plq=;#6+(>j-f;v%vfCb);hkl6$5<~}*|;TjTf zB}IB{I!|PsgBdLti-=G%B8`Sf80Ad{0@Sk7RTD0bA&aUEgLLzLt8kbUKbkzsCzn6G z=9qQq(vURJ`#vN<$fiv)xRF)-W4kPm!8>ck6WxV2H15-C=WJP}%42Bu(m~X74vc7@ zxik{}kL(La!pzK)2($!|#KlDRSzo`?z#lpQEa;gnMY@dqKBLy>DA6CWaj~~l!5t$$(cdQz6V(JhPicviHgSQDfPUb13x<*o|jV4CbzNkok z70d`=W)ys0^caY@Q$Z1{IQ20}B92~wz@inSG6*@_qg~e|9k#j3l8mhwe?t2xB3@XaToRl=SasU0*V!p7Vr>G$`{bM-QZALw&asaUvkS z9peapjmgMLBv1k^tL<)10|#a>b0^)h>;u3v7vMsL+%ld7k`ujq(EHuy2p`HvYHMkQ zSCaUi_Uhp|J(0Xo;9ITfr-{B16(>3aX|m`xWg3MrNMuh1+xB1Yz*N8MAxjmhgF5{k zgBwD|5KUyXla6l%W666TUc9(+|HOJ&G`P_s1e)tt+w2O4G;<8Av3uVK^8%J>X=4PJ zZHF*SMrp}8yr#d9K$1h~2;d^EOf%l$akHv@q*SF?(4cY=aStRjK4g9yHq`m0Fse;d zN709rAu#aQ*5VCeKHkijt?r<(P zwiyC^jVgBb#u`Ex-0 zsI+q|JVycz^VFF-S;J7sZkQ)q`_LssiWS@n;MCltMROG!BA2vdFaeaP+>lPc=Bv7Q zH;{rHQIx1|P<1t7R+z-JQdM7q`l-im^7$p(v0t_U|21{sax``x>w>Jia3VslW7wI@g=dck3Wd_o1(lx1z4X=YYh5M!m4J3Q)pxwi$FQJi_}O{!x16#CXO^ljRY;bxt(x=H9PT(0zh>@U&= zJh+YgfppTu1nyFRZE`VrCXT|_ID4&}D5`_FUoWmU& z&vB-ZxJ(bI)u6#}&kH8zzQnwAnh&pM*9}*Y2vN<(w`i9a-7j%-JaU1zsgY zid6+gv#gzFsIkR12X&+h`S0;&5iihaK^%Al|n zEx<;dbd9FE!KT6fJB6t_J5O!U@E~6_QyX*TvFh?;T_^rSA<6!CMFi34iG`<;7pK$i z2#by#(+MiF$0q(0Jfhq)%pBBB!v=EFR?<44jFepmGV;&Q2W6FwA$9dW|NQj2smY;Z z>n?ujakKWm&Qw=cd;6(X*X=c*m9j*TZ(r{jvGf zj%lUcZ_K^EXtI@-qCA+rjirQ*>A-T*(pGT9JM`$0`1R|ehe?YDm(E-Ku(|QB6pHDu zOOxl%O}u+GC|V61BfRL{X`_%pPC~3rlO~R9(#M&%Y17%Qn&Q`ecA93BX-lmmnOvR^ zQ99|*l`B_j1YC5AahaH=pK$v0@Q)uquCX(^k=@nGs{Xn@9j&aU#?|!wOxJ$CEU)j+ zFV{R35bia`EsA$Mq1ahv*V(pZ9_Y>ZMz%X>BOm1 zzaN^r&(%C;c*}hNfF;btXJuyQmXySOUzWmp#s1IKlrdc+-l|{O{`~pW7?#5EIiI0aoZjx5*?;t? z3rdWeXlv&a7IbuVpHor(_WSRHhYj0OYNsgE115Q^dG?<)DK@Y4I6dqMWUeIgQDB8m zu{WQWl(gOX%<}5htKUlYY$$`O}u>H8o`qgW8`?mHWI zU+hYLuo%w%B_Fx3`-cu2cKh+;M98(ip^)c$2AO%D&f1n%co^1yh=)faw*mW)GY@B8 zyM8_4;KBa*g2b2F*?%ox=-s{129)!z!-vP&8AUNHG8n$D)6VLO-z(L@8yF3jWttj1^xlO6M zu_K+$SzK$*F5(6-t~JGH<3-#%GK=3igyOq-04>rPx7OjCH&dE5I5c+`t}P5%^xW33 zPu~3vy~d9pZ?)vp0km5aPuEtICF2UKZ0z{(;X~XMa?T>HIy3Ib*5yW%G%Kq=FD=de z^5yj6B};T_2benEym|Be;`6ItL_7;_lblmj6z#s`RmWCs+Pv7g@R4(qx*Ic!o%{9; zF73wS32JdoIXZFX%mLPsvmWNZ_&9aJf;%=L$GED}m36FhK!#mMjEE3H z*Uk@LmRfUMOGzG#9Om)qsAzArf6X=9Cmq+Yxl>e&^~cK4GO9m8ZPs;Fq(%`S>!S+!Y` za&#Y$Kg7WfseM9R+(wgHHEYJ5I5Fhat5;my6w2=VlXS4_wBnpPo1B2u?Da6 zA`BouGW#`!Q2FiKi^SWxxltta{pZe&qE@Eh+FWW^;E(sBDIm$gu4+{kPsZ;ZCj|z{BOeD7?95~P~@BWloZ5wnT ziYZELVMBLiM0mfZ9lLai2SYjIHZ3K-R_)qZFFx{gu6P-|E&AZyjYHuwc5GB>eMPDG zFx*>B@m_xTt-7+YJ1+zuqWqz)*+x;?Y@~nZf!%D#e^DQ{T}?UcU>@$$Quii5cplaR zuuo=C)5MllE`&_8L9Rt*qREyJjHMwysF6^c^P2|I{6rJBDeoaR4>MVXp;+FnA+=9xy z^84y3ikJQXo*93gyi`Lz?Hf{i%tu=}=21Y_uUWO0-rsj`%;Lo(ahFIIKME?${-K+k zV#*NFKZjerNn3HPs=6|!S5gd*Sd-B@TX?qL8aB-R{ypi>XV2zSyT{y|(y>E_t=B6l zshho5%Uze)^7-=%nvNUUpy))iaHp8;Rs6{DWGiLN^6+q-GY?@l8nDHt#ZxWlhJq52MMH*DCSkl;iYx43v+=Uvy=1P6cQ>YnqU zI=d0{f58s2i^?&^wCKEAMulB!Or`u^+E7k|1Z4m)=2Sk*P$ z{~q#?Th^^!xeP0h13R$ixPc`_he4J3Lg%Mj@e`YI!dy+XbF;J8B3d$WtW>Ge)EP5| zELn1{kY9cobgDxozV_q}37a?T_V3rvArx%%R(}2g>g^{6Ht{# zQ*9Ak;u8}G@^0LwJ?kg+K;Lc`-qO-3i_W`Wod5TCW}V3Y7?1qAzuP>KI~V#N@u&;lL4U_1 zMfoH_gTD@&9^xkP*YqH{0)?xU0Ki|P$g1-9Utvk%B>w%J|Mf@Z0V#@Ks~>gRZN05` Tb*GND{JUfC0d|LM$E^5Y3Bhf^ literal 0 HcmV?d00001 diff --git a/pages/docs/integrations/dspy.md b/pages/docs/integrations/dspy.md index e62d71148..1968672ed 100644 --- a/pages/docs/integrations/dspy.md +++ b/pages/docs/integrations/dspy.md @@ -239,6 +239,6 @@ print(f"Retrieved Contexts (truncated): {[c[:200] + '...' for c in pred.context] Question: Who conducts the draft in which Marc-Andre Fleury was drafted to the Vegas Golden Knights for the 2017-18 season???????? Predicted Answer: National Hockey League Retrieved Contexts (truncated): ['2017–18 Pittsburgh Penguins season | The 2017–18 Pittsburgh Penguins season will be the 51st season for the National Hockey League ice hockey team that was established on June 5, 1967. They will enter...', 'Marc-André Fleury | Marc-André Fleury (born November 28, 1984) is a French-Canadian professional ice hockey goaltender playing for the Vegas Golden Knights of the National Hockey League (NHL). Drafted...', "2017 NHL Expansion Draft | The 2017 NHL Expansion Draft was an expansion draft conducted by the National Hockey League on June 18–20, 2017 to fill the roster of the league's expansion team for the 201..."] - + Example query trace in Langfuse: https://cloud.langfuse.com/project/cloramnkj0002jz088vzn1ja4/traces/baf30bf5-0741-493c-aba3-2a66290d4d1d diff --git a/pages/docs/integrations/instructor.md b/pages/docs/integrations/instructor.md index db6537f99..2af370ec5 100644 --- a/pages/docs/integrations/instructor.md +++ b/pages/docs/integrations/instructor.md @@ -4,6 +4,7 @@ description: Open-source observability for Instructor, a popular library to get category: Integrations --- + # Instructor - Observability & Tracing [Instructor](https://python.useinstructor.com/) ([GitHub](https://github.com/jxnl/instructor/)) is a popular library to get structured LLM outputs. diff --git a/pages/docs/integrations/langchain/example-javascript.md b/pages/docs/integrations/langchain/example-javascript.md index 543434e22..403bb6913 100644 --- a/pages/docs/integrations/langchain/example-javascript.md +++ b/pages/docs/integrations/langchain/example-javascript.md @@ -62,7 +62,7 @@ console.log(res.content) Why did the bear wear a fur coat to the BBQ? Because it was grizzly cold outside! - + ### `stream` @@ -107,7 +107,7 @@ for await (const chunk of stream) { light ! - + ## Explore the trace in Langfuse diff --git a/pages/docs/integrations/langchain/example-python-langgraph.md b/pages/docs/integrations/langchain/example-python-langgraph.md index 1de1dbe5d..f9212f5a2 100644 --- a/pages/docs/integrations/langchain/example-python-langgraph.md +++ b/pages/docs/integrations/langchain/example-python-langgraph.md @@ -117,7 +117,7 @@ for s in graph.stream({"messages": [HumanMessage(content = "What is Langfuse?")] ``` {'chatbot': {'messages': [AIMessage(content='Langfuse is a tool designed to help developers monitor and observe the performance of their Large Language Model (LLM) applications. It provides detailed insights into how these applications are functioning, allowing for better debugging, optimization, and overall management. Langfuse offers features such as tracking key metrics, visualizing data, and identifying potential issues in real-time, making it easier for developers to maintain and improve their LLM-based solutions.', response_metadata={'token_usage': {'completion_tokens': 86, 'prompt_tokens': 13, 'total_tokens': 99}, 'model_name': 'gpt-4o-2024-05-13', 'system_fingerprint': 'fp_400f27fa1f', 'finish_reason': 'stop', 'logprobs': None}, id='run-9a0c97cb-ccfe-463e-902c-5a5900b796b4-0', usage_metadata={'input_tokens': 13, 'output_tokens': 86, 'total_tokens': 99})]}} - + ### View traces in Langfuse @@ -353,7 +353,7 @@ for s in graph_2.stream({"messages": [HumanMessage(content = "How does photosynt ---- {'supervisor': {'next': 'FINISH'}} ---- - + ```python @@ -370,7 +370,7 @@ for s in graph_2.stream({"messages": [HumanMessage(content = "What time is it?") ---- {'supervisor': {'next': 'FINISH'}} ---- - + ### See traces in Langfuse @@ -516,7 +516,7 @@ print(langchain_system_prompt) ``` You are a translator that translates every input text into Spanish. - + Now we can use the new system prompt string to update our assistant. @@ -566,7 +566,7 @@ for s in graph.stream({"messages": [HumanMessage(content = "What is Langfuse?")] ``` {'chatbot': {'messages': [AIMessage(content='¿Qué es Langfuse?', response_metadata={'token_usage': {'completion_tokens': 6, 'prompt_tokens': 30, 'total_tokens': 36}, 'model_name': 'gpt-4o-2024-05-13', 'system_fingerprint': 'fp_400f27fa1f', 'finish_reason': 'stop', 'logprobs': None}, id='run-1f419fe3-73e2-4413-aa6c-96560bbd09c8-0', usage_metadata={'input_tokens': 30, 'output_tokens': 6, 'total_tokens': 36})]}} - + ## Feedback diff --git a/pages/docs/integrations/llama-index/example-python-instrumentation-module.md b/pages/docs/integrations/llama-index/example-python-instrumentation-module.md index fd604a6cb..323534f94 100644 --- a/pages/docs/integrations/llama-index/example-python-instrumentation-module.md +++ b/pages/docs/integrations/llama-index/example-python-instrumentation-module.md @@ -79,7 +79,7 @@ print(response) ``` He made home movies using a Super 8 camera. - + Example trace: https://cloud.langfuse.com/project/cloramnkj0002jz088vzn1ja4/traces/5c6f2b7f-4ae5-41da-b320-24b493532657 @@ -91,7 +91,7 @@ print(response) ``` He made home movies using a Super 8 camera growing up. - + Example trace: https://cloud.langfuse.com/project/cloramnkj0002jz088vzn1ja4/traces/f63aa1f7-8110-4a18-815c-c02d7131b984 diff --git a/pages/docs/integrations/mirascope/example-python.md b/pages/docs/integrations/mirascope/example-python.md index c325378d5..a15324749 100644 --- a/pages/docs/integrations/mirascope/example-python.md +++ b/pages/docs/integrations/mirascope/example-python.md @@ -3,13 +3,13 @@ description: Cookbook with examples of the Langfuse Integration for Mirascope (P category: Integrations --- -# Cookbook: Mirascope x Langfuse integration +# Cookbook: Mirascope x Langfuse Observability [Mirascope](https://www.mirascope.io/) is a Python toolkit for building with LLMs. It allows devs to write Pythonic code while profiting from its abstractions to common LLM use cases and models. -[Langfuse](/docs) is an open source LLM engineering platform. Traces, evals, prompt management and metrics to debug and improve your LLM application. +[Langfuse](https://langfuse.com/docs) is an open source LLM engineering platform. Traces, evals, prompt management and metrics to debug and improve your LLM application. -With the [Langfuse <-> Mirascope integration](/docs/integrations/mirascope), you can log your application to Langfuse by adding the `@with_langfuse` decorator. +With the [Langfuse <-> Mirascope integration](https://langfuse.com/docs/integrations/mirascope), you can log your application to Langfuse by adding the `@with_langfuse` decorator. Let's dive right in with some examples: @@ -52,7 +52,7 @@ print(response.content) ``` I recommend **"The House in the Cerulean Sea" by TJ Klune**. It's a heartwarming fantasy that follows Linus Baker, a caseworker for magical children, who is sent on a special assignment to a mysterious orphanage. There, he discovers unique and lovable characters and confronts themes of acceptance, found family, and the importance of love and kindness. The book combines whimsy, humor, and poignant moments, making it a delightful read for fantasy lovers. - + [**Example trace**](https://cloud.langfuse.com/project/cloramnkj0002jz088vzn1ja4/traces/84bbb50e-aebc-424a-ae8a-e1012914d46b) @@ -78,7 +78,7 @@ def random_fact(name: str): @observe() def generate_facts(number_of_facts: int): for i in range(number_of_facts): - response = random_facts(f"frogs") + response = random_fact(f"frogs") print(response.content) generate_facts(3) @@ -87,7 +87,7 @@ generate_facts(3) Sure! Frogs can breathe through their skin, allowing them to absorb oxygen and release carbon dioxide directly into and out of their bloodstream. This process is known as cutaneous respiration. Some species of frogs can absorb water through their skin, meaning they don't need to drink water with their mouths. Frogs can breathe through their skin! This adaptation allows them to absorb oxygen directly from water, which is especially useful when they're submerged. - + Head over to the Langfuse Traces table [in Langfuse Cloud](https://cloud.langfuse.com ) to see the entire chat history, token counts, cost, model, latencies and more @@ -100,4 +100,4 @@ Head over to the Langfuse Traces table [in Langfuse Cloud](https://cloud.langfus There's a lot more you can do: - **Mirascope**: Head over to [their docs](https://docs.mirascope.io/latest/) to learn more about what you can do with the framework. -- **Langfuse**: Have a look at Evals, Datasets, Prompt Management to start exploring [all that Langfuse can do](/docs). +- **Langfuse**: Have a look at Evals, Datasets, Prompt Management to start exploring [all that Langfuse can do](https://langfuse.com/docs). diff --git a/pages/docs/integrations/mistral-sdk.md b/pages/docs/integrations/mistral-sdk.md index 4ce943aa9..266b6de55 100644 --- a/pages/docs/integrations/mistral-sdk.md +++ b/pages/docs/integrations/mistral-sdk.md @@ -301,7 +301,7 @@ stream_find_best_five_painter_from("Spain") ó . - + @@ -500,7 +500,7 @@ await async_stream_find_best_five_musician_from("Spain") ía . - + diff --git a/pages/docs/integrations/ollama.md b/pages/docs/integrations/ollama.md index 2fbaf09e5..202225dc0 100644 --- a/pages/docs/integrations/ollama.md +++ b/pages/docs/integrations/ollama.md @@ -113,7 +113,7 @@ print(response.choices[0].message.content) ``` A famous moment in history! When Neil Armstrong took his historic first steps on the moon, his first words were: "That's one small step for man, one giant leap for mankind." (Note: The word was actually "man", not "men" - it's often been reported as "one small step for men", but Armstrong himself said he meant to say "man") - + ### **Step 4:** See Traces in Langfuse @@ -200,7 +200,7 @@ print(response.choices[0].message.content) ``` The most recently confirmed element is oganesson (Og), with symbol Og and atomic number 118. It was officially recognized by IUPAC (International Union of Pure and Applied Chemistry) in 2016, following the synthesis of several atoms at laboratories in Russia and Germany. The latest unofficially-recognized element is ununsextium (Uus), with atomic number 138. However, its synthesis is still under investigation, and IUPAC has yet to officially confirm its existence. - + ### Step 4: See Traces in Langfuse diff --git a/pages/docs/integrations/openai/python/structured-outputs.md b/pages/docs/integrations/openai/python/structured-outputs.md index 2175809b5..bf2192b9a 100644 --- a/pages/docs/integrations/openai/python/structured-outputs.md +++ b/pages/docs/integrations/openai/python/structured-outputs.md @@ -136,7 +136,7 @@ print(result.content) ``` {"steps":[{"explanation":"We need to isolate the term with the variable, 8x. So, we start by subtracting 7 from both sides to remove the constant term on the left side.","output":"8x + 7 - 7 = -23 - 7"},{"explanation":"The +7 and -7 on the left side cancel each other out, leaving us with 8x. The right side simplifies to -30.","output":"8x = -30"},{"explanation":"To solve for x, divide both sides of the equation by 8, which is the coefficient of x.","output":"x = -30 / 8"},{"explanation":"Simplify the fraction -30/8 by finding the greatest common divisor, which is 2.","output":"x = -15 / 4"}],"final_answer":"x = -15/4"} - + ```python @@ -178,7 +178,7 @@ print(final_answer) x = -15/4 - + ## Step 3: See your trace in Langfuse @@ -229,7 +229,7 @@ print(result.final_answer) [Step(explanation='To isolate the term with the variable on one side of the equation, start by subtracting 7 from both sides.', output='8x = -23 - 7'), Step(explanation='Combine like terms on the right side to simplify the equation.', output='8x = -30'), Step(explanation='Divide both sides by 8 to solve for x.', output='x = -30 / 8'), Step(explanation='Simplify the fraction by dividing both the numerator and the denominator by their greatest common divisor, which is 2.', output='x = -15 / 4')] Final answer: x = -15/4 - + ## See your trace in Langfuse diff --git a/pages/docs/prompts/example-langchain.md b/pages/docs/prompts/example-langchain.md index c526e4411..93c0660b6 100644 --- a/pages/docs/prompts/example-langchain.md +++ b/pages/docs/prompts/example-langchain.md @@ -123,7 +123,7 @@ print(f"Prompt model configurations\nModel: {model}\nTemperature: {temperature}" Prompt model configurations Model: gpt-3.5-turbo-1106 Temperature: 0 - + ### Create Langchain chain based on prompt @@ -191,7 +191,7 @@ print(response.content) - Transportation: Eco-friendly shuttle service Overall, the wedding will be a beautiful blend of art and nature, with a focus on sustainability and creativity. The event will showcase the couple's love for each other and their shared passions, creating a memorable and unique experience for all in attendance. - + ## View Trace in Langfuse diff --git a/pages/docs/scores/external-evaluation-pipelines.md b/pages/docs/scores/external-evaluation-pipelines.md index 51ab879de..895fbd40b 100644 --- a/pages/docs/scores/external-evaluation-pipelines.md +++ b/pages/docs/scores/external-evaluation-pipelines.md @@ -216,7 +216,7 @@ print(f"Traces in first batch: {len(traces_batch)}") ``` Traces in first batch: 10 - + ## 2. Run your evaluations diff --git a/pages/docs/sdk/typescript/example-vercel-ai.md b/pages/docs/sdk/typescript/example-vercel-ai.md index 7f7c91e23..a9f27b8ed 100644 --- a/pages/docs/sdk/typescript/example-vercel-ai.md +++ b/pages/docs/sdk/typescript/example-vercel-ai.md @@ -245,7 +245,7 @@ console.log(data); ``` Love is a complex and deep emotion that can manifest in various forms such as romantic love, platonic love, familial love, and love for oneself. It often involves feelings of care, affection, empathy, and a strong bond with another person. Love can bring joy, happiness, and fulfillment to our lives, but it can also be challenging and require effort, communication, and understanding to maintain healthy relationships. Overall, love is a fundamental aspect of human experience that can bring meaning and purpose to our lives. - + ### Explore the trace in the UI @@ -257,7 +257,7 @@ console.log(response.headers.get("X-Langfuse-Trace-Url")) ``` https://cloud.langfuse.com/trace/14cd44b6-1a56-46af-ba85-3fd91bbf9739 - + ![Trace in Langfuse UI](https://langfuse.com/images/cookbook/js_tracing_example_vercel_ai_sdk_trace.png) diff --git a/pages/guides/cookbook/example_external_evaluation_pipelines.md b/pages/guides/cookbook/example_external_evaluation_pipelines.md index 51ab879de..895fbd40b 100644 --- a/pages/guides/cookbook/example_external_evaluation_pipelines.md +++ b/pages/guides/cookbook/example_external_evaluation_pipelines.md @@ -216,7 +216,7 @@ print(f"Traces in first batch: {len(traces_batch)}") ``` Traces in first batch: 10 - + ## 2. Run your evaluations diff --git a/pages/guides/cookbook/integration_dspy.md b/pages/guides/cookbook/integration_dspy.md index f341ec0e2..1968672ed 100644 --- a/pages/guides/cookbook/integration_dspy.md +++ b/pages/guides/cookbook/integration_dspy.md @@ -3,7 +3,7 @@ description: Open-source observability for DSPy, a framework that systematically category: Integrations --- -# DSPy Integration +# DSPy - Observability & Tracing This cookbook demonstrates how to use [DSPy](https://github.com/stanfordnlp/dspy) with Langfuse. DSPy is a framework that systematically optimizes language model prompts and weights, making it easier to build and refine complex systems with LMs by automating the tuning process and improving reliability. For further information on DSPy, please visit the [documentation](https://dspy-docs.vercel.app/docs/intro). @@ -239,6 +239,6 @@ print(f"Retrieved Contexts (truncated): {[c[:200] + '...' for c in pred.context] Question: Who conducts the draft in which Marc-Andre Fleury was drafted to the Vegas Golden Knights for the 2017-18 season???????? Predicted Answer: National Hockey League Retrieved Contexts (truncated): ['2017–18 Pittsburgh Penguins season | The 2017–18 Pittsburgh Penguins season will be the 51st season for the National Hockey League ice hockey team that was established on June 5, 1967. They will enter...', 'Marc-André Fleury | Marc-André Fleury (born November 28, 1984) is a French-Canadian professional ice hockey goaltender playing for the Vegas Golden Knights of the National Hockey League (NHL). Drafted...', "2017 NHL Expansion Draft | The 2017 NHL Expansion Draft was an expansion draft conducted by the National Hockey League on June 18–20, 2017 to fill the roster of the league's expansion team for the 201..."] - + Example query trace in Langfuse: https://cloud.langfuse.com/project/cloramnkj0002jz088vzn1ja4/traces/baf30bf5-0741-493c-aba3-2a66290d4d1d diff --git a/pages/guides/cookbook/integration_instructor.md b/pages/guides/cookbook/integration_instructor.md index 18b20b213..2af370ec5 100644 --- a/pages/guides/cookbook/integration_instructor.md +++ b/pages/guides/cookbook/integration_instructor.md @@ -1,10 +1,11 @@ --- -title: OSS Observability for Instructor +title: Observability & Tracing for Instructor description: Open-source observability for Instructor, a popular library to get structured (JSON, Pydantic) LLM outputs. category: Integrations --- -# Instructor Integration + +# Instructor - Observability & Tracing [Instructor](https://python.useinstructor.com/) ([GitHub](https://github.com/jxnl/instructor/)) is a popular library to get structured LLM outputs. diff --git a/pages/guides/cookbook/integration_langgraph.md b/pages/guides/cookbook/integration_langgraph.md index 1de1dbe5d..f9212f5a2 100644 --- a/pages/guides/cookbook/integration_langgraph.md +++ b/pages/guides/cookbook/integration_langgraph.md @@ -117,7 +117,7 @@ for s in graph.stream({"messages": [HumanMessage(content = "What is Langfuse?")] ``` {'chatbot': {'messages': [AIMessage(content='Langfuse is a tool designed to help developers monitor and observe the performance of their Large Language Model (LLM) applications. It provides detailed insights into how these applications are functioning, allowing for better debugging, optimization, and overall management. Langfuse offers features such as tracking key metrics, visualizing data, and identifying potential issues in real-time, making it easier for developers to maintain and improve their LLM-based solutions.', response_metadata={'token_usage': {'completion_tokens': 86, 'prompt_tokens': 13, 'total_tokens': 99}, 'model_name': 'gpt-4o-2024-05-13', 'system_fingerprint': 'fp_400f27fa1f', 'finish_reason': 'stop', 'logprobs': None}, id='run-9a0c97cb-ccfe-463e-902c-5a5900b796b4-0', usage_metadata={'input_tokens': 13, 'output_tokens': 86, 'total_tokens': 99})]}} - + ### View traces in Langfuse @@ -353,7 +353,7 @@ for s in graph_2.stream({"messages": [HumanMessage(content = "How does photosynt ---- {'supervisor': {'next': 'FINISH'}} ---- - + ```python @@ -370,7 +370,7 @@ for s in graph_2.stream({"messages": [HumanMessage(content = "What time is it?") ---- {'supervisor': {'next': 'FINISH'}} ---- - + ### See traces in Langfuse @@ -516,7 +516,7 @@ print(langchain_system_prompt) ``` You are a translator that translates every input text into Spanish. - + Now we can use the new system prompt string to update our assistant. @@ -566,7 +566,7 @@ for s in graph.stream({"messages": [HumanMessage(content = "What is Langfuse?")] ``` {'chatbot': {'messages': [AIMessage(content='¿Qué es Langfuse?', response_metadata={'token_usage': {'completion_tokens': 6, 'prompt_tokens': 30, 'total_tokens': 36}, 'model_name': 'gpt-4o-2024-05-13', 'system_fingerprint': 'fp_400f27fa1f', 'finish_reason': 'stop', 'logprobs': None}, id='run-1f419fe3-73e2-4413-aa6c-96560bbd09c8-0', usage_metadata={'input_tokens': 30, 'output_tokens': 6, 'total_tokens': 36})]}} - + ## Feedback diff --git a/pages/guides/cookbook/integration_llama-index_instrumentation.md b/pages/guides/cookbook/integration_llama-index_instrumentation.md index fd604a6cb..323534f94 100644 --- a/pages/guides/cookbook/integration_llama-index_instrumentation.md +++ b/pages/guides/cookbook/integration_llama-index_instrumentation.md @@ -79,7 +79,7 @@ print(response) ``` He made home movies using a Super 8 camera. - + Example trace: https://cloud.langfuse.com/project/cloramnkj0002jz088vzn1ja4/traces/5c6f2b7f-4ae5-41da-b320-24b493532657 @@ -91,7 +91,7 @@ print(response) ``` He made home movies using a Super 8 camera growing up. - + Example trace: https://cloud.langfuse.com/project/cloramnkj0002jz088vzn1ja4/traces/f63aa1f7-8110-4a18-815c-c02d7131b984 diff --git a/pages/guides/cookbook/integration_llama_index_posthog_mistral.md b/pages/guides/cookbook/integration_llama_index_posthog_mistral.md index 6e12ec811..1d48a76e8 100644 --- a/pages/guides/cookbook/integration_llama_index_posthog_mistral.md +++ b/pages/guides/cookbook/integration_llama_index_posthog_mistral.md @@ -128,7 +128,7 @@ We download the file we want to use for RAG. In this example, we use a [hedgehog 2024-09-20 13:16:40 (2.03 MB/s) - ‘./hedgehog.pdf’ saved [1160174/1160174] - + Next, we load the pdf using the LlamaIndex [`SimpleDirectoryReader`](https://docs.llamaindex.ai/en/stable/module_guides/loading/simpledirectoryreader/). @@ -160,7 +160,7 @@ print(response) ``` Hedgehogs that require help are those that are sick, injured, and helpless, such as orphaned hoglets. These hedgehogs in need may be temporarily taken into human care and must be released into the wild as soon as they can survive there independently. - + All steps of the LLM chain are now tracked in Langfuse. @@ -204,7 +204,7 @@ langfuse.score( ``` Based on the provided context, it is not recommended to keep wild hedgehogs as pets. The Federal Nature Conservation Act protects hedgehogs as a native mammal species, making it illegal to chase, catch, injure, kill, or take their nesting and refuge places. Exceptions apply only to sick, injured, and helpless hedgehogs, which may be temporarily taken into human care and released into the wild as soon as they can survive independently. It is important to respect the natural habitats and behaviors of wild animals, including hedgehogs. - + diff --git a/pages/guides/cookbook/integration_mirascope.md b/pages/guides/cookbook/integration_mirascope.md index ac93bff1f..a15324749 100644 --- a/pages/guides/cookbook/integration_mirascope.md +++ b/pages/guides/cookbook/integration_mirascope.md @@ -3,7 +3,7 @@ description: Cookbook with examples of the Langfuse Integration for Mirascope (P category: Integrations --- -# Cookbook: Mirascope x Langfuse integration +# Cookbook: Mirascope x Langfuse Observability [Mirascope](https://www.mirascope.io/) is a Python toolkit for building with LLMs. It allows devs to write Pythonic code while profiting from its abstractions to common LLM use cases and models. @@ -52,7 +52,7 @@ print(response.content) ``` I recommend **"The House in the Cerulean Sea" by TJ Klune**. It's a heartwarming fantasy that follows Linus Baker, a caseworker for magical children, who is sent on a special assignment to a mysterious orphanage. There, he discovers unique and lovable characters and confronts themes of acceptance, found family, and the importance of love and kindness. The book combines whimsy, humor, and poignant moments, making it a delightful read for fantasy lovers. - + [**Example trace**](https://cloud.langfuse.com/project/cloramnkj0002jz088vzn1ja4/traces/84bbb50e-aebc-424a-ae8a-e1012914d46b) @@ -87,7 +87,7 @@ generate_facts(3) Sure! Frogs can breathe through their skin, allowing them to absorb oxygen and release carbon dioxide directly into and out of their bloodstream. This process is known as cutaneous respiration. Some species of frogs can absorb water through their skin, meaning they don't need to drink water with their mouths. Frogs can breathe through their skin! This adaptation allows them to absorb oxygen directly from water, which is especially useful when they're submerged. - + Head over to the Langfuse Traces table [in Langfuse Cloud](https://cloud.langfuse.com ) to see the entire chat history, token counts, cost, model, latencies and more diff --git a/pages/guides/cookbook/integration_mistral_sdk.md b/pages/guides/cookbook/integration_mistral_sdk.md index 4ce943aa9..266b6de55 100644 --- a/pages/guides/cookbook/integration_mistral_sdk.md +++ b/pages/guides/cookbook/integration_mistral_sdk.md @@ -301,7 +301,7 @@ stream_find_best_five_painter_from("Spain") ó . - + @@ -500,7 +500,7 @@ await async_stream_find_best_five_musician_from("Spain") ía . - + diff --git a/pages/guides/cookbook/integration_ollama.md b/pages/guides/cookbook/integration_ollama.md index 2fbaf09e5..202225dc0 100644 --- a/pages/guides/cookbook/integration_ollama.md +++ b/pages/guides/cookbook/integration_ollama.md @@ -113,7 +113,7 @@ print(response.choices[0].message.content) ``` A famous moment in history! When Neil Armstrong took his historic first steps on the moon, his first words were: "That's one small step for man, one giant leap for mankind." (Note: The word was actually "man", not "men" - it's often been reported as "one small step for men", but Armstrong himself said he meant to say "man") - + ### **Step 4:** See Traces in Langfuse @@ -200,7 +200,7 @@ print(response.choices[0].message.content) ``` The most recently confirmed element is oganesson (Og), with symbol Og and atomic number 118. It was officially recognized by IUPAC (International Union of Pure and Applied Chemistry) in 2016, following the synthesis of several atoms at laboratories in Russia and Germany. The latest unofficially-recognized element is ununsextium (Uus), with atomic number 138. However, its synthesis is still under investigation, and IUPAC has yet to officially confirm its existence. - + ### Step 4: See Traces in Langfuse diff --git a/pages/guides/cookbook/integration_openai_structured_output.md b/pages/guides/cookbook/integration_openai_structured_output.md index 2175809b5..bf2192b9a 100644 --- a/pages/guides/cookbook/integration_openai_structured_output.md +++ b/pages/guides/cookbook/integration_openai_structured_output.md @@ -136,7 +136,7 @@ print(result.content) ``` {"steps":[{"explanation":"We need to isolate the term with the variable, 8x. So, we start by subtracting 7 from both sides to remove the constant term on the left side.","output":"8x + 7 - 7 = -23 - 7"},{"explanation":"The +7 and -7 on the left side cancel each other out, leaving us with 8x. The right side simplifies to -30.","output":"8x = -30"},{"explanation":"To solve for x, divide both sides of the equation by 8, which is the coefficient of x.","output":"x = -30 / 8"},{"explanation":"Simplify the fraction -30/8 by finding the greatest common divisor, which is 2.","output":"x = -15 / 4"}],"final_answer":"x = -15/4"} - + ```python @@ -178,7 +178,7 @@ print(final_answer) x = -15/4 - + ## Step 3: See your trace in Langfuse @@ -229,7 +229,7 @@ print(result.final_answer) [Step(explanation='To isolate the term with the variable on one side of the equation, start by subtracting 7 from both sides.', output='8x = -23 - 7'), Step(explanation='Combine like terms on the right side to simplify the equation.', output='8x = -30'), Step(explanation='Divide both sides by 8 to solve for x.', output='x = -30 / 8'), Step(explanation='Simplify the fraction by dividing both the numerator and the denominator by their greatest common divisor, which is 2.', output='x = -15 / 4')] Final answer: x = -15/4 - + ## See your trace in Langfuse diff --git a/pages/guides/cookbook/js_integration_langchain.md b/pages/guides/cookbook/js_integration_langchain.md index 543434e22..403bb6913 100644 --- a/pages/guides/cookbook/js_integration_langchain.md +++ b/pages/guides/cookbook/js_integration_langchain.md @@ -62,7 +62,7 @@ console.log(res.content) Why did the bear wear a fur coat to the BBQ? Because it was grizzly cold outside! - + ### `stream` @@ -107,7 +107,7 @@ for await (const chunk of stream) { light ! - + ## Explore the trace in Langfuse diff --git a/pages/guides/cookbook/js_tracing_example_vercel_ai_sdk.md b/pages/guides/cookbook/js_tracing_example_vercel_ai_sdk.md index 7f7c91e23..a9f27b8ed 100644 --- a/pages/guides/cookbook/js_tracing_example_vercel_ai_sdk.md +++ b/pages/guides/cookbook/js_tracing_example_vercel_ai_sdk.md @@ -245,7 +245,7 @@ console.log(data); ``` Love is a complex and deep emotion that can manifest in various forms such as romantic love, platonic love, familial love, and love for oneself. It often involves feelings of care, affection, empathy, and a strong bond with another person. Love can bring joy, happiness, and fulfillment to our lives, but it can also be challenging and require effort, communication, and understanding to maintain healthy relationships. Overall, love is a fundamental aspect of human experience that can bring meaning and purpose to our lives. - + ### Explore the trace in the UI @@ -257,7 +257,7 @@ console.log(response.headers.get("X-Langfuse-Trace-Url")) ``` https://cloud.langfuse.com/trace/14cd44b6-1a56-46af-ba85-3fd91bbf9739 - + ![Trace in Langfuse UI](https://langfuse.com/images/cookbook/js_tracing_example_vercel_ai_sdk_trace.png) diff --git a/pages/guides/cookbook/prompt_management_langchain.md b/pages/guides/cookbook/prompt_management_langchain.md index c526e4411..93c0660b6 100644 --- a/pages/guides/cookbook/prompt_management_langchain.md +++ b/pages/guides/cookbook/prompt_management_langchain.md @@ -123,7 +123,7 @@ print(f"Prompt model configurations\nModel: {model}\nTemperature: {temperature}" Prompt model configurations Model: gpt-3.5-turbo-1106 Temperature: 0 - + ### Create Langchain chain based on prompt @@ -191,7 +191,7 @@ print(response.content) - Transportation: Eco-friendly shuttle service Overall, the wedding will be a beautiful blend of art and nature, with a focus on sustainability and creativity. The event will showcase the couple's love for each other and their shared passions, creating a memorable and unique experience for all in attendance. - + ## View Trace in Langfuse From 29da93dbb8290f4b78f7b16f82f8b36047846de7 Mon Sep 17 00:00:00 2001 From: Soham Mhatre Date: Mon, 14 Oct 2024 13:13:27 +0530 Subject: [PATCH 02/11] Update example_usage_of_fetch_scores.md --- cookbook/example_usage_of_fetch_scores.md | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/cookbook/example_usage_of_fetch_scores.md b/cookbook/example_usage_of_fetch_scores.md index 95364d60c..1fcb94710 100644 --- a/cookbook/example_usage_of_fetch_scores.md +++ b/cookbook/example_usage_of_fetch_scores.md @@ -1008,11 +1008,11 @@ plt.tight_layout() -![png](example_usage_of_fetch_scores_files/example_usage_of_fetch_scores_23_0.png) +![png](public/images/cookbook/example_usage_of_fetch_scores_files) -![%7B283F9496-4034-464B-9F93-DEA587D37A5B%7D.png](attachment:%7B283F9496-4034-464B-9F93-DEA587D37A5B%7D.png) +![%7B283F9496-4034-464B-9F93-DEA587D37A5B%7D.png](public/images/cookbook/example_usage_of_fetch_scores_files/example_fetch_scores_langfuse.png) ```python From 5a7f11a85f702b4c7deff9d5e570dd0568faa65b Mon Sep 17 00:00:00 2001 From: Soham Mhatre Date: Mon, 14 Oct 2024 13:18:01 +0530 Subject: [PATCH 03/11] Add files via upload --- .../example_fetch_scores_langfuse.png | Bin 0 -> 77242 bytes .../example_usage_of_fetch_scores_23_0.png | Bin 0 -> 89209 bytes 2 files changed, 0 insertions(+), 0 deletions(-) create mode 100644 public/images/example_usage_of_fetch_scores_files/example_fetch_scores_langfuse.png create mode 100644 public/images/example_usage_of_fetch_scores_files/example_usage_of_fetch_scores_23_0.png diff --git a/public/images/example_usage_of_fetch_scores_files/example_fetch_scores_langfuse.png b/public/images/example_usage_of_fetch_scores_files/example_fetch_scores_langfuse.png new file mode 100644 index 0000000000000000000000000000000000000000..16bed1cc7dfbea80efd17ddef6b399a8b40beaee GIT binary patch literal 77242 zcmce;Wmwc*_ckmjqNIRyNr`lKS%9?C4I|wkG1P#xND7ieNlSM#lyvvd%}_)45btTLyC?JZm8z@$&fH_qm~o%m+renK>B1QZ<@KW{ zt%}BKKFsNgl@r1f+WF3;Il?iUPI(#Ll*y+8SuWMuh1ynyZz>DxeY-57K-vdgRAp~Y zLABng;Cm=hk=Rj@dq?gUvT`YFNoPW}wP)aR65YU{aZ7A8{Lham4LVWvKU;Nr+fo|L zA#|?!^J8MwSqg1zDk`R=yk&AnRB)|zV`e!JQ-@Qb|kNo`LfBvLXNPC!j z-%wMukSKO1+$cy^v-7(sNH+tovyu`;NJ{GNo}<}>VMyp4 z0p$!`U(&1x5T82xdjdUcKQA}kKWM{KFp2sjO=1ys+GUZ?vC#7ESd21MJ!_7n!h^hWND*pAQcZ;8hIi*h$sOOKPUP*U) zuakj<|HRW@-?SIPP(``LzMAF??T}Mzkt6zTUTO1;!HvMCvYO)Hw>zB}+57~P;+`!x z*2+fKi%y2ehywNP{^s7#omshKYgeHi9nYDqw#?1VTU%OiIBbM~sI@#Vn z_1g7|gppC}!P!aOEUBu*U5@08LhB2&^fn}s8g0+}C5ef&F`s;&s$}CMp;yK1nXx2a zJq`s8OZ5}85CSjpl$u)M(UFm!;6rAebK(tH+i|9Yf6xO%65>KFY0TO!rvHw{-`-=7 zZPs3V*v4te(Q%($mf5&cyU|DKa{_V3P{wA;`WFaWebcjRO?IP?t?^NU9sIt7E%Wmo z@AXuqr4&)naZHxCmgRen-@f*}k|OxF#eCNaQi;v#i)3w_%n$1q{iuGQ&C5jDGk)ha?`E3#`1#7&opB`@7`4802juQA4)-)IeYhde3)B(;8O zi?4nk$2R@q{bsByCoJEW-N6{*T1}J&c1p4ANe=E?wxBl|HpZz!?t>Ilz%9Y}l=h-) z>39Bicnk9)i{lt0pdHkACsQvJNyX(Cn`b6wdT{MHS3B`)JqIhip zr#s3giQlDS8#QANQk^}<0D2KQf|BB)ISJvjj z3E&#LUMcap8n9SUxC5&|YLYL3s%q+EM1$Y!;ICL_n+nwqGYXSW_IT3D3{HuOpT-?* zX3zOQyl^;au*lg4M;rX=C`1Hf;C{T>$sE1)qUVVytjFbI=TDkaVbnbp&r7?@Gc}

A)yDo{6TT=S|)xdi)f9Iq5%Pv}|>bXiB10zHWf~OqXlk zHa2?qslBTDt57;CH3rIT1^`rZ0U#Zqcgv3qp}v&ZcdhZKl~+#xc~AW-BZZRqz?)Iq zILR(`mc4>N$Yg|~`Q|7%05N|KTbig3+F-pa^q=`G(eJa{ zM*~RMu9?POwn7Z<;qnn?9wKry4p%gknYLc|L>th{@R)J4a8cNW+;@4YV}*&$$M~YV zzZKNuJbPIvQroJ#sU#hNx_;>iuA)rKt_n}+UI`9=)Uv$#PQ}r~1H6<%dJKZB++#2y z)a5dw4L%rFj=3{elGLI$@nWqk-8^kF_#It(IPpw$CL#t)-Dc{CvzFyLtNSZ++0obByrS{|&u)TFC?x02pJ^7ET@2r1&YF{Sh=2-TrT)HV$EBC|&t`k#=%53>BjOa= zSAdGa!u)gl5#s7idhIFrY`w7Jh|c|DbJGL&9Wq7<>#y`OF?!k!qs#QCpq3F?l8PVzvA^4X^s6~674J6 zDsQJxPa1B!rNkG$4J@_QK8@8FU0n9js`~Xfx^_8_VfH*`ieA!VnChbPeN0?Ohm!bG z#-K|%%$#5AqFvR=A2dJz>g`*_wZQt_#UdRug0+!y<=+W6uSlqJ@@fGG=hW4sjsSl( zhwqYoto;~tSB!BUK5+4@HR~V@1n{0!ZGf;5`e=~xi*>!isi0`$Zv;7xCo!0{mN)XI z3Y60R#h5sH;)P*(vmno!twGV-obeq&<=4QOu%szyhELRS;nhl|#KEBscq&e3s;%Q0 zk#A@Jaz}kr8?cE#HFNRwE&Qs)j;mUaJPh`Oui*f|ueL7pxcB@fgXO%qohsA&SRlpw zKw*9%Sw;(_(Gcz`{rnR=8FP_OBw6yxx?4;7j#-yBIcXv z2j}_01JQQ}E(0n^yQz5cub@3&n`qh|cw;U83Rr(2Tzf$vz?DE+ZpvwPD!<;ZNY4(v zpQET`!!o$KGHI~5xo{I^BQ#z$119&BPn?Ie1QjEbOd+-^A#Cw!)0gcg7xGbx)6%VW zgM;XW;`R5zq}IaA;DSHh9;? zpf}Zq2AD!&(|D(ZYxWKEzGjis&fEG+Kh5+P!>-{pi5{z}whb#(R1Md%QGF%Fm9bHw zlnocld#*SA*qN!kgNM(S0zF)JNspCmYg#-hG9R$K2|GrB2-q!WWQ_^tnoXSUtu~}iQyHX62qZ7SDkHTs* zZ+Oq(L4JDeZD6Z(@K#B{>P4^V0?f+o>{{u<_*x%lEiP4naN^-Y%0)^uU5wT~vi^m&7r2#UuF`aQ|FpCo{6;J4qa z33vtGSDYwao!#CfE_ho$bX!cmQkxl@4~lJHo<|vps!U-_)$hJ-C@sHELaRR7$heh1 zjFmX*<0&pLqPsedFla7ZfPh8pl4Lz|Yc0A0G>UcDNU;NKRcQnpc$7iy8M56l z>b9E@BYL!D+6R|>mbixNnaW7jm|(n6XXl|0Q z*~!8SD+BCr5#AocPoiqz3;mA7D-GAPdj1);>+?Z2gDH6SmeO;wr`M@&^C4F&<_NZi zPDPWJtEW-EB9h<6FRY>QJ%Nq2a7G1)4`IZ7XMg{;=Ed=z>$W}O*x1ntV6ThHvrZqy z%jJ`~N-7T~c@tmk*cnJgY{?EXxDywK-!bAdE<4BqzfG!Kdk~z0uvp;)A9V=SB!wuT z2|YPh>PIbG$rKwE!GS7Ww7ZBU3@TZsC7^^>cTe@Gu&o4G3%EaFM`#Poz>F=psn$K$_1fv(!eu_W2<;mfajSsi|Z9+(?7|} z1uymXO=gU8xXX=x{2xz+i3*24Y{%eD-QxX1Ubayw2VMn$86D@j%ZFNPz6HxAW% z<8#hYccq5N=8dPWot&ZM2udUiS3g>AI-41o{?)y6-GB%(I0R2lmcYh3i0MD|HWe-+ z1o%t0U@UH@V_O^rQW{gh5B`kMB@d26eW z=#ammOJ(rNH%>s!C22^!bvJ0i9(HX|xXS1~HH!B+nbb|-Cpg&xTqeHKsZ_kmXt%Rl zlO1Hyut{C1v;xXET1}gA+C6WF&j8H^(dYm)4>_@QU3SdwYyT+i7tt4*j zwP=8;ix{#pA=y#nlg~0Es%o+WON~3z*Ju`-q&riU$&~2jOxyAEJ5-f@Rk4e7)r^av z3zxU!@^^!55mma+8IH_8n_KE)0ibHHTEwma`|;I^&cf=R74ZF5edI+s<2MrW(58AG zob~Tx6VJC4*UPUPCCUzK1ukB|RiTsOWqSwSVa9`YNbeU*EXUgrU<%+D)kaf`x>Hxn zV{W+nh4=8zpIgAJ8sc4guSIQbhqxvRRUE8@F29j---HXeR7y;OMoy~w`KW3E6l*Zs zphm}`n z^}36^WD4j;bya^smr?ePaueloD87#!N#KEL@n4Ek;OF&;G8K*o-_0=ly}B1hjAW9K z46N1}1JQFNRAR&^g0udq%t%8!XXumQ8cqhMT@wjaMQ zC$@&0dYIb{2e`Wg9#%tc|Kfxcs&k@Yj>>j-LiY{e2KiQ;RLRmy>!%+~NUt{)HF>larI z(F?JYX3tQRZq5a+*00~danH1Vf!6E%Zn?wKFnzZFDF^E{_rXoc0s&&g>Al}TAg%np zhM}F;W9zmJ0#$n*9!BZ7*qy)WV&#%t%HBW5GoQ*_U#S!5p9Ef}5;tTyg4dG>3vpu*}pf8AGtUY($l>qsZJL&5) zpW)|2YttZD00=}nZiYd%a3weMs5Wk*8r@lpQgQx=eBJWH-8uxhr}L5^YI1)$`HPE> z1o`@IF|gaJM!KZ!OZJdm-4=p~LPLGc`wT$>M-wdG%WKuuQ7#RK1qvJkb<^D;T{4cf zYXf$lU?=4==HBLeZQ|wr44VaBM0YC6w zV;s7z-ph|K<3gzPzo;$5-AzwHs54k?@gUpEdJF^v)pJZIHL-!x^YTF2^Z4QeH}@fv zp#DpMB!gO2KO?K_4Es?N}sY&Uj8Dj-f4yUspu3LcYQ9x@i6%0 zIXVHcK%l=&x30sQ8mpoVeMjf4W9Ib+oOk}Td?r^YWuU6k>fHVs$AwZ{N=hBigb*&W zE$rdCL`|ls`j*$IShu6lK(B8(muO`EhMc46n8?cUsEeh@x;Ubr{>zt|cOQ`z65lOz zQN1NuFu)diLZk*wjJBFB^R_^C8Dss56l^DL#^f5D z$J9MY-;agh4tW88gwPdj+{b;)ID&;(rhR+>Z0k1vk)8P^ly1{_b?uvh>Xbe;t82nZ za0tDvCxycg6j#fa1_pKDfx9IIb7I#P&QL@h_HRuyLx_j?QDpp`w=fbooCRoKeIB)O zDi#+5C%PaI>prf6{GYA=;6FpBM@f|*I%@$75}(PXg8VG+)IE{9HXg^mcOYQaJ&!2o zcYfV^`2GI6sy^l2EDt}jd7n7C4siZsM3yQ^5J3=R6 zdajap>Y~5ZY^>U54(v8pD61r_goFGG*zSMrYbCVgMg_318oNvm&v$k^k9dPFx47p`~`4 zmlJeUed&&#%yB2p_-#5S%1j-os-!r*&bBzNUT&o1MJxu*KaDYO)5|U-9*W?e;E660nHjFu!s(% zsKl;@H>Bquyx{}EtWa8E%Rh&HEM--LP6A)*{nN-LT6^Z58Ou^lQ>Gnq_Wtxw|5@E~#{@1c{@V#(}xjG+tpxm%RG)Wy2s3<4~1oh&&K9-$S`Bp9qFfe@e!6b zbaKKptF$&CdtJTHbC4wIaFadxfnu$&(6o_*Q}aNPU5_Q5b508piFqo;&f$jF9|rjh zvva;cih;D_0{k;>LiF9b zJLZPDXJk5F(hV($Po5Y+!ZgX#0gUeO(YUS%ckwGkH*bFdm)}vd`rNY$+kvh>UP~TdHWY=2Q6@{2j zpE>1*u>)*o9PP`LyA+iael+fk-d`}c1t+>5m;k_ z*N|j!bK*!l#4@9|fetHU>!eBvCxbTsPaOI5$|CJay;zzTy{xb8G|6%cW*OB%%%=c@ zLy9}~0#UcD;s6BABvfQ6Vm2jM$rQN{%d^vBstZk{9=Js7Hx+LlLKN+H~lMl^rdce|& ziP7ENol~2YWe`(YT~0?U`u)on&Ke)|ZAuH-??0Ima{I2K`mrh} zCkP!6?+5+!Up!n6qF!DQP;KD=l4F51KjEX8k(+h!w)Y_JHMFul*yS(ir%i}MqKfw(LsLY_wW7lLooIA zQ%GDMnm*E0(|hwdl>>7<$Nu`T80ss5jvh2WuMZ0|^l3rvIR3TdpF741ZXOB*VPiKO zA8udm^(+iQ$9{e94)zZUIK@cc`6Y7-SIWq)ibXVeFfMrPQ=#6!@^H2pWaRr03yD4v z!EhiG@eAOgbzqk>Ys*%}NM6z6%$?w!*g&$U7Kr@l}FCsvQF> zZ#;{#DHjcZ!V3a{PLZmrsypmxKG&&&FYhnW$;Uq#6a#{ywRm!tH#VSPY27-V>bIN~0bqW*90&2EJC6w4w?1jL$nka%LW@$Je z1Z+DN7K)|Mr>C`VZU&?q4%TPnQ+Ry{Z%^-yW`rC zj&g6o&#=m~!?wM?4wh@m6i;^sj|RKN;7)Z;jsjprE!6CUUvm@gM$B9+l)hIBGXOYl z@e{En^-kJBeEbhqO3KTPdM7C3t!WGbsMQOmxj-ic2Gf@w@t+0{Sd*xg(y~Hys26&omFyTKtof0O75K|doT7%y zBP?|Tg4{be>@@+&VacE_%w}-@{?!ig;J28V-o`V}kmC6oEL_|(cB?Tc^jBgf`S}G$ zYUf9XkL_o-0T+(2#l@kZlS^xwLD`gRPH+v>9Cc2(2s@!e!>-<^*gvKm=*=`>l>Loc z=qXMz`Dx{QwMd!idHhFV3=Xmzk)asdHYFo7NA6p%*NZnHb$aTpX1Q9yt>}_sqmd* zws$K`M9`^>iZP8@AT{rEDQn|3QIXQ4lIxj-jKmDPrdAatZ>hE@yQA|A0nVTK01phr z_>RWSU5GdQ($|~Qc0;=SFs$*%jeO?{3YqGh_Vgt~Jt&F*` zq=Le?w#cY1Cp~IRH^&73St~3skkl~9U|cPPAcGUaEP5C;36(Zt2`_YPWFoj(i)tVqc0j)&?J%V z1lg}4asvo`McWjc#H!kFow(|vUCxv2o1GCF1Prw%yi4y4jXg>5MgoC#LHjU)%(paun~QqtA5s!DkPxsgu*=f{)Jou9j& zW!MZrj5#l-KV$wN|C4A)l{S|=LdbhN{+egB5?_Hed7=miXv}kQqt{^U7T!>ve7jbN&HBeLlzy4kPh z4VyB!3MY>>Xgi~Z;1b7$+gA=^Pj33=y(w^Cr^JbDW=n2s$n%`PUZp&J8Z%r%K;fH{ zbbUQAD9TsH@hlv?UiqyS{vzw8{3j1^iWayuF)8e)HPrPp>&%H4eINHsy^(v#R8f$u z#UYki%jSnb_~fd(#}kYBUS-+o4ky{fzHKFYb0xYZ)6@hLn!yHOXL+dtgVLr`>J1&p z;YD(2pLNHt_GzgSVWH$k({$3~wKZy3b4y#*332puMjTh^?UoIz>*CU)?|+|4%-&=ZD41==3uCflqvd+Z$z zS6MULH~+}`y7e5myv`0g1+RaDR?P5&&TIRzS+yD>SD#3~X6z$51*FyzE!)2@h)GBckv~bf_9bz_hXO~lm|!NHcn?!!10yC2>H?E- z8WItXr{eDzu4g&-8%pd5_hQ^jJ-r0=)z-epW=HD~b{Bw~`YC%`4|w-#50FTg2;&yD z$F}#~a+f8eF}+dqgl|1f&#OLMoe9c)4DKfoU>FidY5c69RBSwY@P0jEThu*%X_bZ2 zB!n?{*bjOU{l#Lo9Y#&@tQY@tzBB>DiMTwtI#LJnX-oXt`&-XIH=Xk~j<$|=f;ihx zx_v8ZHmirATDJ@9nbM$+4k^?A_#SAfLlvIaeW8Ei^AFiM3tGj?g|kc;U9ZEM4m%9y zO;2|=MUNMO4nSZzd>U~E6gNIl!>rk>2jWxmeTF|3ZiT?A_@Pp(42dW>Pa-*!(T<|b zXO8oC+aT1S2;*wns>Tx*uTyZFD_djG-gPf)hx_ZLj@y+BfwNKm6JgsX{@|BZ?Ate2 z((}UWgM7H6zpf81u9}cC|5y&&>_IW^(RuYc{>r#ptNj95#ossb?q*gNqqT}F4^O!b zU~WfibU?VWB=;B5I()t{0-d@BY%-}ER$M%|=~!0oXfruEHa1<9%FFe`j!^7uC(m=D z;TofuvaDn=+s?6*)zQ+9PsnP1DFYY7KE?a~DdFb8Xzj|d&KG8{pasay;|u-C{bsnF43-nBgoLzWR}^DsLh982U=7bu`mn9BGinN2Exm@$ zK1uNKl~)TAue5<|=N)DODQA%M+wM&oBkxsx%`!M zSAogZk*>A4om`=p|Ed!sEbG-6?#oFjB{ ziHshWn85ukUB}Va=^Lhrdv1UQ?Qpcd^#keRj|FVoTcWgk9uKHByHiKVNXwnjfbya| zCJkGQ%qds&1h8K^t{;^jOYE+7K`6r>&wj)_?W^6+vUa;BRJRe89lZkAnmAx!(jvIn z8qwvE&yijC^AUq}wBIQv8iNO{Y`=~|$BeBqN{v1~WZ2*d;TnQWEO`CczN1(*Cnkvn zq-vEA>tAKq@TS&^>>(@o+1aHguVc{8L&5P#TmB9EeGFRB*^n~6rVS6MMoA3yO!meE zH=W7z1C-=R=@8S7^b1`|gXY0heVIusw9`hp)4%B1TufR~(L7O=?Tsh-?a2mRRkHJ- z7)Hofn+1dGO?Magd?%r!>ETe5*CcQnhDVP5=3KKW@9p z5#ecr6vMz%DZy*=q|rDmByv}$?n15)fa3J}CTr650JnICfB6vxMn!<+q(SuVw8nz4p8Os)oHl zB7JFg_w&VXLf_DTTG5D2Y4nlo>|oqJTTQ8jr}=|GBvWUtR6Tush+Tyaii#kcue-AR zF&&@an|z2mu=;E%Qy=1X@nTM#o})g1(N?Ls-0q!Nip@i>+FG}r>BiLTY||N23ZqUe z+aWWemw<(5{E4;_Nav>5q_N_GR(8gzDA(mm{!F6Tqtw{5HE2LvFCT@XV0ap!8& z1(vHysBZb*%q;$QI~|yv+?ynu3O^IHh}WkWa*_45~r}T;W+Fe<}r+besik;*QLFKnO_W$B!1# zqv+If&jg{ey>B;TM>|#zMazoAzP_Q}KXl|cyxisYU0HYRmEbU%_kZY8;O-|Nu=*ah zD);g;dJ2)*vZ-$SNU?5rX5csS(_}%15&pWpxij(gd;$H=>bbb_M^gpZH}Cq?t}pwLYJ(}N6c2a8J*qrL2mSLYy7_cQXEC^QWGlq&CMy$k$(}zi zm(jPZlx8EKFOs)Ux3o2-YX_FqRTx0ecik=2GjpMfs5-&RPQyG z{dL9Gzkhs6`EKPmA#Dqa_%x~!cXU!b_fpk(vYr-9cR3HbCD6ZFA+M^u^g8wn(yXxG z4WJr6Ijc|1_Sov%ZH06wTAe0q&+N_C&+LMgvZQMYlV@`J)uYR~VrDIIX_YD~;rd8& z>hfKAM(7*;pxqvMPR?|Snv?{-sRC^v0WYufZ0Crio4ez}O)&P9n&0?jU;(Oo$sd)X zp+6?p3^K)zwahL#!|N1`jZIZlRC>tUu{*fBqt7BMlIlWex zIsGSk*;9U>RbM|924=_<#1R*)QjIKCjdb?lgmCN)G1r_k^mn8eQ)g19EA@@O*r3`~w1YKV>dmHqSp~X%s8wIALXFHl5rB?aahU zsVlO_#HbbkCZpfxzmUS;fgvd!LZ0Nh!gwuYYzyYUq(N zE&Jo6cDHwb)k8oB*`M{{&rwb)hsUP#^8fpAv80izZ(FIFyH@t!8;Xk}e+g1Z z{zEvU=d3`zkAujwBrnl!>78>kx8lY~wSCAEh>~I}Hj^JF1%Q#HGoK;ly$=V+n*Z(2 z$Yv7`&c%}Ax}s8$(L)VP7ncqbTz*|<^F;6|QgK`u{lQPhUg+W$m%#x#JdAx0|MTvD z!}xmwNNGaHy1Fh~xS-H9uAYL_R5UnI=cko*$Fg}uNPB7LG}00+q$OLYSx8IpPX5u7 ztje(I%jY{-_XUUMV)?v!j1cyQ0xPOJmsbtRZL){#_7nSf`K34b_$!BIr>9|tYBs#CHa|ovF|jI? zdOrNgPJLR4NxqltjiGxxRwUHg#t{ywQ~E7v=IHiU;`M*{4#HOHx0kZvJ%@8A?gzG1U|w!*3p=IZ%``3VmuPfAA-W z2nm8gtjjHOu!XHfTlX+kNQRipsY?!blQ^*~@qgvG|Lrh>kl?XsFdag+MZT7|ql9GK zm+D0Jw27rP{_!id~10GVEW&Nz{LL!_*ve|IFooZ+@c* z*<`qx*_8b|!kW__^YZh5&{C0p^M(Ki$HmpHW@T%upuhN`f~LT~zfIS?@dSxx;b}LL zv9eg-P|=a2#QlhnXX35sIe_!&`TdpOPPhg&XQ-;%e7^dYN9QiJGB|e32q0 z>FOi5BW7-HUW=uTnY}~R6RPDwXuSOus8K4b-%xE@Tc>BZPqd6&l!SozRY9?SA$qU+ z+5fgA^)PuIXgMN|LorzK@Ipf{f4xzSlV6Mq1Zk1FQFM1@l=g0EJql4luQ6tm(8Mj{ z|DdNYtEk9@wid=)p;_wa^h<;@p6lDI2X2DSp|VV-om;B&a)l;W%THqs@I(&1hje78 z%4uTGsweTQp9O3yryo$TPSQY>5FwwaOceBpf6)p0p4U8jJr`J$rm$vgvhF}%O_Y=N zetD(!v2(SAO71kij#wGEfs~l|Rp{WCi1;89&rEShjs!mzoSIfqUA26>8L#XUrbCtB z5^N9=v!1$A$(Bmhyj4)0THp#0yaC=dJQhZWI#- zAiWfO6o3+RM4BUhPNcHCVT4#|i#G%gG&qt@FUYiMDVmUnqnceh!UnNUal&g5mrp23 zU*|@Uhj(PLdQ6&Z>G}eWgw~bIj#sp@gw{QLUhll7{StxQQhd~z8!P*%&qp-C#{XC_ zGAEWUHRo_X(Rx-zxyDO|mgf3J2>WJgGXpll#d@kgkj*1EE9NrMJj}6f12MlK#io%5l zSY%e_#(x&%2d`f;tfOE3P-F~(T8$ykax(RYhYh#%vCY&q+Ggh`QUZdG@4vXJ@H}x& z;navctF5jsrp4wT^16CSG6~<_y-QojwQ1jFo(E6nUqsW{7j@B9PleP#AEh@0y*S_7 z0(O^J4VyBTogE!)QCbUYzY*|064J920eYME%K@}{1bvZrO9NkFSW;K7F|6u(r;jP8 zs-G&vk5W_TfHJPH^*gEjNN;mKJ6^e~E{003&;v{H%P+WD~=K$;j!N|uv z;90!WT93$6yQ1>5x%etpidT_LG#v4zetRDaF)~tq;R$<1+lE^E@$#+ctlrPOpBZVn zSV};R*M8R)R#q$K>f*@P!Je`HN)2$#hGw5_3DR+X)GzL%jrhL6ps zNe4Ud_{rRgykOL@`63m5J0YggxALohZ=^&274ByXZ1Pod4zXhO`F>DmG;8OIX-NTOF7|IJMmdh; zfFD#g0qVsvCVD;`n6a7rG2J<+ji$1rF8jM%VidTFrWaA9^avpr70v)qTv7Xg_Xsk8 z2Sg$H2F7OVjyhs&f+W~Uxu0lh`F%@Y;iyt@ENXh85n`|FK9p|o^(7^zlrQm+?zAj~ zyhMQj+~oXzMRz`>V6wv(v}()L3Tjo2 z9ZY?fWY_unaKe-s6X$3uM+Bm3+*VQNamNDc#5&p6!y}$tma{ zn%d_}W=U4KxZ&?@PGXdS>X65}*ma{NuRb?e4sa1=5$fodeb{f z*qpEKTx(DFLRwnoDX3OcX0I&RV9X9jW14W^}AQp8bLzBfhny zoyZ0#Q*i;H+jsK;dIfGYU(QLk+3NB({FSF}CbIklCu+sj1*Jztv&zamXBK^@FcbDt zqgbO#We_~F;OS1OmHI@3m5pzeXkvJ0RmxcY!Ej39)3x<)YO^oP{a658$V+a&t)GI= z(?@)0TH*GwO94$z?*aqfTTM%j*6opmGqvy^Ugv^*AL2p2ho<$XliAP|1Mt>Y+@q;P zRq;7s)U<6wvS({N&;-LEfhwSSUI}|((BuM7Tr0T;-A!M&kv_mA+OO{Bde{DWPPuK z;^0NR$rpu{Kg z!*{Vh@)FJFLHp(Mu%@JxK7rR#N=@Z>&+sbsXuEk80HNg`!^_m#Femmao(rwq)D zc1XuV2WsesJ=bj|ND!k#X*zULuBN7`&nA=(5euutUPQ{c-;GT}ADeq06=f))P7rK* zHaw51l)TY333LngN;(m5DvaXg!P51nNS$KR_0FQcutM&}k<@nB%in`URbx_FTU((q zgIZ<1&)7?uWPmZe%%s=rG>&&^aVu2C@%{i_a9@g8n9S~)aTfK*(IRVEvSx}|WtCCi z3cOzJRT*Hb>`m_IaJ;p73bfsuI4w$&mexcjjen4!vWDis!N@}-|YmZTT8aoak z<_ym#Rxp~-G}y7WX#$TKFBGWAId)itKD01ySFdctyGH_e z6qV)*?aVXNHXg7KC{}#~<%IifYVAyW`v)Iz$%930?cLZj>Yb6&GV#@9MFjtX>Q}i; zYQVgG`o;sawZij`4$g_ml*_~D@3E8bm4`#EtZ93R)nl=zAa2Hn3}TRTf4&ey@vsN$X2#!CstIP>{%+&tjCVxYDy}6nwC?UVLCP zZoE4^;9-SpzyG%PqVd;!K#j$yme=@Gd=THX(~wsv+1IH`rWhbFxtYxp%Q2^efEw>} zaeiCEw`iNnrxbE#y;W@#;=}%aV4iRVXH{P4ii9bu#z5jrUuiD#eiL@?S zmLk}(uf4@`4qenK4_bL;CbgfO*jj&J%&Ebl2*^{Rnqfbm+UiRLIdMh$J1*o%8X?4T zu*?iOkpHn`N93i0A*vkFpy@6NbrQC@u-04kVHr!xxdTVPtpcYBJF(Xm`%jAuxcy2` zg0!wTU0l>$xy6}Mesay%RPw#Ig9X>?@fldpwahas;hWJ%k}SRjDGF}`jYppd#jI&C z5ZHwrIUh@=(Ey9#VeM4XN9`g3Q$JugGEHGujXxWz-8ryVRBF5&NEijO4(IDUL!p|; zH?ccO3_P|DBTC)O9(IZ?YgM_TdewTk0`=I#g9)?*=`d2W$t`^)M@m}RwP%Hc#LV^^O+hp6@|CN7 zr{a~66P*EnkR$2~J_(Y-!AxP!K$h%w{52G{T2spM7sq71W$oqfN{we)A-LRdQV9o9 zM*=_l;$E}fi8njNm}S=tw=B`V12{^E5kWssTP46kHUXqhi!;c|?AM|l*TduTE!fJ- z?)kz3#r$?gFVynRi)CGd=5RI(&*3LM=?vvsBrxYw-qKOz!<~TV2?^n7o+YPG(B_S1 zZe@2P`_W+qQyO}n4Kr2x5LeOoYnT34viFzc#XLlf=B$Luj-Kg^C>g@2+e23$%RjPw z?zrd0pEHgpGI=GZ@xa-m`lzL9h2+~xf&>>9hhm8x!pnuIjtlq!LoVB#cj6haUwpO* z7qF1YUsWWt)@Bq=KbY7z%ay{b#%t*6PC)iR>!;Y+utf*gyg_nLtpquYi2uy>@pko2 zrNR=Jv*p$+UY5x}R)UW)TDA__B)Xz#VmXSzYd=EvU_R{F7(%b?{})H)FX!j%MTwzLo+0}lutuN? zDSDOd+W*JidxkZ&ZQ;V(f+&cn2&f3y0O=|v3Ic*6iXaGt7CO>Pq}PC`fP#QZ6Oi6X zLWe+r&;+D+0)!;eA%##AAe5WE&)MJE_niIj{`;Q&XFW+)=2)|gIp#a&dgmBeIMaA& z``rNb(_hlgjGz%Sr1^I~9%qOF{z}zXzpPGg0J<&51p3aX6{pSo_|jip+A#iZE_8uk zgzZeQKQ+udflrCK*UDrIb(r2jKZp_q4euY^Uet)V&piKK*b54BT=u+2@aW5ltd;U$ z8&{fmbEGx+V+iZT6V4Y`8>CQafiD&lj0yT#?tO9JJo=KvE>p51Omm)!#66Dx2|mIs zB|cU>Nw4rGuabP=^TnN#oa zQE(#a0rJsAtE30phNC6^phj>%FyeFv-W>8<7$lwrYg9a|hJgMI$h>{O2vz(-rrNv6 z+UU8(kQ3*9CN-oF~dKctMAP$eR;K~im`EanAi(^z-YJ6{D;bsWzfgK%`SDkvg5L#i%25%tnUe@(_{*F&iwoA8Ct0QIw9labX=>LuTs&jmC8f<{3 zl?^<2R;!3jxFaRo_ByrCkg4w_Vu)VLvuPpM6(i$rg8Pis22Vd@rO^o@_(o)JFM#i zJ99-8y{6#j(XsiRgBnll9y*Jy4Sa^jk#vR@6n3*-sQ@HR(xj9-Hn(+L8dS^TrQ#vY z^3LrAWRd7A1KAs#yM!Oseqwrxj#|G70ewc10Q~S=o;##g>801A=q9=0lnwWM(am0C ziV+}0F6InhHDRm@To}4N&dut%6b9rnzo@Pd_djA}?F-8*8vEZ+4$V&sEz=k0W-+j0tPPkyahk=5p~t1t#V}_0RmK z6_5dWD(0z% zqwVDNtilDM-iWhHR*mY4BIrc^xLcNG`!@c1F6`hXOf1@~)=i@#n-<#PFnrJ;7i3=% zF%xL}&^(up<-t3nf%Td|V3q%Nj&cl-zx273+y-VJC;YB-ltQHwMxG!#Np`Iq>j3d+ z6l@i<JfmL%=z*=u#zMcnf z*e7m#XeRLIqVi?a^h1la5^J4iZrGekwy!52kcae=qWQ5|pYl>FXL%0SimTa8C$ph}bQ^;YRgJUn6Sh0NAzCyN3#uNdNHfvEoipM!bwW$xr!FaLF>Zt);| zr-+8n!T9}c{DA+%t3`Vki9tYh8(z9m+wsyWTLBvSi%n*e0X zBT{8u3izE@DL?XQpnj(8%`-&Xwic<9Go!d6giuM*UGHqvEiE7=%1I8BR`f`XM%3<$ zbL3YVYOB*Eq<*!^%Ff9&8y!VBlv|WU^NXTg8y=4v$S&B1DU7DizOYY^s}YY|=znY? zH-iKCgpD`xe)cOYrMx8dT}qeXD%#xu#fKG@)cv;OZeAX-A+>nsAzxa?*Ycw-Vo#GW zGWJ2^2pQ8>vXXg>9Q&X!F(f^gMilHOW z0BXQ?t?4qqae+~ux%?+3u$;mO47wi>2E zIjOg`^ra79pc~-)MNt81RH*5*xz)+&q^j^jp7;$|`H=jNF!_TkKL>un6WQnsD>rb= zNLnkRmYAeqgi^4W^uiWn5|DhNqI#|*P`qD^QeepIS2e?n$~LGW<~q*}>Q9YvgwmsT z&vDH0PKkWAj7HYaV!8RAfY5dBR;Jbm~EMrOY!Q2oHUd3vy`TNIMwZ!f(qN*MnHL&fvwehnm5CW{ozM3+f zpsf_L8==Nc(;#f!le84X+jBX1-su~+&nz~NG=_O~5By7wZ`%_85FT_Nn8}}h!fC%x zT*N%FcpN3N?|zUhp_M@Bw&tnITdo$Z&@2^!#{|}$`2?MASA{@kicduN5H?ytz{_+Z z)AQG_3sh88I8`KZ2Ke~)NzYc~yct<%CXaU)-diItuiR0SQb^m>LVLmiqh6^B`q$a#OGB6zx^jU$Ri_%j!XY!^Yo6b4rVAm6zK8T95BIfs^Vwq(h!yZI#_i9csR z8{|`DZnpn$BQN1%u>MDf_}gRi7WvgVHA()`LxJW>-)jmg-c9V1>}#Xr1?>GNv&*K< zs-$I!o!R+Fvx&TnEZ*H-`a3ADyg&G*rVRbzZ+N z^`|p$RpveWxK<`2+~fTluPH>%>j2r(+Uhy?>x{sUJDiJF0qs1e=nKc+cz|CiVwVP^ za-(&dudO6oW$rI-f8m|Hw>A#Ezs+~pk?tjAymw_Yxg&R?l+szj$APi+*Z3q`*dk&I z)^vmdWmbBFl?8U*`#VvV!Z{4QRys2Tt#zwt@7y6T&GI~vj;O+SBPHolBhcuc}Q#-=#|6E6|!oXKLe z+gsadCJf4%Ck+NHk`>)L2BmIBPXK6p3kv+^7exm0JG!>q9KQD-!zyBfWyQL)(AM6X zPtYr>)Tq$bFXsGuFP`cSUtWqFIK!$`eVn-am8SeW9OBWZ>LC&t+z_0_i{I<_-3pw! zZkY}g@{u8Qg^KR(bbgDVB@iR`okqMyZT(7O)yIh0rfpr3r&8UzZ*qD*D)By1U-G)%D3&|9#mUg!p8B>%k!4IX0#E zv-R}m!>GPJz0BCCFCrSOqxMeW4+H`{_g1-V*z1=RcXyn=t%l3m&e+K0Q3ey$X!g(5 zOWV_deC8J=2NOHI3v*~^F7@%;`+PiT9KANc^qZ1wyHk2pd;)h?Uw(`y)jvLY25th0 zsSXg?B7Yg|*4Lr9 z#H6OHEhSYqGz$>ZUx?3xbHyJUsj5zXOE0K7>EM}R&Nf=*KcrZ^DIT!7bKun#86f*> zRf|pM*%#`H8Fc1eVF|UY5AQsrO%>!-Lh3KSQ*b24&NvI!X8N1LYM_y+opOQBC0*Gm zTdg07{!5($R8wNreW4dG)6RKC9TycAFby4+>Bm0aM>=FX*0>p&r$cox@6{{^PZ=Zf zP14Cd`r25H#5t(-&hG0&E|+JQb;39i9HDeO5wr>)Q69ri%&Kz2pCI3Qfll6b z8#P1j62C#{IwP;Fr@ogA>)Dod`CJe|x09S;I&D>QUV`z2itM^7`B#}+CP(5SK?nN7 z=jV|M8 z)%Kh)(ZPj!UseAnqx!np7%h2D{p#VUY2+Q4npO&O6n-nWBiu1#H#4Yq`yqK*-gD0a z^&qBLtTrZ0rtfszK~`yhbzA$Qyw6VYiSV#0JGva_oUO?92O6^+Qtz@u!$Xl7l$Oyt zM+#{$1e;Rj<`SZGS~O?^!Aphs-8R~?OSt!}xFY!s+<(R7JjOITGO+`wYP!8EwjQ_E zrfgxd11ja^7uvev+X^e<&K3c=efSdKyy4r3VJl8eljLFCB@ySNL^*e%BfNH5sn5u;|Ye4@ZaBt;fA$cPvpHsp=Aj zS4<0VouW%m%@o~lL=9$-zdg@8{x!d6{3;vUM3u)^D`u#ddm-@-Adaadl!=Q~t)5*3 zO!S}qkar!u^f{E@##*j!4l+Otg9KE1IW8PH3=$nDzoc%59&PNCPH@z)^pX6qjJMhwCxaQuW{|? zLMsj#7TIT9B=y&l-GErXjN#`Jw9A(1PxO5DzoL-ZxeJy&G19tqN|kq(ov&c*Xg1z> zW8k6Sho@V3?S}~^77Kz$W_~r z%?A;JOUgK2z5XQ0p-lZ0udc2~esY#=k(XlM#lcxRZF8eaMCP=*+o?MdXOi`t4+P`E zqS}v%ko~~5vZCF5&cw4N?^lJR!UP>QsBpQOJJu@~Ee;}z^X6S-Ym!Aw8+Ns61f=w@ zQ!jnLNh`|c{u;j!4>K=0hKT@{3qHAqd$*7z8*1C;psDh${e;>GRw?V(_5<>vML4yX zU3WH@M=m&9v-QqPmeh+nl!7?z%4ce{Vl;9|nc+36DVY|&?Dj1&0wMOe;*Lo-6D`oiHt|f$@WVp4~asr4a?Jw0o!- zMZVmLQ{bSs`7HI#i!!zh;3uwU$D39^V@BjUtT*@GuUHH793hTH5sQ4s3#WhG5_rt) z@anaR@|w|P85ruFXmhKKE`VelYT3)FnyMRr?lZeZLm=(m4V_3MxVMR$LV1TgHDF(7 zRiqX8U_DzYRlzjl`5t~VkFwJKbwzY4LM7kT%f85h*mF--7%OQ{L^l-Tib>6K*cyM+ zMSd>_X|X55AHT39UolWg>t#U!Z9aBm-2?GgLe`Ql4fmM^=Fs7-$!FLNwm09m=ii7+ zFn}GS%Q}EwCR_QZ6BZ-nkt4T@$G@G8Vn6NpxXc*ggist$&K-!(r47EftGJHR7`G#$ z2c|Mb0sKYz;D`5(9J)F+bUpQQ1cmZPu$Yp`F#Rp|)3u+$^gJCJz$}ureyfyXSlGgo zFwPwDXmf7Yimnwhw6$0J%G~m;Ab}#ruoc+ZuLvH>jjgI)R;OHYjC-RM1edW5Lc280Axm|81m zmd~KdK02rh<~YtqyG%9;n;V^bf3z61ds}f0opsGJL;pFaJPzE{CK|XN$x3T@zE%swJwx9 zBu=q@(@TcDZ5uQ!x~p4H-%uE3QWKGoHJM(wcT{JI(bRFZ{Nn8@p>L%Bw&mTEk-gRG z7ilPX$0JMi7ti$^bxKcw>VTNbin^Wt84uHt0dkPtuOi90+wV`4Ck-O6pb2!|0O_%fK&XSKg*ITf40O zZN)%WH#<#sv$j$A=HoBVghj-E>YKS=(8}ANh|KF4#Si99BK4~_wd|eMSx&L*&Lp4a zT+9c$8GUU3er#@`K+G=c{EhYz>jZ_SXkbH zuxh?d5$x8pW?u0P>a1|orguSc^|LKg>&simg~jd~C;8nM>3Z?99(#qYO0qPKbzgAL z;Tr%!dI)+a0yUOS*n>{^YIXPA1XL(eAqR*09Ia1AF=ItSGQ5ub-v{E}UO2}I{r>g} zr>%gne^6oo>uZ>1T`SO{^?gd26EE)))Y6WLv&2%jMt+e4$-V#ed{5Q3< z3=7rvcF}&pqg_w6Vq0wn~gzvp@c&6b@z5A+Ui?9C!5(EMQ@rBXNr!*Di6LV~Ai|z?&b~1tpU(o~U z#-@$XihMlPSs~1JE-i?dDC^JmrqFs$ls}lsR%DIFP`vpp%4jt&-QzgZr^>mLExsG%fzt5(1Y9d~m$n^@{ z`17+3+;MqN>VW2$jC{>Ums!gLwr;j*L_-@~X3!cI^;%J0Y(>sX=u)dVgYVE8&%%Ax zZtRR?hG;I2y_3oyJ69OX&#%&m2ZK=A0w z_Y@~sPruGj(+4cMZM^?#wyfx%>GX}Etd-EN^;Aa3i|G3~d`Z5-r;QmYp{)&Dzq)t8 zr-getzDRMbcyRRO)i=K#6;-o%<*7kVZ76ms*+0z8yyiNE>e;-|z6848Ti*jJ-xT}U zU4J)__h0`$B5)hG_S1{gD^~LgrsUlY?%K(tKEAncj=r*C`Fz_O}1=Lw(#swRsny391Ohdo7~hyhQ7a^HA6)!*rvLQ*<+y zuK=d{-z?3W0Ov$M{85~7sV{08vVPY<$X^TkSC#bNHuc;KVsqU1QCD^+Qp)-0IlMUQ zRN08ZTO~|s;L-PxZo6KPloe^+(=)LE){x(xpP z-`)jrUL^%U>jUros~7+1`2SqGg&vM00>=V5{`M{y_$%r?#F|4l;v}mdRJ1Gn#@|)% zP1DfPk8UrOm0eOBhR>Zlr~V--(53{{{PG;N;VuvBzuNF$1y|dda8JkWoVMhYr+M&~ z70>>A-2NE6KQAFbvDGKYwewW?jKT*^wLi!9&)bY5CodjpLA`Nc(Lero<&PX5XN1w- zuy**@0Q{xg?<#Wi2}5ZtlHYPF|Bc{>O-e^v6c6_dFaMq3kT>V9l32gxS*ZS(%zu4d z)p}FfucVal-PEMt@B1x!v-R5Q;`+^JSF6ES#{-Oms8AATYoISMgVigM*2PiHKHoZ}6ee@m@QcCn|MJ;{1 z+SbM-`rvJok zJb{t)sz{NQ?#opChLJ}Bt2WMEe;oWpRzMT2UkKGf)KS?0;7GKR-3mMIVmS4yv&rBaapoqNOYR-!SK|h@tyB z0}6=sQ2GK+^y&heGMnq|cLqs0&`HA@J_%oq5$vcv^CMLM5pKYjYST_{fv zb2o!|l)=8Zq8s$&dv$#7t!ok{E~Yp9wXxX?eU_@K@9iO$U)9}b%(qi1{@@#=0JL}$ z?GM;eAKkRN`k@$K0}p9dCQp?Cmz{>DIy5vi2z?FAMK!*vv$GtN6;5^Z08h`6?8ZDdLHdh#k(v7NEcZjF= zejim@ZVetoV6V{#txC)80&6Cp7WT&tRvp5bTW!9v5Gpb1JjnYg?%xX{aE ziwF>Y6b!HLmaNu95fy?{0;B55Ls%?yi>QvR4#4!%q@0ry_pbz$Q0&CVqH&CUlfpn9 z_|$jU;^dkawG~j?V?`W8<0;gn6vRqxNn})161L>VjT?GEQ)pS48z<+25+c2^b8EKZ ztfBg^l?DbCX(dY*Jek3+G|oQ8a$%Lhkxv0t*=+3I&n%|gml2cJVCM&lh>2+s(ec7! zVj~XYWw7Gnm#0p-b@g`Y&&P@=z>9#-+?wAmj_xeV;WzRrWv}Vgy^hX~W3?NJBU3{Q zsBT)I%VEQSoBP3HuaYFZNic9)a3_t@+S;mz3XZ9Ep1h3-!?CYI()Uv+RSCUV3m2kG zOl}{IHI>L+XX`iJwQ(ZFQ|49yyuwHB`gN64WnW4(h5+{n2}X`atW#z-Z=;j*f=mNO z3j1&`*-mQ}1iv=HpmPba*a;SPR&V8BZSpP>_41WBbopKT_3W2QxF=9NcjlAEV#5@% z{!_WdsF$>)k8abuue74aIB$x)`to@|u@x7vY*trvnLb6Iv2LkyaVZ+(zKJZUF(1x$ zVwaPazFSy2aFx@x-2ojY-S#+qc_I4+H#JIAqp$+3@v&@L4oPdn?{u-PhH*16cWXxA zmEVm>6NtMsB?5$?5W7ZsBs}TR#_b`j#bi~-K64DvZMjHJ4k@j8r}*cGrx4%Q>C}~p z`vGN+05Ku0)R)1*jf!%f4>fz?$N*Z1E4Fsg)$Cvee4tY(+$nLd-iux=B4Gyf(JEo3 zkg~QS`(s3;Za}={Fr=@U2?MVX8IxR zup8cgxTmzw&PcZ4zvDFD@C@m>v-=kF$`a~QR~!EReT~axnRO%x3~q8rADo;ler`}q zbeq>*w8tO<(B2UDxkofb)>Ek61?CBvocoO3Gq#vdOXi3BJf;OTS(PIf5X-1^pgF$a zaF_iMHZY*QkHzoBJ4xbGVuR_k0J;5cKgbS7YpcypExj(pk0?*MZf*epRBIjVb^DPq zi06&_qypA05)eO-bGS}BEFdJyA%b7{<=N7lSj&U&do*JoV}f4M#U+p9LVvTw*J+#M zD3!AmrGt%hPr{}VWH+T%?x3w~Vz!>QmB^E_Io-U!lKGA|pL}?*!yg1)Do6@<@fMR0 zILKOeFRu#5yY9c9sXW-+qOI)haR+b1zkan{sU=qp)b>%!f_D>3MzGjy8K)sz{y=AJ z`AfS#Q_sb$f`X^2s;adcDn>?S^4z(3IW>)bF|nP`K1zHl_Xx1ojg$vZR6Vw`sy{=* zXTw3VOg*)h_d(;uex%*`nR%y`2MV%^d6gr2ya!7eb^2?HbConxl)I^2zxmM8xQ1-p zx6c_diVreeKmcTTvbQ1>1}k6fOhtFoDBi)rgEFmFXtD0)RmEU~hhY%7X)D8;8mOzh zf6|e+nJ-m!nJ;C?oKM(&jGI!uyfW;{odYpTTRf^1aM+s6CsWCWOf3+TY!3As{E|uF zxq_aXtGwR&$dmpoF$jf&!E-xzJ%fv(V?_ST=vkzqf(uFawf1LOE&*XBsTT(Pm32i5 z&;^XiSJ=-FXAP7ua$P39ZPztOF+I86Tzwk;EUi%PH0!Ccxsl3bxv;6={F{#n`ZkF{ zwSzFSjc^72esKPpZ{FynOcs3<>$rR+D3|32p!V2#YQr;4Mb_U@kH!7t^_<$H#aRv- z{K1|Bp=RE0jsSM=FNe!zt**d>d3>YWwG8ZQ-*;#0KHf8MoA3fuq@0G9R}{Sw(kkNQ z=9Z_M)n$;E$v{Kp+K5f3aUy#4XsS5xB!^7g=3 zFDm%;Ywh5J@L9sr(nu8%QRy}-M;@U8TCj8rk><0a_?o*r zMYh-jAnN_aCFHZ|`@>nK{W>cv>rMQjPw>7DGH)ZIz|p(!or_$ zP30-=t+0-cjdi;=QAxPM-juOA7i93^7jN>^LXjZ3Zq~{=?t9$a109{Ord1ti{Qgpc z!a*BY&qVLn(HbiC1v(+=k`os;ie$Tip}asgf|eXPZz`oKW+zYjFG|bF6>%u-XN^^# zfdnpP&;elJ$Epo9{@@lSSW&_I2l)oBQM@ClZp7zXC^(4L;o5Vs~vUuf`yJ@~PyB`RMEt4yw^_ zK7>UNbuF!7aC8t%JjIUB%m|cLQZx5fRX+cq*Zin#2oiNK@lvG|#FEt=drRz0MLo*(1AC8&U;mOkS2nXIf5GYYS^tG&I}lB$n| zk=#f9UXJx5t`3GmluR9T@B=jw6|**`ky1KYrb~85(wL$RR;onBg@;1l=nOd1Ea6SUuBT{uGob}XDr_+m0$)$_%pYUPRYPV-k*e2D;ebaoswuWiRQM% zyWiU2{R6auA2qp3kY?~l&(^Ji9bA0kUpkHTJos3hXgYvlD-Bi56;PGfuJc_^W<*S` z3Z@iKJZuBqu>}mFnlpSFxIukKpU}?)O!)Xh%Sesnyv-Df7P6F5fxqH*Bn_NlLv#YN z>D#Q<&87=qzaE&d+&S!+TKD={n`&sW$bcDbMQP|=c#P@j%x0yX>|Ed_j6qp>KE+!K zJ2bgagom{Z(ATkob@%K1Hdel8bRyW)BUrcgWAaT_mqDs_30x~iJXaJwwI?QwR-QD2 z;w`7~D%e~X-UUW-%sVpy$LuM!K^xJ#ySwpesP<6XiHRhMt7VkZ*8y3A5T+o6WE2#z0h!jU&2fWbfuKr9DKj7hsf%sm3p>Sf(Q)h}6`8uBYa+MG54P zFkT**+(c0(2~p|lQYe1{f$-_^o~>fOjslKVM|nF}TDuzheuJ_wU`48YwNZRI;;uh- zlJV4PkugSqXKwr8gXMF)V)*>X#9{&wtW_hC;pXP%Xm9V{$id13n;8|!hWn2ny&}Jm z5O+aXUjC7c%$5hL8_>gmRaN-+v~8zDfS}+cump4GCp8nzMt39-Oo6^Hyz>GcTDw@W z&yngU$8amrv((!pV2h%BzF9+%6SX;(=>_ig>S_mn4Rauk+-$mon|QM}dQ*R)j*M*O z0>ch+{a%86d-bekm_ z#ixdb9a24_pu3{o&pl1wh`*kyRRr?8cE1jp4wZN5dKUTe@#7EB&F2x3uPxIM0i~%w zjqB7r3F@&t)~i2PoN0)JVoQXg3-*S(R`d|Hs!-x7iT9$%?72y~?~T}^ZrbElb9Ity z7p`f&mvYoY=}Rfag>_@+Uvu%f#X(z!X~ATpQNbdwR9BI)$^1kydBwIlP46&pq2Bo( z2PG;L@VMMnZKG9@@=cNJeC|ylhvD|EV#XP^SbG4Qw=Sw0HjX_RAgKqby8!a~t}uPD z_M?Br7Vp{vU(YBBZZds}8Gaq$xI!kpYVOs_??bLgsIl|A11e=?yjI$=u7NO-%%URO z-)AGmd@*EpQ+&{fye^zOL8 z!$G8C>ASz06kQC>7evC*Il00B07xikcLF#vX;=GsfgT$X6*Y=dkl)feTo*EMp!*!I zNn*jTG7|x$iq##Zy?F}uPT$cBtfR2YezZOpMxX(Nzlg|PD_K%SmniFXMxFA#KhYQJ zV%L51D!~*9pQ%!>vPL6x5Kl_)(Ho~y}dD^Nq@6B1d+u+XlEbfaJN?M~gc_8<1{?(WrJ!9f5sN=;xW(@t>~hTim( z$`3tR`7n^dkcfzmNMoameXrafFB&Ex%Jc+w0x;SowKE$fiKOq~OlW9{H)>OHyJGe; zuoF`i5=y3)U%T70*&lQWqOF;BZvV*z_%#&G>aAeG&P1XiMn%LBF5V$~R_N2HQR;h0 z3Hrkk9;y)<1Z}C?&jA@Z3>HJ3^&LM!sVV$aBLMD8*|Sku_JT6V)6w2zuHRAbK*L^p z?*cV7H2OU|;p8tJ*0Zc(PK!uJw$C5Lo+vH@O*`eO>hh6^{t_5vSSbyrqoG#-y>*)H z)R+%9VN~IEUO#p5=Rwfy%S0Zvfp(5SL(Hs7gBR1YU2^jSg9baIt{Y;M2~r1u4MtZL z7PAZ>xBJ-XpsDpn>x!Vir)LjSpnlmbXmI;3uEcttUd!qd>or^ctIzd> z*ynN{|GJ-u;!1fR=YZlA7$PMVC}`yKc*ER&>;*-$e!myNQw+XEA zIqIW74R-@U3RzcJ@m&nFzQ^!4j^aKB!qk5v&td{#lano|o%kuP50l;?nbls9kFDs} zdd%J6z%d>G1xc|9>_*e?Y==S8A^wl!<40Y;8$lmeohlO>4~oA-uOIcUHXnZ^CEvI* zSqog0G;wGD?hI3q&kLv{qnsIB8;3<9)-=+!kv&KI7E~za(56*UzGU)Uq|~CwTvD=* zt!)^Tr1|27=c9!2wGNR0kg>7MUAcv~22itVr_AZh=|rS0V>xZW+cTWNV~;qHz9qey zuU~%SENMs?GGY1-Hqgg+p~z0Up8J;hjIB7+`Sj3NK+XLMOY_HuAE3Jx6CTi%6D9)b zUXA-%53~&UJ!=SxDW$EpLt9}VWqS8_XOrY?avm@H@N?C;?ZQAMOz-p^>}FXeeGCDh z6bE!W%U+`HsQRbK0e(dhZMFUaBEe~v#n@n$E%aGGk}ff&UEQbOiN-0+R5#o1ke7G` z7?s^m&i!LURX?+7FH)IRm9)?-0u;Mho(Kk*@icbI-|5&(X-HgdcZz*G-Ui3|8v1bH zSL|@wT@r8MlWiiSFbt*|o-(Cbg>@c}Dg?_k@442)U0hb$(Pp@-J!vpZR44wh@er1o zY3VcT8j^uMiRo<&J;BOkyWtaVP*qNNN^vT4DR1mg_v)7*wBBejeOeogFTQ`wAH@Bt z?h9hYSpU+Td`LKDS3-ZSMteN*+qc_x-=**p4Gf7ZC+-Rgc1_sW<~i+8-raYnsx-Za zFvfU0^zfjAa)F`VQ*GQGyEdi_fzVa$v!yA{(}zrQ`~6beCM$u8%Q2l&y{SV@7cig?Hv<{@sP)8&aiMi#T^(y-y~VbX?c zptG9-0-@ejB1^d~ij*Huy|0uNb*3OF$c({Hf#${C3$1F#u?Zq6s$(i$JM8C za;7xK7~53wYKcFsF7gi8wxXv;xjDtJQ_C~P_*TZd5h(?fd;a<^v{koUp4dSoGdo*U zjYw%{=g0fjn+>FIkg_EGZh-*imJb8kp z3=|EMElt4Y=|N!AV5woO%qO2ftAGrfBgH;>xVGX;42zM~%;o#MDHNisJ6ufYMV4{d zwkt5f#wVUsl4#e zu%9aRCHTH~?R;5r}R~EI5uy#ofs>Q+5Lhe8+rG{P9p1v+6MmQb%WKPqZ zO&Y;{qoRNtW57$eBGO1aoh(-)qf3{CyTwP$#_|DH(t8h_hz)|m>Pdxz{w8R7Iw0lF zcsh4HvaRHjU*Je zL6#$8+C~o!1Y1zKFvY{(b3U;ySl{OnEF%Nsq;{6?jhY)6Tp+oOWxx)2)mev{mWT|tZp|4nb<94SgI}<%a(3b39i(ML~cWS{whbsfDhj5`Q|2w2?l69Y>pasjJ-SV zMjmE(t+;Cboinu-)>XSNitgOIz103HP;ci4(9ig(fi8$P`owY%ZarGtw&1a2+_TJ5GK!Y||B2BqAy z$BZROY@r^#6qBC*=GWh7yUMG>;LywmC!#2)Yf8b+f$Dg(0-xD6__GK-_rUicbDm*W zTA1{FUcbpUV-e$F;n-@;eWC!Tcv#b!n7h3ysv;V-ycd_;An7XxUQV8YU0yUccGfYJ z=5p~@u!XM`DL8!hBC>J;D<9hNE4>c)@2^PFJ?6YFqUo_{u^Y9eiIlX+=7 zJ(D%yYViJnPkP;*Yvl1IdHMl!XKI9#5?5HZEJXXaq8|%;8HRcx;O-?joz-wcv z0TMS6o!^~JO%5ztZ^TjD*u#%nuIJ6;rt3LaCcZW67dl}H8|&rR#|Ca|ZWSF-jD1}X zK;~zJTz|2=*g%!#QPT7~%G?84+jPo(Z1Fp;I@?tlAqM^#V`nt$XjO+7#MRa`#j};Z z{^FHotmAlhdqc$~Kk?%|MjW%qRUDM?MVfrz64){;h`rSn?U9MyC-AYIj;UMQb^dyq z$am!u-;7HA%E3z-ZFfw$?Qv*rMt{+ob5=AVFGvAKjt~7T+nz4&H0n`pVn_J^>QlK- zL^)Zeg}OlAStEC9x_i%(AVvmO&@PPOcM{6ypj#1NL?hKXzdZweP)SgsKfv(e2?`=~ zGq9bV@b7P{L*m6PI9+AWq+m(L8LuSkIvav!tBDck`S=!)D5FFjXqb_`)fxQ2k9PM8 z$MdX)q?u7#1+1$-pu+jchzf^?Z%0lA&*sVs&L|K+@0?0jLF838n_dB(v?s2}7bp5O zx3wtZ$<<}Q!6ygCFoK9opIaTcRZO|;FiUW=34{BjK+qFD*Jt~X8j`5C}xbVWd zGkSkHkZoNYr67~zZ)N)u!8SwghsO1$8H-x)t%#OH$l}T)1pnlL%e7J;oj+qt?4uhn!0fvJGNu=G2OGqZP!%YfQIuKY=zyd#q-PjJ=`rAH&q5OALAqcyJ zwPD6bd@6*od*1UyJ|u?XHh=?Lhj4N&)Z+a;o_Bwr-QUBPLmFx0V4@AyuYp~ifuFmw z+4^mN3rcLH({>PL<7;Tlm^a^Ktp}8~dXatYS6zwkq2l4V4gE3WjX3md1+7OZP0};1 za=%}&pllV*S2MAC$$M%us1cY43f-L>8F?E_JE6aUra)YUg2%A5nrV7U6+V$xW67QY zBMdn$1_UMtPgOWw!#iEY_ooN<{;I>VnpSLAm_ltPY}n}j0eLouvz#?YKR#0~Kb&~h z@AK(Lld1LC=|6ZaAqL!r&Q{R|hdD_++imR!0jd2Pc9-g!%kDIPJlmRI0_82~H!yKm&IH~Pm!+?!(4Q!tVhHsG9PPeL-P-aW z!Q3$5>=0c&?kv{)3XXwrt*mJ7@yF|s^jJ?`56$3D|V*cdS((_CS;-r+cw6R}J zaZpmqx0A*n6Da$#p`n^}MX2$bvj(GTHuwO1j`Lr687H?r?^jQsaQ^we&Gt9u-(PYW zp8CDEnx6tj@RY${7M~yJiiUvaogcmaaDhi2zP)V`8rttUEkFX@CwC|O5B;)0$7?Tv{Tk$tr0mK`I~$)nr_936ZV5yApf3bU{V$p37ow>= z41x+tM-27T!9n0t{Ht9@ajr;Ql21|yE&i0zpH!be2{ep$pS%@f!%nZCP78$`hfspd zS5E|e8lN=7SudW8}-LF z%6~sKBwm8SiWvfZBR~4@TfYy441;h3%`2SH{@?y#*t~y={%i35>85|{=RYdJm^6R% z#Xl*dK@ds42+EsP4lpfB0}x;Kvixx*U})I--;k zKVkSchL(XK0TQcES`;GN!k9BgJaU5bXo&WjYo^v>Rn_=yb3}1kq{2Rf)9X((i!`NBu82Vem$3Ojk zK17;H^zHw(wEuf?eiO`)e6Uj{{kMXT+;}+7eOt3R;(wO%-(~$u|IIQzI7lq&?*#wT z+`sndKco96>N$D!A7%dQeEDbY{>QfbznQAv(e(22@*8Cf)tross~7(Q-~T_5j`Ild zIZxHp@RgR8gLgjbob~Hx!f%YSpGi=8l>6c5)zDC;#zjyo;cu)k6l5{cidwr9bK=B< z%Y4^KtnW?xd8n!#$Au*%45!Z>4+97d?P&nXCuE^1 z_;1(y$3=yofQ5in`}X`D?@|xse)G3N`SC4nv4;eLWP230OWLFpC5AQ%VQ#jb^xxmS zKC)#&m;!47WugA5%lw~bRycoAUHt<^1xoqc+&T&*AN;AqsQLMVIbjTwSjYUtW~CU3 zWrifO*%KdcMMXuqv$2cK26ISJa9z|XMZCA3;ex;bur47rRe05ELHZ8gVLt1gE*F+J z?RYO9C81O;Abt4{bKquqU8{nN+8=K;ashvWAS{=9ul!4=YV zfkTI}$hmbTck0ola|GyHS$R7^$?}x3G}`c^vzjQ#+~Ake($YV;y6WLc^HG_8SY8e% z(eObf|L?kmX()DCZONJJq%tKSsd2|qo0=}RmdchNYsjQZc$4ZK{c)+2^r3d#&i%1z z9Eo1jHuP;wo=C)7H9@IGv!u%qTCvRLSyt@Zc#5<*B5sT=JnQR0pX-lHr8EXA>G(6X*H)`6*Mn z`|VVhDDz9^HX-?I^he{goJzC}cbi78Rp!vOb}V}D!1wC1GB^N~EpJ=@fuGX8-u6mB zgr60ye`DNrs(DHPV_c2-BywnjN2*;CUy-Ns5a2r(d`KQaXfemi078ul$15kCc3(${6HZ4s{^J)Hv|$XsT4UBbji}q zt;{B7=fyoly{zFi&-;G#hxr^|3?b?nkW-XDIc}Ho0m#8aA)$?)@P`#TI$lk2_Q=RG znjY?4_&-FrKW6qVOZFu{+!m zoB+9?Po2!QpF7cZ?BY4)y0&YIibUV^g@tz`MDo%SgqR%GS5nnC$TkFCJvMM?F&9_e zfbQGp(+)p9Hu1uHg)&i=UY)>@2TVX?zFTtul}#q7GQ{zh`cSPa!vsomkQKr6roO9cB_R@Bg8cy zH7zcR*#_pvJzf|iTqn*x?eu61>F@;-Om0$Ik%N{Wis_wT;;wr%`MD22Ea zHHiKzJ(tw{w(HRa3(L#ZL2%bGq>VE6scb%Uf2i)%uiZX`Z3Vm4Yh&xo^9 z!`U6LlaiK)8n<&P3bgFFw_2g)M8=Yan`A>{Cn?0$^9$&0ws=%G(`r;jJV}eH;fA)5 zt7MW#7Iicrs)s73lq^-r zPq7^9INl$<^Lmup)bbswhUm%?W-QRiOT!BZNG2Kay|3@?euP3(!>NG1ChG_1YqzE= z6}*|5Y|QdsaUopS1J3c}Dn{l7e3P(Ty5w70^egpWHjw&__6aA{78>%^ zaH`%N^Szj$epRMTOL&r*c41iM{FYpCF@rh=!@`rfzb&XSCz`R^;UK9qnm+Sym(_fR zw}V6EuALnrUPr(I&C(_OgEP{0BTPQq;h`Zi?7X~&&#sdxFUDmeP|dgGYsok&;4`uB z+DC{_00mkJk@xh;wr%@ji`2q@^3yRfX%tHfp>FH4R?VyB(yZK&DaKW@GyIH}1{=ov zY@%?tgg2@Rch?Tq=}lyiMx|3;r@N6)6jeQax{u|fTQ2Q09T;`r+`SutKB69uhkgoK*g|a@8gKVQ!hsSAXej1v zrM``;Wfn+qBg{_ez6q=mtzK_#2dm~^R(3SclS@--|0?|FVfC!mJ2#!lbkk|2pMk@T zyPwdHW#B?a8H}%ae$@N-w2b{$-%D!Ga?|ecz2Zix9;!N z)JzGHUp>g{9632T#;U&LaOD1K|Fr=tqzX;RW^G$X4Z*0#4d1H>%$9@H_Wi6T&-~*skz-2;!m;21)Z_DVDAB%?SANu^<6;8*=%FcX#*j14_vJrwV%+BDWQ7! zb$5bWnb0u-Qpi}I338FAmc{gh*c%_yVmv<;#lx>5h+Uj?7|KLggrWPc`T6<|3*Z>m zo%sEXuV4MBjX^>O7w1YFw@AJ_ULl@wYB&A>%f6T{U&5ze@V!l{GxJV5XH>P}X)!ub zXa>+60Z)qJq{YwMhi(*uUJLQbte;y7IgV#cGY9IlpESX^%K`oyqkcBkkKWqvcKP^*322YO00K}ON!mT`rNCcCLC6X#ais7YS8l1;lvY8dBaZ1^&3yI)1X6$HDx zyDMRhV^cgS>+9wLhmk5wC1#MR)Q9%#8CrtJWcQ_CbWBHZW)e)D?L9rwM0`j$_?btR znyT7<^8xk3`@v-%&f(SaLS~=UG_#x&1sRB~jR5%{y_c#zX71Wl-+!l;sA)Ky{|l6v zxZi8M_7a0ZQ1P0G&{rw-tru4h9pH`IHf9gnhb}cx)*;ME}GFo%TqnQUs!2okA+Wm;-2oS5axhZ7hr&Hhggu@u$)xeFdhmEs=4g%hqZT|>jU z6~Q7Eok+VMI@rCgo<-I8vCI8tMQ*oKir=byJ(u`B%vWcAp)$!*Vt9hi^y)3ru`Hb9 z^+9c#_2fHN250ncEifuO`!6V+?QKvC9V-DV4$sc$L2s5deNnL#9HCU+unO`^VuzX3 z#Y=xH%YvqRxEe~1*2Kul$)0X;x!vVgn(v{_zp8<#CPX1fA>MY%z2Kcfot}_DM{;?b zfY=TqUucT`-{ryr4wczi2#K&jFJfoY0o?AYK_0 zwC`~*HQpD&0vhWQc1kInV$j?&nd<9ER)fI+Rfbki9|wif2LGzH^&?|X@>SG6RiF6+ zqb!R_6wgMFfNLi!7uCYyG?;$7CP*m7J(M>%en`1d~l~-Kl4;@I` zLA+O6C5JVR@n&&kRIOyj%_O}@wOz5X=ddpc=yuah5%=0EhBkXzfTj4RH+)aQT)HZp zBr1jkdSAJ`qO45X4;_BIzTS+up|Nqr@%~%3XKjzj&+oJnHdm*{qh2wr*zehNOQ2#A z-F|rS8Xxi?D|$`(*vQ{T?dkmZ?n*wc@Q-x_5D17G zyeCV&f__0&de0f>*oIgkES42f5`u*6J8!Q9^7~Bn35RXJ+ef zr7Jkw?-gMfXrFqAT7#0@D>~L6^xqfh2PnRvS61PTi0a0sMWottF*wPqee(omv2P{n zj7nBk^pIVlTNx%n!t!8#nJIl~ft+^QQi@NN@K8W&<{1ON=u3kV8|LNE45 zC8B(g>`p@qc?rS%H@B{QH zE@1E=CV=Z`XlMdYzOyE9YdGKOu8Znn-_^ofB9QU@FeF$nClyBkp`(;6?5gT9}3 z%SBRl=pnmy_|BcVT~vt1b)4)arONv@J&U(u%)`R*wWKGxLYv^(-P z^C_+e4VEJ|tQQ`G=JKNuX_lr!bu?&5KXm+p09cq3S~kTZb{Qwm$7df zg&Hav)~qvkKT3&@if^Azjp#;dTJGU?3LBmBSy{QngcN9M22lITVpbOe!Qguq7AYD< z=*mIaR2=PY)Sp8o=^=0JSV)~!5YTr3obC1vcvzg-O>9I~l$%XD^m z5Z$C1mBh!h5oG#!J?GZiTr88X{@y0-EMkrVFIoZ533B7LO0T_Y(nLtQxBpJO-IM+i zyGJCf-()O?D_npI6I@HVoiQoH^8L8pPY!oR;1P_ttnhD&Lb_L@c|;fs)ShCTTuB;@ z)a-BhF#n|?e4{uV5doTO(0Vl1Igww-+(9oW*Z7Y;|IS=qD-Nbmu6+M)T%B7Qj~R-k z7w6ON{4yu^EPIQYU{?>@-$n8}HBnHnD6-GP4xgx!Iy}E~Xe?+cAsMVx=b@<~sM(+y z@&>VU<2hPt;OT1!5$|99q1XRJiSNW@w@T_gmm6!3nSGvU>+%nITjgb?_1G3oz(j0T zXrO1p#Gh34V*P>0UFx+v&UIFWRQ99F{aLO~2iWS<`9~Q1?|@>sy9d+zZaZAvlOn<> z#2P1sQ6@*lE-Ma{nTQC88n11C2!c`-x#QuSt-kfWmO|HZRochTOr)9IY<9rVHYW-l zvrzt3iF`cZ`1fotPZ<1^i@tt7XtM-@yL58jv0F9jamif2)71vewd+n0tuCRP())Uj zX!DDkA2_0Un;^zlkR6NFRp8!4M+Iv~a)dQ~&xdw33=Eiy2ro9l2V-;nD~rZ?PoSO+ zL`5=e=sb%WLI=9u6<@zg<4PSlsNR;zFxVA?(+gVW4H4EkNHBrpT(?TI& zd7M54oTg=m9J`3r?8Lqc#=$2a(h@~(SktINZZiFP|W94Nzd7|UE`?tGQL9B zWxWWt5H3rF3sr%>!S&cBR;<}jch=_`cfLWv4fM1Qc{E(Y0!8y_Ej)vOkXS?+upb`2t!)q#&6a0t>1l}RJ5p#K6~z5 zZMzmApa~5UffDN4bu?sXnBnx-p_X^vro0yXqr`Kuin}?H=eMywngz?C3jZ23dJ9Lo zNQzCf5Mj6JiDSJ9c73j+{sOg zZp1gZHK0R#5^W&rEcC&qm{r0!ZZ1MoqyFUW0D_<6+E_TNgMZ8Hm%Qtyx|_axidzi+ z;B}cGHCL}GoVj=pxh_F6)hm@TdE(|_jl%t~$9q^6^xat=I`V+G7zOQ9kK*vE@37SF zwS3fivmrd+)1%Lg{mwasZ)=mL@?4gcZ60yYthiR`IznQ{@Em2d>Cr{PI4y_2ceeS9 z;P@VUND{^fa$@5xsD$HO9&rx%oZo5H&=Qo$s@0TI7UYv8!~JcM{8ObRaBGf?Wv0@S z*;${>p0+t5#uoY)*X~S5E<>_WK<>ztL7;3rg)FKQ%4rf3yW;W&R3yYvFF?$5aI?$l zmvg`I7cv!;*OxwcZB^`R%D-dkT-}vF7~nZxXQyH>$Z)s2#oHh3#<>aG%ng5A5H6ts z9)r|bEY8Lcto$Gl{4J%){rwv6Rs9O!jKXd3VE57U3EU~8e8K3|!xQgcmGWrCM+6ca z>rp&ASzL;}ZE_eU&8Ub9u^OapL0-^`JgKNs<2>5?^E!{sMW;7nP;}W6+t18aDT7CcA7->O z(&k&m`&O1=T4 zbsZa}@FI{bZ5&n|Fm&60!o|il5p*29P{4bu$~4A;hoBw_(Lg{SCK4E#J>)#&j)(9A zhv&41RZhrd0(2XY#yj(5*I zeDY=gA4;5w;%4!$Vhv3TNlgtlLdn@dT0)-+C&9Yne&zUw?8VmEC6N8r5a_Uog58gZ zqs1>4>=8=9YKM$`a|&Nhmwu+`ib8Gq-lmOL5Ah?}=*FEZDi7#5Nq-zYP1vP}`LT=6 zkrq+3M00QG8N%a`Dr+7Kek%A#nda{>u)5iBKCSy>s|mL5oaF_Z$%LSAUSC)Jd^MWK zv$6ztTC`QYLQgjBBP@J)S$N=Qvlf%jrkPj>1)#pHH>fqotZp}}if>_qHl$X<1sT$1 zY5~;yU&uThlh`nmgucJmGuZPB9Ry)m)QSRJ15h5#KervTSe|d(i*v zQTWoMAbf@_!p+E=m>A6`@?dx|YRYT$%Lx_Od*M;3#<3+1p%k}xMM4gcR}b=tyOwHI zF%s-Nq05h&y;S7iInZzMNr+u8Lg7C*Y0C9nDwZ0;=gF|X3b_mugpzELRXpVu`v??~ z>6|(lz2Y-Pv44V9yRz)&ImQ0f7{4(S6(c`TTwr*J)54!M?JGV&oZQ?yS@&}`*8Ux+ z`(7^@!|CbZFK1!baG)O>RLSm*kn<)3jFBbAPsjHBh=%6?Gblj&x?ca zZ4Nh`NV~lqSL$Eea-MIEe&O^~Z`DbT&=tQszT4|TDyQng6cr#9J;hY?Ej*VsW>SR3 zp7Wi^mTcjmlwkJkWkQdM-1QGki?i7(sSbf!{H?bFrj(X$h&)6+R!3})A05kC%(&vJ zfSst~<=ui_-iQLt0zNOlXGNP8PEN5hLV!Jb%Og0PNDUJ505X^u_>iWGBQ_ekmC=kA zJ`M3Y3>Zb<*h3Mqr}~J5pkDVgIE(qI#~BN6`}n$For|@M%9nrPcPAG#54c1PzcJ9; zd+xd=?jS3|_eN~J0_VDME3#`(+T7i&aB+%^qN$SkW;#MhDBw1I-u>|RVi=UK_$#`* z7L}W6F_MqcCN5nKVSI=ezcPx@q%2arNBUZt`B=){wiF9{;EcY&&)5In-TQavE79GU z+2w&b`zH-GKCRORN0)nEO;LY+-sQ)M)uR1+b0s7}pT44Y6rh_X~ioD-0jed|}DT=j*RV zTMn-tb^Z0W>knej-Q+CcBy14fVxGpgw>z`ZErcol2z1lUe%+`4bdl8r^f11I7MH*Dtv9`iWJndgyR)B4Wz!S)c} z;{vx(Na6PwOcyw4QROxC$YJH*e>hw5ZXkdl<=`zLKa_31M=ifx22_eN?!F~IZ+13g zb{Y2&*V~z#|H%Xl>pwq(ZC5KE9UCXi=v?RDBmeF#Wp<;VZvG@+20vo9Hty-MSt6D< zM)01x;XJzI&Z`{en}?3}bffw<$9zX4A<0=hYQ<^Dj92&h&cMJbV_RZ=gkz4}CbHpR z)Pw--n)UeUv(lgC*0U8hxB5Xv4|Ec2>MRcjhgTbTXI|DEn>CUxE1_!2up+jf-*5bR zwrZF5SY}*N0D0~)K`&ndCD9XA82uq9FK;+)P$lBgLF{jXwoq)D#itJ- z53XlndpBrV@VXxG5i;h6mN{inR7ak(T-D9j+72U1l<7Ec5`DbY?+wqvYG!%NtFsw4 zaSskDcQ{|QFfe!yJys#ZQoMr^K7YK(Nc09J3K12xbqWTNa_5K>d%N311%o~2i)*ev z(ON>9EB5l&fU~01VkB)Z6Kt;sccfinmxC@}BQ` zSNlRVP$6BUhy3-0#B!Im-OLNke$`Z<_eX)|>hxgHaVarVtEuqiH`8zSv|{G*%sv#J zKG)#F%Nr#Ba_Gdpp%0fp8L}co3+lTDGaEUE?!yW-QbjUhd1=;TvJt;S3e$R z_v2-tAMdYf++cFDs!OUoWIE#AinPRl2W-BE$y|Y_asvtQrtY~{4d*w~C_^QW`o%Y4 z!9ldrc3*G-bDeQx2dBcTx5>d{@q)xm)|}vm$?UPdSYL6;vw)_;PSp3|T?74oo7hSs9Q^J4e1{{2z{Kn71;A&p2eE+@jnd>5QlJeI(6Om)D%1m(C?V3g}Mn*C;P6KC>5uh>oV7JI}NUj<)hQ zj>yfu^pqJDL7&`hjJ>SiKK+vg_}`&0z@QBzcnqkaAi3%1=e~gqqbwMgHE5n&33y~j;2`iHP4>$ZH(tA2!}{Mu zylXVL%T_O@wvcPF|M88FKive?SCzqX#M)VZ!+QXsA_ag9%Sp{ue+RmsgaWR_lX+-& zsef;qfAqK_&=E#Uut2}&fBvAqJgEg3k~m~ZUiN?9(l0#a00S>V(YVd}&&S%cZ*tdx z8H!Dd{u}D%z!xk)OcpUO{w;X_Obpmi*DiR7#{Rs)e}DP!gYJ&G|Nf%8J^A{7yDl*D z{yRp0&Q1T9$>>MjQ$z+4p8^~$skkZr4e$muzCFYX--at zF~2eRk@5V0H_06dr1Es1UFx^fFf`p9w`m6b-DG$2NGngb^DzZS`xBDdisJviX8v44 zPwv9!PZs$6|JLdL$viN9f1o>g{>=mpINk38a-_P+z@ulef#m$TGLUsD5z!})Zw?6k|lg9k7EwcGgL0^0gX9)+{O zPKR3Al>qDzE>S2UExh)tM3dW!hQ`W3qOmb%&dx?KtUOn#9vuFfr-qT~LayBoFvW!R}IwM8S zzI^i_B?;+J7xdhG6EF3^PUNrl|7*7u_?hRlFvC5efsmq!E~QkKl!%PW*m2(NyKC0T z$9EK9o?czs$uxKw|F0qa&v#E!WiJ9nOCvPdrRCY(qKm9|`Lr3v)_YpXDf|}i!IV_4 z)RI$g!ef6y+}}{^hyDO|n^~xBLB{HVlE+P&VCHWO-kQYWD}PO+f8DIZ#ob-x_O=B7 zgtyoGD-jo7rgGh+VE6yf4T>B$SrYr3mNa-=mN<3)@h^^&`}h6l$196`Ul7AXy@Q^q zP=XbJt#u+T97f(rmqKBhF&cn>!r^E2|Nd`Bw11G;`z`JSwSJ8k_iiye=d@cyr~b&3 zPtgdX2ExK(@IeLyuUss}e16K-GN2S94=Xct_RCu_PMlo5h6!Xyi6y5>MD+i0N=Ql0 zA79aXE}^Yrq$P;ZNAS*ClBrDSvSU>i_j~OWbZBRv_RdOwb9J81+GZ^SIa{2q1#Ga| zJLOf%1NbdIudg|_hK5G5wGbFkDwqhXj&t6yupvXQSrsaW2R})^{jGd@`ZJjlBrXor z95#GC^s{QsF@q-= zwkFV1iRVaw?!E({y}fqfSYG4GhY!m3CIVdGlasU&ePC8R|Vdy9A?5^XbvxsaZMXC4|Qp z+TaRJmCMZM+SYDv@cQSYMh~A*_ZSSI)iKw??J49}T}czAA{@M+AoCR|@pIUf7wcgw zVa*~3Y=`q7F9G$?Gvtb^_qtNCrqrpbwOTJj6Qhd4qmR6{ z#>KL>J@~-|& zYj3Cg8Q1(#LUPhlb>UXZo3|^&EUeyfeA*P!Cc}(`a)#}p|hJm3;6U^x+>5rlz(2Y{J%HEK~5=QB}}p%LB-so&YQY%J^j$OrKWWQ_Bw zg-$;m98{@YF&5cN!{Y|ey^s{~a9?g#1*!{X&CJeXKj~#pEUSSDJw0yE4Gb_3*`hX$ z{<(fk-?7iStxE$7bOMp+jmP7aVN|aW`1czkmoqitq=YPW@6OI*D$VSi$Ow?`Tq#rDdyer{^OF#K8Uxv}M*i7925b*Uj= zt|!=nR35%H)P3RFwUID3+8)bUlfXXSY8Dyu?j}VtCRk%j_yA0F!t>v*dSz`2|3A{! z-*#zh+%v+%oT-%k02E>9Pyj$#@P;k_d?J9mb(w4*KG3H-M>f%9_4(6AU}Gebmt;ND zVqU!z9ypUBGgbzz#x1<3S8-^ql6cs=DI!!vaS_Kh9)vLQx#Zsg&tZ)J2A@rpPnbi4*bOXqKdbX%AL}zq19|;N zlP2$j^9ovJM^hz-2W|M3(O0{}*j={)u&T0R(PbBB<|BR;d@$T}JWBpRe`DjYB@`9Q za)6Z2%;i|$*NG@xlwVB*7%$%L6wNA_fF*!-$uS5hgT25Pd&vsv|F5>t5C!jId2)icY- zm%C?x@PdCVOloVb)!?f~mfLBXWU9_}pwnwV{CUr#h z(NYd#ZDB4YIm4N|(YVv{5?GWg_*)l0X4O;V^XeC0V+f3A-rMu%X(Pop$t51nEo-?L z2hNG1Jj2wI(Tdzs9LfM6VC zXwJ+ZKWMa4>kZ4pTe8X^5Z$|TQ3&J1u?^t#@$W5ttz7@8x~QmWBf!uTnG8@=n8Jn- z74s)MRf}gb^v(S?%1THXNxofX$=>?T7&?O-+L%NJJeQl*`r(+$;bIZ)9u()kcO9!02vjk)`6khJQ5dX2t}O z0_LA5x!UsXOzMGt-GO9XLNqF?)C{Mn5Moe#&I^d}{WCbnoNlj3c7x~w`v*JI=%kNh zR`i5Nfj7h{MjRhV=5-OZL%z#gl3_x}p^qGg@mPOAz|cdo`ly!1X3)swGO>U(FHV&X z^75&%Srb_w?f0m;ZC0lYt$Mf@#I(&#=coi&a~_wKR(xngay4JJK(8@`mdtWLCA01$b?=J7-^SK_Bbad#iP9-CA?lpYPa) zMDV;uy~hQ%jmYP*M&d$KLjZ|1$)g_rK9>y!N1_e^WVsrUG7ybu2>aM^_=KuQe|~Z; z>bi!!9o8eY)D{koW3v(2FX2-7D<{xKVgzj5*v-MS9OZ?{rH*%?y%FcaB|F~Q-T%Kq z%%jI87=`!0{1ai0IskM6zig{Jz57I@<~0;y7LOji?tE)8DKin_qdljE`I;!{DkM}x z)I>{Gg>yWPiBmWr8x8$kM|o3C-qYL@yfWKM5WGK;ILwR?2%@)(*rr}=ftm+c4oT6=ejVfPOY^bE_i(t6WZfB z7TOa}K>uzvSc)yMoO!F6&sV;F?e1VXDt-NUFNLDv=}FNU>_erk<=yCsj{{^6pZVK5 z+S|QVnWqtdz z(;1cO&n%j*J34*(15yUN=e^irz7*1U{b%s2AaGmcGP#Z};=Ka^-h$p<9snSeM2we= zqVtWB0b-j_Y~^fOnmh^!p9;~p<>fQIu-Vh4iw#y55~5$xvC2`-*oPl!0uY;aJ#QLy z5kuagWp1TL(!}3p73;1RVp5@#MSVlHvt>aakZaf!P3zHcj_vZ`Y z927J(G^Wvf_?wPdP|Un~`ahBEOY23B_Cb2NYA)x6jC@qw%mL-*{|Aws{l)HB?Nr^jp_I^&%4w;qY(pe1I)d!&}SnR|Z z`E^!H%7QZHWV5kt1I!YtbkEGDW>Cq06aeZ%TsIydFRJ!Oh3xMp+|##AjF;`G>d&oK zcD5w|CXllk=XS+KHaSxrz<`{$jR!4ZE+{-oj*RrSCyzVZFE=_9UQ0;Bni zE(wvVC=|?>lNEiYu|W4NAUJGW!~Pt!3f3ogS_^nCvsI#kN%c3eZ~c>9fjvzeFIbOV zOM9Q2n;Rv6q5gSz|3y(A>=r^Kj+&fW1@-HvQ;TIzGd5^D|7Uab>0t3Zrr1+NQ$XwQ( zsrN`F?L83AwPZvHgwJ&TgPPvf$ZKy1VS0K~X8F5rCrgS77q_2PP(-6p7{GDY#yU6+ zkl$S8zJH2PJ?ES^bzLM2<$EV8A>rV%Yv3?|%Ayq>${xRxBsse&Yyk`m? zsIM!nbNU|M{3S#q!^}Ul<~w+`0k_;~dbYCbsH*?QHS^(|p7{+uy6rDC@i{R<>BDC5 zMjf}MThq7ycqpCNWm;WIIz4W5is>`92o6C<7&aR#rJD_o2B)iqFBG!!f3Um5R?S4d zvirHr@Fh-U45Nliv&V&puZ@Uw*@u@F)h{cNW&A zDGnlY%ErKIXzVcY)24sEv#Tp^Q90@^DPEW;6?7K~em+avE56@OueNJSt%1BeisExv zrZB|Sic3p}Qsje(2!Uv_o9I&D#`bu4rJmV=`D28D>;!M#L;yBJV^CTZ6&1Gk>Vsz< z1stM8k5^MvE~v?V4-O92Ne=x#k??Q-ClZb@_N}MDPjb(LUpGEAyWv23U8Zmma;Zo> z$QfA6AxZ*c#1G<1)!zQw*2T^)Il} zDJesx82_==MQ9F(=sAHnt5?TJ9dp@bzHwlpSB%0y?RyjY0hEq{hFlx}YP=vrqk!f! zkvlp%<|=={e5IhLTP#Jr$WG#G643jew3z)w19;9}O#kIOh~@jL*q~8qz4M>^cG~%y zA|;}e(^;%;E&DY2VQ~4~;Ex?fzn5%1U8Apgu@WRRMHz*oH&_KHO$QH*c4HXI0oer} zB2jOLN{Giyd#}DR4ic8-Qf_!8ML(3T?QhBDk%rtxsov3b_q%j_7vH{{HxUw4cdbjS zul)^)7tNWKjHb}e!~TunmY+8L_CEF-Y7r-|evmr3_)iv~xBhXk32y}4MfT+YYwp)` zOY{gyURhM|nm|;_9e}YyMI6_Hz9_cBk5|LH6ZaqZpV4;5bhfj<(0#ADbgt%Dzz?4< zjugHtzL7dA=X|^Rn(gJ#*(JdmuxJi#om2^-+FJ-O_wpzVfDE!l;t$()tL9 z`t>O)Wh00w6AUI6O=QI+oRIW^w}d<0$hN9QM%SQ4eXe@*moga8uYt{XVzA+)6TYO* z_bcIKybT>Fsls7=BZF9cd~3EB3y{C5wn}%P8f>PZ2c$O#_yrY~#5Axy{LbP9UQUt4i#9q?pTC$VU1rLp$}0m$kOi&t9ahB z`)1MXoCv9hvAV~ro#8jeY5{@HLJ87hXu!QxXwJq)KM{iVDyuIt4+)2qcc#B~C7(d~ zIuf(IGpI6qlq`P??U%K!Rfa#xwApb2wvD69S8d%hG7!p6k4ny-)v(rfB7{S0d}gHp ztQV>;KMn`^UI4T~opRDX+T)QE4643nIO&$7~ zO$&U*Gof`uD0Y5Qd(f8e`TB~$RED+s*{X~BoA-a!J^mG~r|tWy1SA02=l<#t%<-_o zn@4mL2zF7%Lh;2SFntoEYUGuDf152mcR=#14V;z<+FoCYxCl8(X_~I#GTv2VFm-Xd zyb)Lj0&kk|`R9Ufqi_O4?e@PZ?y}_*bVq5xu)@$!Bmr$H2Lh|2*rE|d@4?O0=Gubp z&$8{{WwH8fxzHyGJ3IAz=ufv|*3X^KuLXSrDuTG?^W_0xdEKpdz#{ahcPA<}SU)gNwE*Bovmo|0f zu5)iC;BLk1S#>d9B2v!hW1}7)Yo~c$=-A?fxGUdzp<1`DtGu(Mm-oSswj%RZF4Bgd z_XDtE)0`71zy=%m3e<#uA1>w1&ow@_P)6I{KtcmC(8rt2n%qB*Rxm7v3Gt_l9{vFA zB?cO;M+oHor2BVN8#^;KnmNl_VUpIvt!j_(b^A788w*B z5Q8$c+{M-TWS!AS1wNMI`aM>0OkRuWFgiwNzf$Xb$GiUh9Ut>OaI!x62-@vy%_7G)EN&JBRYKi^WoJm$~a*!>}E4 z2UP+_yH!jopMSh!1PaN?J!9pmU$d-k;T%A%!RlQ!|1EH_eJ?s_c=j6@l3xdiW$qHo zY&x@QrdGUhkpBBxM8&~8qmJrk5o(>oL*j>3Wxx9gEbjiXu=ZN7F?hu&{~-8S{;3wZ zWg_(95w=QaZ$5jx$~OWeko5ae$jJh(n7cEvglgyMPJ8$yFEhW)q%?a`56>ZvDto#u zR2@%RvrV>l*NdEakUL!U!PXKn&tA5Q*#XiP(@Aa6pV^5+HoNgyw5~^jx`v{cfdIEr z$T|oFcbiWSZ@>TnZuH}YMo+0%JZk)R2Gbu~PngIqWj6XqS6z%j?e{IGbfQ%Py1Z1z zhqQ`@w9LBzkW)-m1pv-f&fF3J(}J{t+EICpT8U*e0}EOMz6G-4evJ0Q-E5hW;UO{* zRU=*BJdFlv;W6^03V4MM$oHGJH~3_07}uSvw%#K(u-= zYqIg!K#zRXG0_qRAnk@;h4>p|aPuHQo+eXJ8nE*N1yj5*6ykOhS)|EX2!T=+V7!K~ zKrFNV=FxruR^*poPyg|Q|J4QQ%=-(+7yQ?U4J;>SCBFhQy}dV=#9z8IqEFL1@s$#F zgR~Qm&CZ5LK(D%O?(|DcINAqWr->;q$W?u8cc#_Pgv*sa>K5xmJKWHnSK3bmq{Pvd6E@OIwL!9{!XkGXX%?;vt`YF>b;bKq8StScYOH%u#dCx=27`kqqTuKQ0G z9)-F~29fx$2+wbtB_3sHEZ-LGXlw*#_Ew}}QAJ*he^x=o!1SLYpWL$#8(svqDDHq@ z$E#I=6wrKs3>RFCuN;!=$#yV>vlry^g-JcS+T;Y?8t;nPB^%47SuV>r;2osY%a=ay z=f@nuW0gfRy&-p|W%g!O;dSb!QYC9Wbe2twU1E{>CUJ17BGz;a(!a5RSloq7fAd3l z=H5kok8sz8suxwQ=ygS{ABCRP@?R*+%Qb`qiSM1a%Qxa$ZGc1bT`3%BL-4`kMvY{V zk8Yxpzctx&o!JC@f-ximIn7hU)N zA9P*zs@+d?o#@-YZyEbd;veX`b^YWny59Z*s8OhrV=PeGego`=l~P4)*CSurHrwH4 zj)NE3WOCSjpeS56NT767SJ#{^@|5H6IiD}zut7qdS=Z_&>o=G8y;P7Z%8t7VzMiRx zpg#A$EA-4Ff56AuD7dt3Kt%rS9A;?cI`~<^q^=0FP+A)L_PvDNjH#pJljZU1Zlkv) z**0NwE2x&6Am7cg1%X2kK0e-vQwXSy(*U=*vv#*6d5VqJInO7-6NMlrepo+mRrDR> zcjkg=aebaw9PN*E{TWG%3~w<*%;I@v6xDZwCdj8e`r`;Y-f+=OH2qD)CsKoE&Gi_W z4Bt%Cn1*o5FRP^RRp^`~Zv%Em`cChB(@ zW!aB>loaq~+CYz*o+~XWc+XwQ4t()2!A0)%<$KQLym(Kd&PmdJ1%u}X+3=FCHc|N^ zI%a#+rq*dK=Q%X6dR)c(9(|x)Q(R3oaUp~mzSFE#7j%HT3(wcA7;ZisA(1p4dVd!` z3Xs308!-wP++%7!;5^YOUI_mfzCm1ZtXIwROD_SuN)ocJUU5*}ON&lH?I?;&b|PzZ z!huo`z<~y>K^H1-upB1=4SuR5JKmXn@&al7ayJx+LCm-#WVJHKEQ=3#-^#AemVCV{ zg6$9)bd4I*#&*N@)~yfd1SF*Bh+HqAhk}EwrGAl>$eI$Km+CMIFA6q}v$sWi`8Eeu z7u(s>K1OK>eg$i}!Q(tHq~AGa-8s}P)_^DBa*M}GEEI<~#^QkljcZb?^H}`?FSWJM zVzIcu{V@J1N&swh6&9SGo3E*vZmB&}9s4Wp5t_uCi0bL5Z={KyEGm25-r%bBW90YU ztnf*HUh~cmj?O?Hw(h!t09at2N1uK+_bTt z_4vfeluQ8Mz578dx~RS3b)nffA11QeU{9V1129XEsrSpy*=kqxy#$1t^Mw-uK&mgw zAK2ZT6EgB`_8xSd=$gr*} zg=%-|2^U7V=V)HC8+6&!kqQo9u8AI6xH_;}d}P=&5^w|%)jb%Zk20$7zP^V$r@BL* z;3C7_FtfAkU5?x8fz9$lrfy;g39!&C@5IDlqY3EK`thDR<2^B5es%>DS}KJ?fX<6s zciZt(;gz`}fCJ}s4-T9gyIFc%b4PtAl)_zFtgbKX299x%^((9H-h-5WpI|SO@cW_QN3dglIm%iE#o{aC z$HKxuS}FC)+s&Gd+1tHvz|@1^A5e(MZfI2bF8m>4egk!jIi{}~P^bmiDge={IE_OO z%Apz1u7aN}H!jTJ8)f>z*`)q4u~k|oI-tXIe$Bz`_Lu%GxjtBQpa&N{N&ph@r84vA z2C_K=zo_wz^V19Pke&m;yhm4f=X^2{I+bQ47fNk(4Z^!&dU+EpItO@}u`_Y@9)Ute zYQw^N_GOk{4-6EMkkMm7wNX1kz21nlWSOoeS@|ps|4$>U%$i-kf`5aZ#|2=8>tWgv z3*lH$@)7sDpMOwQL!y6T#h+gCHp%`PUGMnxyk;@>LfVi76@%jGJ@R9GJl)i9%Evx( z?)2m9O9$)ce|b?xGig2KXupIAbNh{_^uzAA$MYiyrZ7h90^Lrp^exHNIb@6Xf3^4J z@ldwy-z}s_BvNE)K@o~jc4-kwVaQJQT`~3{Bw3=8eT|U8*bOtxSVGzNnX$|yS!c}1 zGM2Htm+t4epZmG<`~3cW-_Lvd>za>iJCEx;j`KW^^ZWfCHa_d&FCbUP`mY`P6AZC0 zXj-WL3R=nF4wvcH=0_g^z#q)*et|fwhvTPA^>LW7BHXk$ohH9P4gs`cJ$<1Dx=Rrm zQYEqM0fn&o4QCJgg|j#C^h8fi2^y-;WuL8m0a2MdOQrwMOZ@xD8&Uu21!R~RM78Hg z?dno=v?s%(J0T}?*2S34NM7@hxlu#tlk6ySXS*!=`fRN@dn)H2>R^9@P8-O+!z0K4m>{{?6K59#5+KkSZQ@#p^|8cWbL+b^J!p}O{HX7670GWOF2Uwo4h z`}U1nan%PUQPIxDvi`8TnAf5_cd#-}($arM?0*9lcL%F)HB9meC0c$fmsQ5yU75vS z?HQcU04G@hquo<~x?YdnK=to&?q5eizf|FKMX<;B_~(AQtP=pksVk=FKLohH+~V-A zvb#AVnCI6D@b9Z20{E?lVJ1Ln@Z5W!UYzN8q5?3R_=D9URsET(X9`Zs$iUG2Sm19w?e zp+Q@l&Ftq;3GFY4{C~mZmHnB3xjtqPXWQ8c85&Z@a=uXQW}-=yvt1Sv>ecQ)ycygh zPTETm{_=tIz_w#naeirca>_;#eAU1+!P)e^vi3WJ2QI;rQv%xKt66V+O#Zb0pCSAk zJyXZJUlt7?}=1Azv;}ab9?Ax}9ATb6f7f@FUX6-&aCcUi~5j%;{iT&sQG+ z@?&Fnv7DodPrCmy9{qbrYoNPxnFP=juDyVl26Y`SQwDDRp*B4H=p^$qrBc^DEO}vn zqhfUAet>6ohV}P<*B6KYEV4H!;ye*P$57$k=9LTlSyowDInqe)4nWX3Rd>xBq{K)k4X`U_%gdmG zL?ByXf4e3=Es1TeVu;Es=e6|#ke0$`C1pG5nr=KlR^&QYA&GGi6}Zt0$l>w~R{?3L zUH!o2iVG=Q+0OGGX2e6u@Zsh%--04ncxs{UuDq_g;E%`8o@Mz2qILCLS-9l@ zSpI#ZE7?6QCqJ@09>{{j2{3|71&|+eHhdJVnfAsqJUn8NH&7lB2iygk5#yMp^FG$^ zDtiK{u9&qTb*#+yAGK$H0jS+sdz$h2{nLdtInD86238X-(NBx#Opfv@J{tvU-a0pz zHIpexNv99uL7Z`~Uw4wTv^fDdjFMY%LTsACw{>4UYAdX0bI3X6x=IGEKQ5!e#Y7s=Hv{X1jJgUT^^r6TpXm$tiX)xTm*E4kZ2#yN>zxs z326v3I1)_nt~wvUW?!L)r-oF1MH9xI7rE`xgW_N?v-EUj5^UZSy>6yDa&!f}Y`o*h zJQRZun1QGlC*S}X5I$n-wAuI%Bn z(#Hy)E5_=>;tkc+BRYMY<8wYieq0npfHmtv^uAcyr?bQU~PB zaE!Nd4!N2dwnH=AiS|f88d$eL$vGavjOAvgrZk{av}i?>I}cdAAbk}69m?y00d}Ku z-%!z1rPZYFr~9)ZxwWdP(L zD=Sxbh0S&aak$fV^1l5vH92RnEdUHJtK=T^+`!^(rnU(Kq%Y-nn z6cr%b`}+Hwn-HL?XU%;*F}JtW#%laBq@<*9KxVrLif9otu6DBRHuK;VM{f^`J1u{@ z$$2JS!K>jI-wg|(?t)ltf6UOoHPfYvs1|AS!*$(&{*B4EteypGny{mtUB%~*7e=ZB zUIUP#K7=1){@Vvj&$(qEfJIe>$D5|ecvaQaSZ6bx*2=iy+NzZfBs}$2S1-jzIuYYv z>uGDB@hyfzkyMtQwQd)nL@s5!rIL0p#;&L~@?&=EgWFEAje3-N$-_QIB=f6m#qi7Z}fS@v* zOk1A@(Efljk=7;*>Grb>vVklvgu(DF(L5&*KTGY#}R zt0vcc2QIG4P~;6Bzo7)*fxrp*2qFr;Y;;aZ2{QyUwTL{~#nR!`^o3f2Ge@7^r2VWQ z7=l+;$Z}hAm4NO?!H%3^u_Ts~*%*9al{WjOG?wgj(^fz4^=XA+X;;JP0FiaqvgnHT zg2ey;nYhbX`7z1h`F-&q(zl=iKp)|X2}!2`MJEh=BnD7q!~7IZxhCDd{eAxQhZ4X^ z3l~iz=Vd)xsc9%8bUt8U-)TRZb(_HH2Cbi&V_UQdCFGRjT! zlLxDCULjYp&b9O-W3lN;9y!P*8wqjk!MGo{wd2~XB;wSq^OHXciu($KlG4??`y_v2 z$Eq4GA96Ywg1c&7|6KXhuwPam#fkVq6|%14Y~38|bCL z^l1c-oL?)5(3z@j;};DYSugN%9(xyFwT62n_R%q*$HgoSVVyxLDw~Rz9$C}Aoo7L) z9MN>~^W-b2>T8tu1LH0jN!V5t+>bJmp-(Z)^MD+t^$E25|5}>%39#xan|N?&vXCY# z#SuLkGGV^nJ+CKUQi|LocLMqRNjH@hSQ&Q731hTlSnSp8QPr1#JR`?Kk+5+@WLCd0 zsi2@3KAL()L{zkN%#Q^-+iy#12DN9MO__o$V=h8C`Dl7KCS4;G>taD8=dCH!p+24YaV&B)*RrK=v^tSFPaW7)Zlv{T8>F)=crHrR^cn%Ac?hJ62v2DJ^7g#3RNvi{s%i>qYs!(@QNakX z6A+*Y>g3u}OIZbv<&yQUxz6NiMiY=q8KiYu&nLg_MkPS77@9|tS~^FliyGpHKqhE< zMTXLbRis}cZlP|4eCl51IUo)@8_Xou`mP`}ldm=C6&u@da7^}=hpu$JHrL*z-pq$A|NBh31Kl@3?f4FAtJ4pJ@f+5hj*GT4~{WCD3H| zr93%O@eUQ@C04gePNB9Tq;lOaCz@454T5T6&e?ZfyAA629{(^0-3<1Z3;6ziYbsmI z#BQ;PfSc(;duv*PyL9yl9vmMT?~(D2{!j-)CA4qlFi+TOiV>;iM!AziGrOG6M$`xj zE9__@BbAZKCh}>scinGE@3rQo40bO+Q*R5H3Ch3OWCGOt>ER_~0d|=0VD}RYa;DvT)vXX?HEvt1-j(vLdt z)sPjCw;fBMp=c&~1SzwO&6X|L5%f&o^7s|;H6GuEo=5uo(dPIitu5o$m;f{$iLoP^ zner3~4_xKl-0pf$U{=7IT!K`V(+UmL~CxEW!ZZEiu z+E=L(MyqTEIglmAm4om)As1|~yVqrz*79Jr=+69$<<0IbkAKG6G#T=R`sE1|NjdZr z&O`4dXq}u1Bt7Tyf}w)MhoqaIMHyfS3aZNgT>(|juLd8TUS|m>CeP!y^o)LPVjnaq z7Ey){>N|Ira>KGHaXBYUX1rn05A9%$)~o8+gkzwo@ZA(w59a~j>Yh&Y0oJiKeM0r5 zaCS?S&!*sGzOkNy_2`=!r~C72zERq@!V2fwKt`obPp>^ZBHXg<#&hgY$ove+4>3C^ zvD_;W43HR1SX%g8@l%Z`jF}PTK&@M5&dM(mgEVRjar>Olqbk>KU~|N8bwsj17Xej< zEY}Baq?E%PdROJL&f18O@DgVZik74E6chLdDc8rvRV?SK+ zi#RXnORIc0Et>h5hWPO3@Ds*r+`85mHzP5|hD26wU>$a8b04s0%%@<%%R69st6d06uizx_?ON2sP-Irkb*I&LtwFEP&fXb?jHPdChSfp5PjMlhtONi~^t>k1Swf)u=o zoBiMk3&#SW8GZ4WO=pt9VNHrA6bA=~Y)~ik&0wV(ruxW<7Tl1toaj5gQm~``NKo;y zlw=DrOZc^D^G*pw||4rn;%b=lTE{MyzQ?Ggj691v(q#g&gf3no@{#mr|w zEEvJ;{!^2ax8X*hV#DGEU$dHLooPl;wSM2ldk^@lx97SW8!ceICK!H$TrMie6!xr@ z_Az{7jERe0!S`$)p+LrU>>1{1-BAreQa@!NBrN8(nf#?w#~SOw;>DigYY%3d$J(rW zpI^NZ-k<~~DX4l!A`uvEjR+=A@swaNy=RU(r{6d&6Tk-| zI9VlamGX98L21FrV(|e4 zBXaTSZO^3#tq>rntSoYNXj*pxZ~QMpl_TJ1YJ&% z1Xn}A8&&i2{+;nkGA%_~noS2WbOz%VDgjlF$7;=|E^<<(t|@pd)%j1PJDL_MG7QRO zB>xPk&1(~k5v`EXj~~gI^Al5!g1fwx7pAev)h03SrU1+@9{G%qntQ3ellxGMrDNk$ z#;%gPcaY!Xo|Nxt8I)4B3v7^*!#6KT$we^Jf}zJlZ=Jt;6h1xG% z^|!UP!=PF$yJQ5n4-#C@1k1W(OATw?(wB|^JHhH1SZBi;|9qwk-D${gE~6`Yro4=U z%M0*l>ras0`EznxLH0(T{-|B9`vf&eIIa<-m?mWr%}Gsig*hk>Di_0yCOUN2KiKqo zIS{ix;3^$4&KORb@weWg;i*kYK*Z+iB}pCz-!p zk!TaRB11u5xjn`>V|+yah{z8{nb-mUjTpY-Alc*CP zn>HV>0L)(X-{x3edTUdQ2yoi)Ko(#jmQ5nP(8)}Pjpf;Lvb=8peGuj10LckrYFOSD z>c*%v$gZn-IfT(64XJ|7RbBSIs$32jH@c?Zg`fBPFyO$Oj@*5nEg^OJP0=kq_D&TYJS;Nx1D zrM`uk{;Hvbe!_`y8W+81Gzd{3?>%ROy^x=7c!X{w|KE3bUb+bM=#m Zp=iZ z-LR`05zjF4t3N^wjnGzEof$XUYJ0G!;Y34Y?@uZ>hvhm}a`Gk}-n?eQkcWX$h~()U z`I_fON3x+|5n>8eunEjPqkwMuINz;=j6X>GZU;`V$e7BvsaIjejUjTD5;M!h(-0lp zyMDr-cHk@Br@lZygcQUDRa zDPxxiAmdq4WL)~$c{(}`P-bPjab&}SOM$&03H&ghtuUCH-^f6}t|AFZTk_@ain#@d zO%reT2xV-GZuW4G2qgTYh+AagDD^X;JI2+QwO<2<477?X*D z!?tFmmGjiI@^)Q(x(1G@w4xYjDu>e{4(xb9bz}RZp6uLt5C~)Jb%3kq?tZTYZJUYg z0GWwUY2SvWc{r!j?7L9d>{F)|coc_(mA2$|!1Zf7hE~@}evl?#KwmhEXsfrCpPygV zIAOIxVmff0C(qYDmrxwZ*;%gOw~FL^z!(hHWJ#VE1Qg*FR%o+zUifF?AD$F^I6^}Z zwq8KSxUIjlA3R6$a|GA$+|aSi;Dc2?&1Q7+FhCXb>BNmLPPYs<8e|*qc;D?B!Y+T! z(M!yjIP}vFs6)6lQ4((u~+ z$(&!^&rSmPr0lrp;Q%QWy&mY4;auJoQ-XQ2tu05)&qh>PSzq49F(#SW&aYp=EN=h} z;VzfWwNh!nq5C5%&G@Jzv>#d9OiF8Ru?4<8O|V1J`87JW#W1r8UOjNf3x=7)F%kf% z@Mjtd+UL`CmGXnmLtfZl8&qm~{Uea*o`V&KPG>Ns z3!VM~G9Dn!0Si^F#6Fj;RYZsdfEQ+TRBRWP7QpJ`a9FlOSz%^CZzHGir{eh@sY`Js z;-~Ikif!Ef5&da9O}2`g9;8R~^{v}@i5wzMMm8$0JS}*r#|Mu5P-2kbw#Gxgt2O9J zNL83_G>~F(ad7aATXc3V(pu?FumfD{6=WCKQibD7!^%6G+I!?{lH9Bo1SLbs=9Ra3b9G@w z^I~c`ONJ}GdHW^fJ9#WCy^M?#^I|q|a_%+w;Sq=t(k-~iW2>pQq}L**)uY=U^As)m_44wX%pOzjk^KzT~>;huWjghm;-X|7uOg!26YJ94rFeZT{ZVD zuS+wGhh`3ME4pv&s=3ENEgLm$n>3AAmhgvZh%(=a$`w!KRJ3D@9KZoQFW`D}k4BIw$aRUPl= z(bz|7O)Mb}!#U4E9Gcx-spH9yPI7S8grV;HVD*u}@-NOzhA;LGMWBaYs zleoC}hG}xbCNrxcEB(fxj9{c&X6}Aj_V@M!_*hOy=f@XX)g#YI`#B^zGWu6R8@d#Z z98EDCF0^_KD>A*(m0onp1>+)x8<&(4`=X;`@j4l4N4;ot#qmAUffYRvF+WC_4Wx2C zutm)XX%}3u$t1&h%+oWAm@A0p>d2lAD5xv1YP=>}S~Xr{d#8Fbu!2@b!}*D8RfbzK z#wx}iro9uKVEVOvbov}?v3(M+1K834kjn6>@sajjR>NG=<{=c^Fd@~SX~_M|M7zeA zdnayexZK|G|T3 zCfPetXUM@UQpiGZT()=;?4Ix0XC&-Bqpj~{5AIHYAykFa&n>Yf7J5edw%K=1bZ(=s9>DU>%5pvS>9kQNTAPA(N4WZ5&vPKPYA2mJ4?Q;lH099Ap zN|~$0tmtAo7Npc52id4A_#14L4el3TcP6?6$TyP$*UObWAO+2yKQl88#Ko4g?uR@G zEtp^SyVJU+EBizQd zm!}yI#-v@hM=BDChur%RGZTork81|%&a}N~Nbz;;7EsE=`n}};hykmsAd}r%k(j;} zWe5+^^zPO=^s)MwU!ig70JySunCgAuhxe+=oYAARMP2qQqK3MiO2T)-@5zQmsXZUb|5G8W)3!J14Qtj;o{;4KTH&vWfZK2Vq$dgD@6pFybVHDyp1I z7KEF2>%GTSgbO@PnKng^StS%uYIP$i%b zKTzwazJ39t6r<>SSl<6fwWDl8LITm{%HT&`o|abb#Pes8KZ(moDLksr;vQb8)t%&g z;mMf!ow?)q^1VFu*x})gnYJ)=9$4?Xp3iKAUx~hsagpB@)>l*9{<2K8#*re_K9KXL z6+I>6@!sc6zF!{$#Oj(UcPJ^v@Dce=$-Gkv`$;-rANaWSBUgosvkk;iIA@U?cA`gT zi)2!aI&D(KPfEG=G}zIl0CJLe#*gmH+UPnHIm7lr;FKJT)w5bK5m=dv=od9jw(E~w z%o=tb&YP1rX5r&nkr_363}}w2oS4A|J*?n0q?|AdoQPKCAutAoI3F&~n|iB;9l?yW zECz_MqM~Qa22=GrA8}myWZ>uK5?ahKF3e>TK9BI{0cRM?>WWC8eFGfu6T- z_c~^DWq;d@_%T^CXABXaIix)OVq4Lt@AJ&J>s-h6m%=f%rYzfGF}(0`YiqI80io)u zL&TxM%Imd?zDb!k!xyR;I$v{i*eL?aWo~Ehvr_3XJx3;5k%}@+nAwF&Nh%k+-&p&{ zr9l4l^Jyl5A(qB8>)tFM@~MdV?yx@ilf~D?!x&0winWBwXkdt-N7I7+ zBHR)T^KnQ3!G|NcOK z3H?l`YTFGh`Ve-#;X#5Rp(+))VG)-yh);!sWujdw?(ytTX*3 z#VZzJV|61IuV1HwE6U9z?(vHlZMm)KX}`0s@rg-U=!=qxrLq!(cirp1Q7azeJwgDn zMl}w?6+YPza?G)I+DN0^z$oQzES|jj$T06=|5)l7!Xi^gM1&N(w5E4IV^_!T;K874 zyA9wxw#lnF@DPKltn?k~RbdFQA4QLK$%?d>ry3K^9q(RTESoJTHo7YK-#C(Ah!4Q{ zfc4zIaq4c+@5I;K3i0X;wm~#}K}OZfd9O+t{lQ@PYXekOGrOBm{G&S9yFHj41_Rc$ z-n(Wy6sDp7Ag=yAn#os2zks~(R{*rvb|8l)W*|CKd*CaVE0xiqKyAGbm-iBu-xt&X zNWjZrSFeoh1)RTPMF%kIJ76}dzuRX&-67;Y3xYYJ$%*f`Zvbf4y#a*hxh0Uv%)ja@ z{>?n6NC1u{1j14d`TN(~{g|qN^1SO8l7sYrt32Q6_Rre4kNNPuTPnJL+|RrOkiKW8 zDs)hPV;Sr^!f62AdA7U&w-=uE|I&u@AEwQnf2(G1|0tl38{dQdj*4ybiZwlD_BR9m z>u1md`rs1EoeONIQ`F7xVq1Iv;*kI8Sjsksfxw@nc0mGgTS-qw$3IF{{O5#UN6Nwn zRIqR*w(!g6NgAPVD1URSKYqSBeL#$ae58XGQDXB6|6lHAO~`wz_Cu->rF(e&*dBdk z-+`pF3)e|Vot-5$(;qB{X%d!sB`5dl5r;pXTc|!wNke2zPEYP!vM>{V;m`0V;_FYJ z0I*6OtUy8UA~|O6#l=PG6IAP#2Nt5gO}UD6Pm-IAfYnh^dIOvduOtPE~9|;i>*#q5AJ% zx`%iGl?3um*Pm=ug!mKCRyI2C4A?EqBn5KTge1FPC(%Na1O{FC zEX)i&k4f(3_{#jJgLYi9`?t*S07mu!b&a7N|VN} zmXF@zyoXKr#NNM`yYs&}8FWXIo8ptcz3D7zy4Ac25qQph!sN1rS(f(wy~5k>iw8{l zq#KeDS{2Wlp*6X0Kd{aSn4zHr4Tr{rS*c*5&)s{4YgV9_?eAWSZ|$lnFA@I` zBnw~@%CZwL?P>Y3Bl1#L?p}FnYmu?N6_wOUa)1HJ#iS+oJ^Q1t$u}d(6u^>va?{lo z8G?(D9U&Vk=L<+3N;2^m0`G6JX5RsY<7@fTKIm66AwXNtNFtqVPRJTb#6c8rLjHRw zCIg=RksjJvIJ#6@^%2;S8Z`j}y{u0zM0`)v_nZiNP_S{W|A7cCSinR4#InwT@LvXGwm3?_f zXIGA)cPQH&!U3ySsj<#W9{|;bZ>y4$w0>-fR-m|O8^z_u=9#_Tb3dK-i8a;krGWG= z`hW~jS%(ucsqRciq9Tp$tPR(mUs3xc*4l=s&`ngcI(8%slAJ`LS$2}DlV*V|md1<3 z|DnI$`<9#3xg@U@D7bu2nB>Q{mS3jD5n%8Fa^$q+@jd(2SH@58v^XG8lEzxB2X^(s z0*xhxaclckiMWNW;H|#|^FP}K1Pvvsyw+)B?F`)}MNFWXs%0b*9kXBdorLX^J==m{ zQ-fxp7NWEP&5(nH)w_6SK)Y8aMFSWjf9=r!7Q%`T`!9X^LcZO-fQt5b7kGkz79Q~bp15wy%?a}UIhweZD?~cM#Ppch**I$wx z`R0Qk#1D6vGSkxO0<3MSnmgjDL+TQIdtZ`Ne^%13d8zg#eiUX3$h^=6gxXNyHdH-V z*yW`?X7|7rE$d+?>2f~rbT2dDd0)6wQf)v>nI!Wk6 z9C}HGsiGV{MI*@74jC4J+ES&?=@-l!O!< zp+ClKn0j7vugV%Y1?sE9)O)*~v|X}%$Hivn+!%NB=APm83v1Ahwarf3 zQf(NdR1tELO3yt(+m@B2NlK>lb8>%?*fZYGFa-4r`!315-Zc|Lb~hrGsSVm+qC5FrBhM+K?hKg$6iwl9W<#i!U&#NA_;s(I68WYHRxREFcbSbqmYM zxHXVL$VkMs1%NEZ_w0cl;w6NRZD+w3{tZwY-Q6qj-fSD9B>ekJd)q=M=sZ_s<5I2G zhDZL9%a_jsa2q&>$nZ_f+W^6K;NmJaeI;gr17r}NxZ^1I|Ln@|gf z)=_3oHk2e>Ovimq2%ywsj@o-35PX2grmCr9yR8GiDo-&DCJ^CY4*_jFvH4n}oY{to zNP={CEPE;L+05ma%AMIiFH|XVsZn(#M@YZ~MA2OFpcpCg$hPiyUcgrHf-5c?wOz&# zr6{sjNvs~if%%w-wqx=~R@oPLfI!CqIk+g9*@W7EsY`v&8QL4cpdA)Scnejvn(p>K P;P2k;2e)81&4d3Bd+KP1 literal 0 HcmV?d00001 diff --git a/public/images/example_usage_of_fetch_scores_files/example_usage_of_fetch_scores_23_0.png b/public/images/example_usage_of_fetch_scores_files/example_usage_of_fetch_scores_23_0.png new file mode 100644 index 0000000000000000000000000000000000000000..8ded42d988b8cbba64a4e015c71bd22f1229b879 GIT binary patch literal 89209 zcmce8by$?!`u5C_k_I7-AdMg`A)tT~($d``rIbU1C@I~ow9;Jzj38Z#k`hBp4uJ?V`^E~TW_kFJwtfKUg5RVcM0)Y_9$x5q1AQ%Yn zj|>+Z{ATb|NHh3=I;lOp4=L`aUWP#EA#&399>WdS(r^+?;5mxHYT7{h|JCaOh>DpFzXZ2-dvR8&AAclf} zzVz39YEMZaXeII}3Wn{5j=8OXxo86{!;+B{ZRu`(tO<54zS@~uu5|x@=~oiVnccT{ zv$p_(_&m3DvNX(Z0KK?QR(d5=7UzDk-tcq%f9Vc+s|13osR;61*n)EjdkKWYN=8-{ z=^40#WwoxjA(y)x#s1|Q2x;vt(oqJ6b!qdEn1%juD7d7ElY#F19CK$netReLAB^#b zWsr7QXP2V{fhn4#*pjhHPbFuWl=p$be7w?3XVdyUHK$r0mHWqjdq0pdS z(kRc5sjoWJe(&USCNf_&E8BjuzTB*Xs4IytkMZkxom1X?cbvk5aB4P}m2c0@d-c2` z2Xhos6trufnP_t_fS(7e?er)lyb){PYn0iwiaGf#drJjy^rez`E#{Xpe8^VoZ3#R3 ze|NGEuvM9PorsPKq0dklHW+8UA1fVx&_>%oJTjAXwAwD^=ft30yl%`8WBjW5o z>~nrvBZijzmH<2cxy(rCiN2>|h#Z({4OAHVps^73koHpTW*^M3ceki!ikFs@Q(L9n zYJf{w{4jgk&8W^%rs;5zib4!tDw%hFcC5V7bZpONh^XbapBOzU!CF_s*qm((U6_lI zh!?OK?);MVkjbq5%{ID~SYdZ%DCa>KC3LkH=88 ziS}8Zy(>WcTlo2Xzvs8vd~RsyeP|(<%>Vw|2MvYor2%eoZbK5W&&p{cL*`=88@kCf zsG`U3qYL$FlpwWDAhf$*UU}!6FuHF-6?VUHv(_hr2oP`hDi4 zu-{y7_OWqJkl5lDyuTw){Vh^dPTDZs;r3bTZ+~S_fQn_GZ~C0a6zWuTzr@0Sj4eF@G1Mcss^If|(H+aSJ!%#q2VTJZ=;!iCSkM}m zSW8c!3NPX#Y_ra3saMQi6Qh;^KZ5+)a{=?#DYo5*n8xzI&54 z;^EoRY6+DguJML_n$Tj^r(KVQb{D5d7skR<}Sy6dhNDjRWtJv;Dg z2p`jLlfaMHYb<_zephbZb(Kx0+#CTj_Oghey^Hxdn1I?BBdIc+Ml_kAY^b!FENPZm zF}d?0otHT($7&#*nK58ct#IJev`OEZ9|q3+Xqj0wmw|{*lV=@;%~-ibt{7=j*T!T6 z)%D6`2~?V}Q?6fn9EVo&wi-lC@~X|fqBpnXoyl+MI!_8Lc1E?Ddzf)pw<|z;ag6H|PHlAO4(E-i?@6>`A5M@#+3_ z&XX^h*scW{1+Fyc`+QIMtoo^A45SyYikNt_7Rgi$7q{~d>lP3wo*gdHsjHoy9dF{J zt~0Hj9`8pOu0AcADKcoNew2FW%ab*a(}kXd1X2#o&ZFJcg>;XNV1a=C^t&7&03+pM zm?_@Myy1WHSyH$1i3#eO30pnVKCqJI-lhu zXD##i8J_O;D2<3BCWZLkST3oK1IqFq3>>0Z?xus5Pq^|U_@wOSra8}MT5=mEr#WJM zGVVNYF|WMB@mWZ(+V;UTvBU|wzHsl=rE8CJ;2Tm75Ey;;j zxdj)yJEz8?bdf$sgAZ}8lo>TkMf^4gpsLj&#<(hNlv9$)RZ~B65)64!c#>GRjlJ?6 zEU(_iki_(a&7!A?#Sh*JV;unt44Aj8+z(Tm%~edngDlo9rSskP-GV-Ygeay6c9k@r zJw+1t(V?5rE%=sV5XTRX-#@CRw8(>yi%n#icscgO-y+QSIa1 zblPm(r=-8*bB2H>^dxXoL8=9N%YFC1Jfst#GP-;E^XuXgggTX*>sbpmCkpF;kq;ML zq*aohL`Uzuw>Fk5O>TB<35Vvf=3!ONSargQs01JNrwTJt3EJL92RFBdLVTGes~^8t zv(!gSAYGtvRoEMw7Hzm(6q`D;Is>&6A-6ByYW-F;2KP-g19ZveTYi-1>F&rj2%rwi z`*0}408+BMIwHg^4q2J@J}%NJz?Xo03c67k+9rT%!yD%t5HnjOskq0jZ`Kw}LOoch+QiFlTW=UZ0Sv@P_3T1-LMz zRz^&UIM!T`$2WoK-I?Lc3k-CGViWo}z-1tj%JbtUnW3?EGsZ%9Tuiw|Pck|06JMWC zm-x-IE{d87OswJ{S*C~%f11?OYHh!f)m_s@E<=mFx=YuV*nSIZ$vRk`Qd)GS^;gQ; zOXlPgLj_t?D$tX#>pTocD-c3o97$$lGQ!)nHX~dZHt^1xWGq_WTjubht5%RJ^e`Xd zTB*fLgerd9Uye5#lo$Kk9%7$haEFKLaM}4?=Y2E)fpt2BBcX3@@@9Z6Dd=Nokv0c%M_K3E>}&kt&zW?*6AM(>kyjOz9(<6VMIr1e5up*Z~N!>;fCcQnNpiCWPXt|+zVo^Y$#m-{i!hBauG_&H`X1bRjISLo| zl@LVSTnK7D`i6}eeH8MF;1+MGFRS?`dKUTe^MNmUk_+M_s7_eJwt;_62KM%nj(hL5 z((BX78c2RaY{;VOpp8HQCqG)!0G{KN_B%fMkHAjvFwotxmZ=`rUOcB;ss zwkpXy*Y$C^1TKTwV~yJq4?RIp4VV|HdPiVSUMU#fhUkBdydl-AK)jkG*ZVQ;ps_`O z{yWXi{`K2oMi?{nKhvu(_Z^&^x}%plUaW*Wm5%W*7dK8iLD<2B`naPzuKfW+d`p@V{6cbf|n%Jd0vlwWhF z(vs4|TiU`w_;Mlf%6n_MrUP6Wl*P7Q9TrIXjlg&$lQj%&!-9FuVuKhMQ+O@9pMZpP z96zPIBRx#Ideh9N35l;VkSbh3aqVsRDoj?7;>mQhC6cy00K#sLhBRtQ<fxsyFYY!;bc9|rc!YWsRTqMKv>NT8(i&DMU_Oi zJYGB6KNkKp3|S1)D_nowl&_2Iftcr%aom{^y58Z&392?Oc9qGwtw%w^XN13OXoEZW zvFv1sga{t$9eECNG)%b3@@^tVcjWV*c4xli5Wh#!4i!iY<2Sn@nyn8+ zAS@6A+vyOQLpDiKW;8=ZaI}>#w%`=>iJAHhq(Xsa(If2smqJ2*a@;;cK+48u_J zrZ+a~!5$5jRoh4l6w%~VDqmHUK=>TW{g!yO;T@gfZPaV2{J!ozJt}J~41}w9$>mM> zd;btjA3{+tGXri)@qt%s{DycaV*dMG2#rj-m8uH5i#J6=v0Q^>#Una)N;b96d=naY zMc)br{;FK1U&2@g+HxO^qOen@J`I_2G=2&Y@_m)a)b|lmQbolxtYYevQ>*(Z^3#!- zt?oifmyC~j7Ee4kTKxQEhk1@{M-;&`f^OFsBnW~^w{u#%;=!XxA68SNLllGF7D=Gm zLZOn$aa~pXt<3UpsPVp*Dn!^7c?Ao)@ic16!9Pdf!*o5z${I?$nebt9r3HC1k5hN`RjI zNTtInNy}R?dUvb_%FJipX?(`cj5f_PS}VuTzejeRP^ZweEhMSj*a+38^r_R{ga?A7M;rBs?P8LQDweRW>COO6C-^am+ z^Y|3jwI`dJ`*`W;FSMTVA|Q7V^!K`i1S$NZNGT)JKw5Q=Ui)d$6Wx zzRRYx*wFS_{m!{r_VN1LFWs(Lz2Ak%3LR9;u5o$djEz61Oj0rzn|lgp^Q#)+KVY39dBPgstcb& zF>^foah|X!{$mSX8Wm^F<3~Py`>9I|OV?NRUkg&?t!yM%BJ>{Vn6IPX602bG)9YdS z-tQ{HsvWip=FD$7QiHr~9=HlTITGJDV2y29d{&){wdO&sT+-yIH%J7|rKrk2tTC8?y3Miz~bu=%%*`QOy2a$g7#> zJ7VQZ@8r+x&D=rB@Pkg>v-oQnOPI-(aDKCb=ZO#(F0=Qc8woS{=} z4sqab87IWp5RpJzCII(qO1#!Yh_BKfJ^(RUt&rB7mK;Gd^n?#=(R1J*NHbI0Jl+bk zI@l1k?F8>2>z|{ux9>ia}CrEjV zUN2C&pB@88vaI}t?_Kj{NZRN-@<=~h7D%U1Yaq@KV?Xj3nFrN2BgMI56e)}*o=6IL z)2&EQ#csWT5J-|s;;aVqut;7me*q=|TuJ8jKsxW+N!;euPz;bN=NMuFZ7Kx$?k|!| z5A9Co9Dx#O*mL%p#ONKok(UO=WzcK#)?YYLZRZ^dgyxzxwqvGE7&dW2ICzNBL&|BC zjO%5K&L*4MvTFi@11$lntaRZ;AC=d7!}`+Dju0LgH!5Y9g8e5U37m&T9|wW?mLVmy zsxU~j(577h&t@VKDQb*_s8{(aGw4ibwbhmRksq107J#L=_^{2#WGAEu>UuLb1Fo3Zn?kg99PM2NsM;D79XxUeWLm7 z)b01#?@zr?*yEjS_i$VC$*&>9mDdzA#3wyfZxja*o|Rs?Aqe|qf4)9m#V6W)T>a4> zC*}E;^_{iah_tCPvnB<*#Ev=Z`7QTG-zhH!#~KBe+0wsww`ZZOXn?gOPws3b@vaTi z(xGR+&yVIbsb)RcUQBUFE+Ikf*pHUc8i`4^avdLh8~^-Hs*jxHXn)heHDDTm8HXon z_;$@f=2+-iDoBt19cW8r#`{Q;)^F(i^$m8`y-C36uD3INtY zDeK?5jPjZdX6dc@7*$n8+2j(=x!D!NvH+l@Xa*TPfSGl>;dg`>jY% zYrN9>+TG7!WlRs&>ak8s{assg9bkRUS?;{7#-^Gn{gdaGUUjTYC|TF`LeJ#jTRz_e zD$P13?v5OoAPMeB-#|MFWA5sB^O1Ztb|b^0dzI0T^eaW#<39!}mHA8;g{oZnW=`cJ zCKtVjN^86LZQp z2d~F3iU?6F@oEs(g=XinPRB)^650ew)xr1Pfr8~O7A|7Lnrf{RbIO?1X&(+NX*j|b z1$WhMo4A{fTrF<;7_NjO)Z}>)!Gf;GL5x=7G4+BJ7A9B*fIG*v(Xv&+q864QG#dlI zt!~_14_CMS$rqCol~1quzK97D`(Y1%?hKHGmm0oEszTEZ8fBD=@^_U7%;hefQMl759gN@ob zB8>Oi1q}|<;uL(AZ-m>AIKPN)A{YUl7=wjRCi^v4(cyseir{-nLEFT`Jubo8WPa;t z+wn>{;5H;7IetIK2vB!#Fj!*7jcA&+vo_n1oRDjWmHkczipRUV~bb%{k9 zE0csCy%LNGE1~7SeGOK^C4q~mKLNkm_D2@<5LY4f4*W}TtM($4TO4WaSZ<)7I=$L? z2h$=2O)g^S9(vo%*d`#c+s~zNzcHp9&i~IiS=o`!->b3>k zhXuV7BHJH;CtVA}G`tIyL=DYh`DrDPV;XvSUxvH5-A4^A;P@pV3pf~rsn{>i;9Z9A zVnY11B0viRL-6JB9%yk1TtfHMujWZ2FMtJpn2PT$yXe}p4TA2u)tC-ZomplIKWaYpi5xfOMk;o@5tZ^ zl?0(GtMR);J#Lk0uNwGm{>lgbG`6^i|K2pt-|Dt|ewfB)8S z;Hja1X9WJHr)r|SSRYYL?e?Nq@P5Tp{Y5-o`FHU|@i&}K1s{>48z_^%+q_5cUmkmK zYvosLt;hI(Csq7CclwNvuxnxXc4XxKYC&vVsYL)WPCet9kJPyEn)`l#={0|(sw+iE z0O~Vo73-HfF37vhM?GXv13pIk{nB4W_{GBqu(dV>{g#yU@V>oQf2fpt=f*EmPN}!w zK8$Kd4AU@5j}(qiiqKm5#(wK?+cNGA#h`q}BBRB}7MJjLlUkgwc!(+m33i7#Zf1(X z+}JP=B89-M9gCrUjID0Tep+N4eSEq!^tbehJ_oN03I?&UH zkvDALejJwq!x665L<#H{ILc&gXn7PJ4}FA}6gx(V@z&n6NUB)b{BcYwa`*Vh>2`Ze zgsk6M5|h`5d9|h<*0Iw4XNbAi$B;gxUWLkYwv0UA>_^d$1!>2*rO3D=PxDNhjT%p$ zU15vjs4-Xc2-HV-$_dhn&}V6K#(S|uJnTv4a>IMCRTwLl%+zpGIaPWuU5qP6vp6zG zv?f5$y?KcdeHE^OnYkyYkASO2-;~SrN}eT46yezbU@1%RHI{I7K4=}?A6ft@*k%zv zA|j!eF+x0Aeb`}wBV)Hn0p+r6zvVe2wr$-QGPsvgSMJ#1{r=q9QLRsiX(FRqh6^biy}S`qLx4eIKQX1ryl)eEH_wrOI~HNqaE&5p$Z+Esjgq;Mubs zX8QFZp96;Q5E?t=(d76fQGTII-7|c7nCKM7Q-eX<_L1%BxE^or>Sx3Hj%}-P81T-Y zL9tzFTI>>!WyMeIQ~iwiA)9{c9TqL!)0rK$&kmzg&o@n^ForYZa!_c^{lLtetxg9gcn2?y0`Dy)S{o^p3^v8~b+R zysS^&veV2U6Q4iVKqLM8=$mox6nx@i&eIbH_ZOllu|j)}`PzH-vL3!n&DjYoz?vE~ z=|*$iM2paAm{30l9OGb}lhs(gOF_15)O}h|nI!=xF8fiETGP=A$MW}@lEX2Y7ZW!C zdmMAmA3JGmeX3CpRA3AMGmW_^8!4IYwWmXI=h<8H?%1vq1fXA;6^;P0+6};S&IZ@@ zXb!F7#IZ2GmOo`Cha;EZvchb}l2=jB0};bH@h_i8!OYB};EbBaE#1zEI;XzfSwx1{UebJTlDeSX_)Sn&UeIdypMJ|XsaHAj2=qFqy>|L*F1>Rs7XJ7h~}v;^^zaAsO#G8C5Q3K_ZMt9 z!2&USq)3m2&imlq31ElXM;sTrDf$2@&qX2bSzEW!=&_%?TCN+%t})*)y2;N|YWH2x zdJ0i@viIG=ac@nhD@CZ}=Z`N^>E1`nKjwHM0L!1OeL*y5D`yyvSJ_yd^*_CXv&aKz z$~ofp3re1ZL$jCqWumVVV6!4UHtITlT<~IYnbN_q5W>~BdIGJh9#NhAw_B-V*P(P` z1$|WI?n_W>3Gb%mxvikWA4A#?xDM0A}XxkWIw~l6M+<@|0 z<^?)g#&3#$xYedh7sD^Q z6z^+6u{*A}y-OFmkXN*-NC(;MH+yJ4zuAl__TUaNBF=BWy3vRYV@k))FkwiP*wCkW z<*@qA$ze(DrWT!Mvum?_RPW{~9`{!K?h|Pg;dX-eqdsh2uf7akul1_qA)ykX*t5{Z zZtm|G4MsU~@%rtJTk(}guH}UiwFAAzj%n@8>L)wHieLCzcsel$CaGPN86*si|UaYVn*prjl1s zy7?+MFj4{Uo1l=u)dkifW@jEVEw3$=eDi@$;*+llK;@ZCT3&58pPwqHyDd`4rHj=$ z|M+}wFjtYIHGq(hzTTpT3}fhd)rGnNV(R;L#Lz=AQs8VRkS<#>CBH`WU<}YkcI}U1 zn8PZc4s|0bA$UousW=eq%h;t*w4u+b3&tT3HN*jqTK4p4cL7Xj*e}1_W{K!9^F;s> zdGQEpJX!C;ce}x|k20nXJGR>H`|ycSdt23g4CE8rx%RlNY9uNBrP?;?7$yZ~d@|14 zpM%JW4@3)x>^{Hs`w6%fi0LC#8-4%|EnITSb4PJ*^>Ak?j0;U*Hp6spu{S9!+@dF5 zV8nB6lxGKqJZiY02uHov$~taZ4`%aP_FkV`2T~QqleZ@6K^esc4U})&LrD%W*DnMo zSy2AoXr|C$oYWn_0!Q19l~Wj8c>w}}mz(u6ADYk*iUy%{{c-9wxPNrdkbhMiKZ{bL zWHo{Pjj(|J+ZNuMt6DWLvlXKrtq`X#YDFx@(Ip^s_+G;0$!2RASE^%b!};&o6h4!=ll@IBe{104^Ts>mMY;V9M*#S1^4=LzTBQDDUPe! zEAT(oPHNMrZE@2fmanH_!ex&Tu$iGbMEak zb9r_8%I_Wpb;zxJKOdny6~%tHDZaVdD72t@NM2zJr(AAxCmm)TD^KLxXg+&B`7eAIM^Jv=ACAD zLw+7FbZB$)dDM$4PT#zAt*bfVEat4aH@S%HNW@1edt#E+8FxYhZKgBR~YF_!O{o&^cbNlH^SHXS(RmSVy(+~G7*rr_`e>)99 zQaOqptR}L|O>WD@X)S~~1oS-5IMygACk3tcU((IqrAue{o={>te9q8nBd{}V!6Eyx zP?+E#^IP50$)?3Z)8tk-ML0$!%%O?buJ!q0`OMOWiEu=9%mi5mQ@!V5c`UcllqCBZ zIcjfEf&0>MNG3l81rh)&6L0U9KVuEXLLUjnmSy&mCrLxN%X1;B1@AmbDU{9OUR34b zzV8eh-P@M=v*P3uEf+yqYCpC{2$MuI6MO|0Oc*bw+1t7CU6g-->nX zfeVDvmwfy_N5PFOe7kpd<%{2SWy+jQd(Y1=AiCGWTn<1Wttlx#@T zeaNlhLtTr3ri5@?w&B?Jp~%_p{E=v*W<$wjlP1>mSE0&EJB+|4imn7%;$a!-GH@o7${*)R)|h zf$C&7lzZwePx;XqZ{OLle%6WG3g=xLW~tL%fJ1)JpE!Ma%ep_|R#xw_iWZkaxciNO zfNdRq+r(F4#jZ5L^%)RX37>)x^Jb1T#P|zD>Yd{fQF0Tr$ArifPF2&7_Su>Wskh(# zEZGhying>V3?D$y<0xmunv|`zr1GmWP-yMYEQ>hQ7moYvR4`*2Qhi*zuVsg%vXygc zDy%gc3O@B7nh6C9ulYI3sRMsjw^^!9Eh)nfq>gefyHv$zToj zB8H|CP#9Q-1tgSAZIEnZs`5V8Dx&Ia3L7Qpli^$qKz|R1F@y$(l@tn^e!{KTAiW)2 z_3?~yxRH!i1!*q-5!@4UrykZ~ZfX`VFOYZV!Pubzh|SR7)r z!-9~O6c&`EM1^kK70lEdx-G>0aALRyf?adRkzNHQqa$2?oR5dr8hpd)nl9#++4BJ- zn9vfAp}M?Cn^lxe@znS$yXQ;X42Js{&0L$H20a|B#9QbR=F4qXlJ-jGwj7}3fH!ExIHU+8PHRl3#S=cROknjC58zaqC~QRmm~}tjCMWs zF8XI5KGqln-Og4W$GPlcPJN!`Ud+{~H3}mH4~yhtR~`2hS_n|SZql*%k-PCm7;{8? zBTKQ@2i#S6;tX*nf3k;%K73RF1@+*Y8yK!D+u<&+W3}i{u z|IVwXQVfL=ZT-ES0Sq2VA}%XG6bn?!DV@H4NTe|Q>2bk{XtTbSIpiL;%6v?wqv`9Y zPncvH991*4ZV2_Mx zs#6mtST;po8fcJr!AcJ&&Nf3|jn+{zbwYSz)y(|4V#Tr!sf3D^3EHp`qwgqCL4BV} z`2_o4_p%9Qw1kEvp1$Q?4Cl4zB`v+ASPIsQBr;p=lJceo9e=(9rm${{Of!%-ciEHx{X zQ$S@TyJxGaL8Q)H89C);)g3Zj)7_=MG>`f?+PrDC%8YWf3PXktc>XNV0=B=~AtpOp zAsvUe6vey#uu~#$AW4~wM$B8+U2(s;!l5_X(%dyr-~;<%g;lf&MjmKTTqM=D6bkvI zo2-dyvkErsG}6ZAO0uEd_#mM>8!&Lyg>yf%aI{gwd!n+vQ>VgM4!|pU)WS~V5Xbi( zbg>@}@fAkg_{{tKCZpM0bnhMhH1c@Sy^O!a)Isw?ZjwPc@oEc^Q|^b-`QO&~IkpLw zPR$?m?u~oSIW@D#KJ0crU|8|isCh{(_MCa|I4(l~v8;A8#$!X4F=;R-nn%$ny1mt^ ztJ=R~zVm&>VnlrIt|&q^gNdEzXie7(DorZkY45@} zVo9PA&MBfjo<<{2m$(cgLld}Dlu5nLwy7+e{Yv7`+4Ig$wdCh}Z@GlVMRPe>f_k=i zUGZ7Pi7G(FyhzC81UV1xT!7`#-%Sa*%i&;2($po*&=9!B`mYeWow-tzdX+~g@0Rz4kYiqW4Ew2T7 zAur7H%A|O^gNg!ppf#iKDW3b5m2QyJ(>w_v2TK;Hd`i@EM^A|7;dT-^3=nz(d9a_e zuVK!gfWXPKtbxCL@nhu${72q>i}9hfmtl8JU+Qi{zBS!7hHkgP+I53%27Sc zjJ}~Lzq39;bZwF9KqlqqJ(n?$pV|C$%RW0%iAbCBn|HH@w>oUO_bFJK?Z&d&iHnf< ze(3edJi1N?LB}!YC(Q&#XHMUQTuZ743Wnk`YV0HB3bMp$hHB@(s-ZS)qs86ugkNlB zc8w|-?dSO!REnx+M_cA};|o^HC*LW9PA)XmbjJ!b1C0=o^t_!%vl=!+b-&VCH9-!cnq*(SEC>NPGDPsAWsK&1HiOR1w*i$LY z-HKvcMX585!R2+XPs5n{iVfCo-7d96HDb*>d4>Qs$QEGi5?A0f#Oy?}K#%+ba7R)j z{mbc?hIyn_LbQG(>E25F%xICK{KhR@#NJP*dLh3NYnk=1hkzX#52fD=*Mv-O$&3{= z2W&r$rJUv>v~l0+Flybm^*Q0$b5Ne*qO5hH!8ELiCG^&ZIiQp4#{7}1x%D3-6j6kR zd_o?V;ggSr4$3YeKH4l=f{{xR0uX&zFS?$>FiJqsn4C)b&}MWEmr8Y#i?BgtE}}Ug zEv@W9;w^rFS-)Fee83GWq52RY&g>`Tygu>^tt0EI-od>>h2|keLm$;BBr4w zTq=Tg5Af{B=ist%1_Lpsp zNS`mXln~WF_ZAWg)DqpZD^sY@brI%aHLqSS|xyfMzI~&5zQ>bOaryH~|-r_&5PTs4f5`WSyUZjdDZw zBF?g4cNB$}{$REolh@JDVk~^W5dmxA+oYv=kY91U2jcjB?rGV94#P2}h%oGhwX2%q zvDp>)y3LPyTueijp-KrdKcPD)ta&mvHEC=@O7l<6jte2?J@JYc@G=kzgpXW?I0h2Y z%p?6UqJQaY?>?V>)tkt}ICZ8(BZ+d6mkXD|qSgdnUiwxrfDt`@dEj+1rXjg>70*q- zkpMWCGZVU={zKS}O9;VFPVa28F*a9{=(@o6p<;EiF^!YpvB>v|Q4FsiCGpC9&@7@n zoddWlzOM_wzqUjkzmYk9`%Cq%%2^BfQ6aM|?rj7kym z80AFM`fQhBDAX+*C{sq#3V^K#LD@~!-we=lZH3 zE^CRsH+N@Rp!pi}qucap99mpsVCz_=-FHm@oihQ1CkAW*sn5i?$Th;Oq@^X`shR?m z!hV^{s{IC9Br8ij>oPn|Z7}IME~5X(k8i9X>SLWPQ)O|c1o+0WQ)jC15e|*J@qVLV zkJl&bDIh&(da*IV>vQJGrdM6a_n_nYYvgK3A$2U?CaIEJ3l3Xm8i>$@P+H5iY^0!eUYwsV52?fLt6A=h1Ed!-TethgL>yE zAn0zhF$^G}c%;KeKNj`?W=pkRhSOXfd}o4- zAiA{t`8K9u;49}R*Dtgj_+6^eZye1%LvRUGG%W_w4W_*IC+`RqQ3^bb1%Q$)co*`` z@res?o~Nw124MC?!d|D~4qE05ZyzI@K;)8k7;IhCc;I=pLmehcHK%phz4yT`x z^o;%rFpS*jsw!UFI$2UkzSI>(%`WeSUdi>)LVAg-?~sDvif;^)+$Dc~W% zBx4LF8Gloe+a!J?&?_|5FOjQn6Nw09P%e_vIDuf$S#vR@tg)tW*r#e0$}ti=S}*H0 z5f8XcBsQe+Ttc{hGc#gG0X>W%c^jeQ6F_mjtn<9{D@>?Cm}DDs(J7%^bWrqxENE=D z#Gb%wKm@@Rcs(!=Xa%o>+4E!m!bTaU;fq~DS7(?*X-J)inBRzjmp@I~F9i}UP#|ed z8$VhhANw9 z$AxfXCR8vz7>J?aKw;C)p*l)Lj}A~=@l^tJhHP#r4fsg;22Be>Qbj&85d|ND?=eK8 zz@#fKMqj`19i7TT&({LK%!e=`Ny*EEePoqH5k9!}A_AnZ0*BHpfRk(VPR?CIY^+eN z{rD$!R{{VZdeLw&-|Jt@_nEc#h(NWYb~}L>z>J*FB3r@LB)to*z_9q#^JvT|dMu~I zXN^dzll|vXQBQknXrz{1d-hEN_Ty_J$)7c_UrfB57lNL|Un-veop}Fm!XINn(C&97 z&(K03s0*7N;k*c+0fxUJ>-qb7B6(0j^8FW88iuI#t7Pxa(#LN6_w__mS^{DeQ$>7# z$e;dM-#M`eJatk4>>Aiu>G|?rvJ=nT<}=59)7pr z^+Oaj*n#SYB0*u8KXb2hIcL%Yo56S+Uhb5I!B z|EOt0oyz}F(_Nx%XmS2S3-D(N6dJ1bo389P_d)W5&}C4(_Yt`crJRPieSgTMO<_8&g)e$K^611;G<3f%ts zLHqh`CR;+d5Vmwj* zO&9x{y?=vk+L*9gr-NMlC#@ZEY-zkU)^j2ULz7|DVvMeY8q^_wR|CI6^%{LgLbQAIrVE*fW(NgBZ4jgD00RqIV`PUC0ULk4^Tx0N2+cGo;+QVf;qMmPTC@GGPny| zX@mA#ILNy={HZkKg*j?EQ>1cJ=B_b4qNmfm#iYD2aBGY&JMQZecV`LJ3%P;!q4S@+ z_yEP(k72)n(|I3jGft#RUZDx0!(S;Ld{6i9X!7SBFtdR2Q4?P$-@4 zrh`Vy=0obqK+4m;<^TZ7lI=3^cV7zv%c4o#T?wpnjR zRy4(2<)KJmsas6f;H0lNRidvYjK21y(Wr5++icO$c_i(<#ZLU`VAj5~PK|fOG`>PC zs~KLAX_}H)3SN9V-#pxD+wMly6m+IGSIhcCzZM@x z@t0M4*Hy-H!<(~}FtEv#nVf zu$m3Nr8*2GOjvj%k?Y@U6pHohY{M*En9=QAS=Z8qO$UeWRYEs+Uhj0~?Xt^%cUbK1 zra8_z`}#V^^qrVm{VA@n`;mTOLi%n$KX1{{YWZ>JCE@3Lp8V)srF7{4LHB#@=k>aR zYr>q?>dZ0yCGl~uE{Uma&G9J7TYGR85l8yzkIpgebY?}&$L>WMOLl>g*bO~az^6XDe!Fee@4|pFu9s}1@6}TbS8b~#vA>n3C6)j1()SBVq4+AC= zL@S(Ec{GUVgxTWQNuq_GirvsKTDcV%k&0&$zv27^7coHI$9PKlIJ!D(sq@47agKK# zgIbv^E!(6!eBwNPI!-gUx`?eIB9;F<{TSvjATl7|g%HkO=%lmQlwes14s?{S(Op<5 z^80E&^`U4Zh^i$YWMl_i6Q@-du(Aws-k8v-wx4`jo)aN{l;4{wtge>(h|S1rH|{6c z@_Dj$vEN>2=t8O&3YNJw{MLigKw-vmagd1^*a*)13?p$ke%(*Z6ASyqm+HUzHbtaw%M0%v=F%4)U1f0qUJda5#g)#Rl@4Y3~@Yj+dW8 zxaB;Ipxp+ojXdbH-ly)? zLm%QUc3#cyx?}CMQ9Ca6-vX;$!ShJ~ojfskcB}L0+;x6^zV@Tz&E~KdKU2bZ9=+tan~!02^ThMvOi@X8VfcBV;{z^J5R*bU>XX zcWfTcI0%D6L5I$jG@R_ygTuwEVzg1Djg&o|SU%m6V?C#any`q6xs`=Ct|b)4neJP~ z@pr{Mz$j@ZB3|m{oc4OG7g9yZa2%0F^q74lq9M+2M2lJs&eOW8RNMPQO;6K7f}ZAK zU)b5HwqR-SoAjMP&$IP%Dy65s`(ak|K7>bYA~($8U$Y;v6CNwNSPc?|eYo)HK`eyX zLm`2rk&VVoc26tjnAdT3EchdARMp z*_nR`-gMI^^mKZsTEJqq#3uU(#@J28kn9oYCc=Jq;X5gn1+p;b%W3oGgc6^i0X zdj(!MXejU9LJ#AC3Fi?SDGEm$gA)oOz`K7&;~(UK<5;|DwmP`M^TYu>b1#!@V2wu9 zHTDYQgX>D}Kx#I>Ga!)wMsWH@f&(>krmMC1GnB9SK>DQQI6gOm{sKEO@;TLbI`n}F zd{#kA)9-q8I}O}rVNp(x1>3x?LojQ}*dKTL5<*tMkxkn`hM9Q&pq+$J<)Dit<2rhI zseoIx4s>xA;DiorbFD&cleYpu zTZNqsX}~4I{G7;R*6SwZFlAdzxIUz16bBS@T~--hmauDYPX;8;I~BMa&5=~}5p!R& z<;)fX+`!JXTGuy$wtR1Ep3k*!e^XcPx;W#&%^x}iADi%zZKdtlAoUJ7+eYC+W|{@$)4!C4 z6cJ_6g9JdB7gx&UxbgE4fJbA67Qtvp4-}$I7u1kg9_8yYQBl(5_G&M}I z(+PW#WVbr>Yf>}ymPT$WuFPZWnpGQ-J4bnEc(Hu7Dh@hRjj$J(|MJkWt0GREES8Vk zXu@F1mj7{lN$sA);1BL;fnYy(LWvi`D;RW!;M9eEvmG>X_7~JL?>={i&%kuylMO8g zBJ}yoBDbLqCgtikgU?X>%QoSSwD71IFIErcujikG`P3McT@TB31m5o~ljxMmC?^SD zpxJ46o@dTvzmp1-FEec;z)?&W8+#@VvaG{_3K^hAvqM}d4cB6 zi<3VtHz#L4Rn-5p5^po2Dg1w>ct+FD>|{227(lrfwQcaAdy8*r4r?kq_-c3Ma7j^uA&3s3N%Hg3N*)7Ca&eOmz zLi*Mpk1J&RdzUS~ZnQ>=xba%6yiX+Qi&5;ZqBfzwzJ7T1@c+>E)^SmGYu~q&2nYyB zmq?cg(ybr@Qqm0~DcvKD2ue#ygQWBzh|~asNSBCo4GmI5H@s`y@$P+Z_r0&@+1K-z zAB35+*16WPj^q3L9Sdi{m*)L3B(aPdUdPCU?|{R6_~K)Wb?wU&D`sWXfXl;!+?!00 zBkS2@>qoKOy!bJ(+%0}0Y-RlDX{&O_PSXmsbZ>Qhqu@;&h zC-zDd?RSjvxfhm6F#bve-y%4o z`IGG>3^-W!bv5X01>&z<@p$`i-@aq|i#creP4O|tGys*8Tp7CGL67%vf#g!GW{hyTnY8O!^c3=Cc9bvPcWo+*4 z^fMvkOot8Lr8ETd#}j)i~6PXcltn{hIe|_T$j2CPO;AfKf7Q+?z-yL^&{2una<4r#sZ~FM-2$IHS)HLXu zg(2QjN&thIU|GApc^!-nTOG`cSJ^O$Va@EYddG$471LR&Ut4gKopS$ey1-ic_p13~ z^%^yYTDR2-yU9g;YmaZyqKO3h`PggyYJI z@7`{<(0VXurArX1Zmt>GW@j2GG~=W3RvwdvoJ;o`6J`vPtV}Rl5&M(#H;aDS-aDPF zz5YSPlh#C7up2joRN`^_)5S*257eTg+-upQK?z6~8&|%HDuB#=Q+uou8mRj?j5cZh zIj}FF)G~LBahJ`fxQlO%jmYY`V*B_>87&v`_OsAx0l=5|?Zw|n14wTLnw@zos_pd>n@fJC`;({o$Q1EQ$y!HNP+PCZVAwo-a7V$50xMu#7T%o5%qQ3RR{8tX^#z&noU=iL)yYT z?HPqxBC&wV0<7tA35=wMbD5t@CnH<;K2(`RZ&4m>%{anICpCc(WQ9IU(S0EMVTI3e zu7cS>7_m=EL}?N) z_{^6DelwK>%i#MNh`drG3rduWeF8@~g4@P>YZPOj-5UnRUUN5Y7I;3Axk`+t3DnZS z?o|WM88B_4P)TadCUdn$51$ziQvZ^Rmx`}uv>fMtq;0CGdyyv8c*@)@rb;$QJLwS{ z-1boP%A0^GU|oZ@2&oN>5Tb&G-048HW5KQ%#NTGDw-taDewp9~b}m;Pu6#`3&!HD= z{4&9Lg(s?Yd}DOH^zCfx^#CGn!f3o zf{e41a#Omf_hF{;aJ5i!?^aMP-z%t@{!U&PhqKfA54qS^jowa2Kic`|Jf$v z@m}SYc^CgBHIE3%c5`GlK7`lXPQU7TJKE|>rOl9|FLn1y=0zP~9dkoT6r++ZGjzNk zs53vlP21j=NQ)h<@cnD3dCRw@t9GSacl!o&JYICZV@QWxgo@oDNh5jk=#ePWf%3u+ zPC2a>Ae7HqkllK<-t?N?q#^>J`FYTKkPuPFQg%EgUg`D>5NgzoWsxryb%@^P4BxLC z{f3)*i(w7N>4Bmo@IW0%)qdKNpOmWI+JnrVAyE~7+J-JKiG*V;MPBWSi3!GHYaaq` zY97RLHUb`x+oUM2sF=TvdHBhLNp6W~B(%cNjxU%t$JzIaMG3FmhQvt@7lqy<$xY8@m=!E+M`E5$Lx28LZq>Zi!}$R)*F?hJ4_-4w))56001(LTO~D zkJV8{HSI7()#TbU6Rw^$8wd}Wt>yyv_;lH1*`VZL!PwX}PGG4sV} zNtJ}xdW6qpULB33kGdrFUJ%Y2`f+9I)|SIGtp99l!Z9JSb-BwkgeY2*cpspaa=q`gCJ5!vU4rw}2Vm;?_(0sa zFnBc~`$8hKqGQXx%|v1M>#)E=lxAn%xzMgTy<*C)dE#bOmqOw;-a=~TzGkj9*7Umj zm$+H{r4t!;n*;K@1!T(cY%vk^QW?y>vq!JJK^h_7oIF*BAt)43i)5)1S!l6pAz>#j z@zgn*6yM&EtyqQn+=H!PkG4`hF_#BP1hb0#0MnA-DnWSI#`rlJ4_{4y0i1T}TE`a$ zo5oDUeX`;4A2_COrc$?Ov~liCm){D1vGR?f@`B>ZHHq@j;b^G~YXnidG~P@<@odva zZV@=)NI-<}$!m0&ieY<-fbBvHp%j1K&?xBy@KWNdh2*?4n!8ea#2mEsjcds&6u|B+ zc;;2xp&aJMPp%rlAkG-)WXQQBU=v6gS^k1@`0xQCWPJkZ*&an(KTGm3u&quI(F(Io zWM_-)B2Tz(qn_fp?2&YL2F^2{OIXxBox_@U+);r2E{U53Id=-{_G;WX98Elph?}{& z@e{%cXx!>Znt`LM=~jIwM&s@&H>`z=L{%7(58mr9;wrR+wKB`p#aB3wFs$->Wdxdh z!r6GAhkP`(lM*F3+x7SMtRXX6n4lfUU(2sgXt~o~gru0~W|gr2_??$`X$*BgWNB zHmfr9k0CSoJ@*-rDKpU(Sc|30VG1Fi*ezN%TfRH5i(@od2k4Zv*l)KU`dRE@!zi$A zJu*8oAAiqNV)2g7h;_!(=_Ggc8!-z`esmX3-WO_%X>2G(EGW;CMNEdj=F&`R%IXhh zvme)S7`b9(WAQs#Z3j8lEnekPQBh!q$~)+j_Pv>}EeOECMUYd?kjOA!;p@%fkAzcq zxla=KI#?hYX!oLD;Ohq-di)T5Yx^A+7T9y{AszzCer3ERTt#>-8d= zZAx7*`WQl6`-y|M4g;*R(La+)v(Qr;W&QB#&yaXI1(UJ)<+bvG5L9&s1b#fhfn{+l zt4N_k#p*&tIkt5E@h8;YG`R1Gi3mmj-IG=AZ~(7Q5(|8Dj+tve(f7x9R9EBkDgHch zJU+LJXAy7Ygbd?b1u{Zo3@bo0~&%8@#8;K==>Kqhu@zf2t9>b;%Co+bILzC zzx@6t{K0~|exQ&6D7bqk%?^>iMOlit5!Swh{*47dJ-yriwu<;a95epySznz6q}8bm zlVCJ39Fv<1-c2bC@IZYv%^V6z_?LqHAFPxA>6OHZa!=h?Ypr)e$PGp$8~OVGMQQ#IUfUlWApmu#M?Lz#y0`q@QtH2&SipT%022$w z-$hVGm3_wz^%A~6XGJ~g+C1|xwpKn;kR?2xkYF{wT;w%TXUUs$e zhbtK6A98SS1+|_g;zXe$T?I=v+cIGO9TY)3*e4;!7CVi){6b%RVdBGKSFL1^E0Kj}Yi#5DfbMHK~Fx;F9va%;^;(^(dL>H&bF zfyyAt6Zm}m=Ig7NGw0KBfHvW|tuz2Fa%>=irQ-qs<>d?*O$H8&RsdrZE&h-Ws+oWJ z=8+f58xit|s()C!(V?{aX@E0I2v_<%?O(qc9m;)7v!#S^H&i#k zAcoj?E<-@^e;(Ytx4@mDid1@C3GkYg0E9{(8tk*iG#2|QG6SvwmhU0Q^xLZ?hNMSx zM4_}J9pF=c>}D2_K~jTl@VBfmjSbMgqFQnY7Xv0*Phtavu)n(?cVi7PMq*^>Y51=&89Y!?F>jKm+q0bt^3029wCD7RzX5CfKQh!TLn zTJ3+jNA*v^(BGchKi^&Ogmc0efv4h)3ScA$gd;E@9Qn(z_{Zn=Pj~k@)^r-Mb=foz z8PPr~zX#Yo0$?=;v?A0ft;n0@2Ri6byzFs`Sh%f>IC&j0;ERXa-U9jRT8T3Zrux_P!26cF8zPOyh+{<7hAA4bOE zR1X-|p?RkNnj`HU5(g9|?fKs*%KzR(4m(f?f}jO{DnNJkh=5L<4H!h0U#AgP3nSzH zIWh{$j~$@0XAb-|mX?EYNn=5a3KLJCbWwM6VAnFT&tuXE>&cLqs4@kDm66;g2z&wvt4bOhz+__oS|-Z% zzr5gkv15+vK4RXJw0%|P`EUt)w8TMDJg5NzuLc%SDvAZA({9ji0%c#h1i7*WK5M?v z5i@We$D+&uepl`2#Kj26=eTzm8ff0&?bujdHg`ma#yuaW4@WWjtdGDujZ$O)WtD)N z3-B03{pv9{^7FMps_90+k>9G8kGaif{p}Xx1?a=U1lmdfbq9$JxDl`r!$zO60Im~^ zG;YLyFT%**R9*md!3cZ!`p?Uco@5AZ%_(Ysn;N&*0k>jre`mh-=2iTyf`D8_yraN? z_unILO{t^bHd0hzXJAMVb6VYuy|^4{oR&;})Za}!-EJ}md z3gfl`5PAIi6|j}!5z(Bre~TpZ+FKz~Tm?Nzvb+yBXMacm^glTSW;4hFOnkUjc0tn= zGhpm83Tn&-?LgoW3Jgk<*n9a}^~Qny^L2S(l}QP7-a-IOc!`NaYzjz=H$;pf6G<_v z(ul~2=i(u_!tcQ>h880s4h}ApMS~Is0B3Gh8N|LC+v_@@vLhaE8N30JxY?EE&`1Eo z=GKJd;KG2bO*@d&d~}!+1)^Nm2d_aZmoP593Ix!D-v}%}u}_M|_nDx#V_AT@lHq`$P)2MDT8oF zQ4jIz6GqBdIJLs8ooEEyHm*G8`eQ_7u9F}wSf3O|0pt!G9Thrs5xrIx&gcX+Davp1?=%yW}pOya}i zL;}#Yfs^HYaKv9&>wj`B1!j>6F*Nw3NR$@Ri}>$mk>=nz|C3(8 zw>IaVEhPFn6Y^)5d{hYT(J%i|oL?%y-}{d;icoPN=E2$TGyUFw^j82Hv0z;g5RLNP zjQd}FH~C_7vd|@e`IDmm)}Iu}2`fEZEb+HYFu+RmAOHNd#L zJ&X}@G|sHQC?{6}=Zw0$|LPSAHsd@rDc>hE!FCDUhD?oHd~kz0Hyez0nb!oqn|mM~ zRkcgjYM|%Z!s9_h)97?{-rpp=QV9C6z(05$n*HFjxP0=htX0>Yanhc#N-Qx|dP33s zN5Lr_=`6kl6r2QGtw%E>1xPJUuUmENM8_q)F0I3d5ja7(QtuD_IAQ?Jx_goQb# z=-}^>O;q*>Oos zCBPPGC^E>X)%DeS!hvtNWMX-BmgCgMj}Qu-h8lZ8tLqF4O|q_}XmW0Asc z_-T<^6BnAEQ~H6`2i~m%1%5WU@)mWr5InY`I!a)HdmprE^^6~Tt3`N6)6H!LopLmiQUz8k4x~{`W^**A ze4-JHPHTSTNd92)wg}Sl)VaoIUPX8c6H+h8_PS!D9n1G%0mo^zZ9@&7dfVB@jiQ== z^!4j#r}+aZ4j%|zK(*{PO-G^-$pO81@Y5h_5S{h_e>)Q!jOngc*V$Cn;@P$B?(($` z8~!pwiiEJGuLkz*H87LbFiKiiFM%(M)YZIR7jkL!E+jm;N_Lx|YGHC$PlLme>}E#{ z+G$iq>nOn%5ro?(kt5z4-`D%ceW>4Vxz!BL52yz5;!IaikpT8w*O0;N?Q^KRg{GgF zl-FKz(6bA2HJG)B+mVUDk4p$90WATd*BVr8^M@4M-j6-(<$yX&7XiI8s} z$N-bhu||sZH{$*W{(|&mkF?UPRWmwN>G~&tRTY3~2x&xIFu}s#k;p?21hcP>w&$OL zFopued&gj%GcVAqWC7Auo0p(}7CI1_w*4F`CX(=S(=5>ikza)L&mV=o%V64U2La0V z>W9p1u(SyKoe9%P`9%Oka27CWLd!LtTXeW&TyH>On+(-ZZsPtU!6gtUZjV`IK0Q6y zctgfbRbkm11~9K=S5+`6`>!RUqd?p`t>adkU>Exe8%U_pj#90 zTl@hvky>#L6$8x886YWjKbm0~LuRpZj6k@klv%6;rQ+5uGYmDTc3=Ri+m-KmcvM0T zc9MxTfZr9$49@`3;n(t~EpNeEP+cdF?FbplSEiny0O1@kaL1VcVAui<8{rACo>s8n zQ~pc=)wM_<@O=h?Jo!{X?yCeeZ$JSuS+Xp^bEeT(ZW;J9_Acli?<_`M0*5i_9J$E5 zpd6?+;th=9a+(LD;xKag(pXjLz5*K=2rHpZijbp28EbiMcf*Ip&;{sGHE_?~Mas3I z)-25;%}z%D+&DQz`q4D2u8%1;+1AX{vKAg~JD&9m(f+Rem`8+B4SU)L_wGfZA%sh2WOK`-=qax|TAJFBsjizpp0>pcj`|~* zPA&{yB+TR%`<>uQozv4V`S#PoXMhi^*qXAq? zJpwgpZ;PbHr@=kD$)7VmtxZ((n062`I*Gj9)fnmPe`X~|bhZ9mN zc(!ywK&)XRJoYOI8(B@<>uUhqeF%WFZA3GM>jh}(Lg~AR65O`Y`=13$cpuc1M&Ly} z8sbDVcwx;zD0Ojh>WES5VxJucsR!|~&)&eJBS17h0d}PCZNUpu+ZiJ?4QW|WYVtcT z_uMiDCZ6|bkho5YFq9eNLXx3B0GX98K-k>2khG9;G*oG&>KX;C@Kqu;>SJ$*D-{t^9KHa)5fN~os|1^ zR}aV5^GAdd3Ejhf0PxU`SP>S^W7H=|jZT;dqUXQvV2l-dHkaM`wsv;!24Z6-x1um! zHku9}z`-qW`jJ`aV6!nU@*PhS{vo~Om;H%L)7`-NBg+FX!+Q4-ZQs(XtVn&Wp6Ls! z5B#Sm=ZYjq#VU`>J)UpRk&|i~QP@>QmUQI;)WWQWFI9dTPE2}kPWuPAU{xk_AY<`Q zc|8VL#QkU*RlpwMOpNZH<#oG>Z{!PL&x-$<6QDE7@}AZ7_E0sPqu>f0a3?QOeE<+7!ld6Md`~_FlG&)! z78};`-7%~Q5O$u!4E8-LXZKiegvDHQJEuHa(6wg(QN zLZbA5LjD@V;*`LoK&-)>$gwh*A_R+lz6ct|y}kPsUZ+I43*HF)GsRXt{U{od>#}~^ zt>pJdxU@9UHsRX9lVPDhlV1H8-(WVuHXfS;Ju7enxOB3-UNA(jDjP<6c})T%MWr)1 z%XGu>QtH(XiB8mvC|(jnNdV?r*VBfuf*?UeZw4RtiMAI#eSb!Pt!L1Op3gk{g60_= zZ%q;(LP{y)n1tHfqKHT?#eD*@n(nkm4PM+o@3!cT46k-Xbfr&NhPj=Cj2iUuGOx7} z{BW_!0Sr2=SjvvkXfzM;WS1X41&*-uM$SEmDsl7eYou~QfR4P_YN3j&dI`s z`O%@!87M!RV^J;+^7N=*ZMVB~^w;lE?^Mr9Si{HZaY^4<296mlQ2{^K$10WA;Vh(fX!Zj#aGd~! z_bP5>#toujny z=E1mezJM005xCt1%@{~zxNR^ z-?MsDY36t}J$vhC>x$M#?c4w%%e@tOA}NM5v)20`m3VUOhIPKVAH&|`I*zWr#V;{W zaqT|VaJpD>7vmYs8STeFhBT;+y;?}Tuly0Ri*`ME-izZ!h^7K^;@i7|2`d)C4MIQZ z*%)g<58z9~=D_s8_KNW|^kwAW=f|$*0iOHiWN%2sSf;H7_zJR5ofB?btCzBc3DT0? zc??F2zcV8StU|K-RA(!hy{m$FXJNH_v|^D*6RJ%StmsDIx$}`R1-Pg@vYxu*Gtjmh zGd`%niL~@A_~M;JYTQr!nAj-4xNH1Lavi6Zq+TMY)DlRFsHfjN!m&gDgdPw$m?0CT zR+Oxc=Btlq*g~D0#Al&j^btK{Z3NnmYRtv&0CH+8thcB~7g8`&@;Ep)Kogs*>$wjk z9jC?bY3b(s;>jyi8PVN%Wv@<4?i5wf>1I->>mx8pT8XboIsX}FP zClqDn_eR$D4DY6TgIqn? zs2Kzw-hHZ7ZUd$iK8+Orl_&Is^pbMt#?4Kx=5a-xCd2m+M18jrPgmRE2s}v#hksF)mfc*|9?m(!oT|NXa;bB}J(CJ%Gn7A@X*S*^We6w}Z9F~IhUaP; zB~$L04IiK$>{==2I1Ie01j*qh9+>@&+waO^B4rSfB`yavAJBm82UlB~8rjuhK3FvM zsPBDyE<(9jFv2EiE3tkWWXB$9mVV`A+h3KhG?&xQQ4IdJo<7Gm96>r=;1_2xSmb-E z`hMnp!0q6%PtR8qkDeaLC8lZzOJw%k(C4pa)Gis1oXwHpv3fr6NqpM7nypJ~)1I#2 zxh*KuKO#q^_kIFb{?s^hH}zi94*3L*1T+``vXhH4loAs5lhrBXa8osjEe4qjtrfI% zhi$sN`r*pO<~bkA!9hxqUCtGq(O+YG)6KoMK&s=quzZ!4^s!AZDY7n{eb5k#%cAIW zKvoH5!fG8KvsM|m6Svz^-rrb&L5@KF(=w#YQum`#6f8&mEePl#oT(;{J-y3=%K@N`;Yr%@|-!m)_k>osre3sXe()m5L zy|2^2t{GI*Ht$n=I&B($-KreUZYXxP#xh1_6ZBg+MV=Wy{!v8LNOO75BXxwB^!}om z$dk>=k2P-RpI=zSOhT{rULR!;w%?J}mCU7Fg3bilbbn^h7&oW*mW`XwHDPJ2!PLv+ zz*YHKXIwQX<^5rN!YJ%gxNN2_{9f2_>D_om|RUX?7v z2l{Sj^!h+jvE;c_kl@8=uBdnH7`akQ1>;1xlWPoD<05cNGNt^d4cqIt8f}f)8Eq{w zOdd0>iDN}r#Bq=5oq+$oC#H)nsA~Lpj~_vL16cLs2TJR;a4p}k$NG|o^8+|O=ZlBS zp*NwN*flaF3QztrR)^cVFam+#Z3y;G9-%`=An&@be_L;mdxYKA2kVS^**u6#kDNSr4)RUaQj}_lC-P<|$=tV0t8f0_fS>JmmPp&cdsbzL zVmdU!RlFsC924IsB&#O!A!43e^VN~qyl!9nX9aUPw3(>eqMwIxY#p?3lQcVCL8@^) zsw)IpT-qY!0r0enweCMrKo8UzF0RnifDiFI*b?~^S8F5oxyjMXw4Vi!ko#VPEm=`Q zG9S(GV{GjfRM*>n7tR}-O3GaBuR`D2Ejb=6L-jn^ADXOoo5D1H>=OJ_2~m|#8#t0; z>;cT!#tX~#M=_1pQpR3j29Bt>m$tJY^+$U8fO5#A$W{V0lIdMl3qHKX2^)@EYLa{~ zT-`OUrK6m`-qofw?a+^o?9v~8lcH3ausU%05R@V`(&4tsJYwD?kPXcdFFSOod+)mV zOStWay5VOekWyPq6pAM{R7IBx@5Y7hmmEh&-xy8syi)(Xf=oxSbElPsTI}Hu^HRsr zL#oqkx&AK#B#`|Y+27X@WVnIZOb^v`Py+xuewTa?j`+pup}b-K!ubJ51`DP~GFU#p zdVXR4wmB54=a&lz3)fUi{j%U4!>`IT({-)jy42u*;d z>$TK3kprwy&V^qS-j3?Jrttf&YrpU)O4PCGe;pg`x5owmml0~9{E4*@u%uVZkWTxS zAb%?UD!2S6*koXbu9JpQ8HKRs6l&_J4P?rZf69A)fA_Gv6OCW&Ihq^cN2MyVv}m zS_YyVKKD^2xjyK>nHB!&&;M9S4h7F`sRestbHeI~QANSVUq!*Izby*hM_2^^ftUOT zx}zhAo;Q!e{=88KG!y8)X@$s(ZRS63o&j$#7MN!oqGf|UK`TrOe(M{c9{Cz*%JEU9 z5zqsNk>8^)P2>n9N@lmVqQQpP3?6`1pjoJ{b_qoH??GK6>F!f>U?mtbV&YHxtSy4q zcjNg$Mu*-Q7?Nth8dN8m`L`9#8<0{hi2vF4BTy)~0-P`(#@v2**KI}Z+BZ5$9|~Zh zh-I?~0eS9$ys`#~Z&3}lC?g{SL1c?f8P18SV- z$76xHqk*}F8pjQHP=bCk^38zg8f;qqyO{Htl}B^&@q{-kMUJdqV1wAzpu=Le?v*M~ zCx$AlCP;&SI##M~0hSO7O4HSzAFsmDYXK4Tr6Yzh5<8k+N)Fgneyel0^#Q5DS)XG> z5TVoQfjzM8=e=48EUKUYr0HGEnqlB?uf56ZPW6{oPMdP>ij%gHk8Z)=15)EtCX%ht;kg zlqJv3&hC0{8UnSQ#L7IXr&M7_I2kvtrxGYN4FEZm&%v10{mjn2Mc{&J1{xU&d+o7R zn0LMe+gz$^1a^Rk;q#{lomM>~2uOnAw&5k$75}9HuM})RRt)6)iOcj5PFaR3sTDZoC9oP)e?9M1ITY8;+1*ctmNHLZ|?eL9*~&LtE5RP zERsd?;hUV6EDs$I>BDI#jLrI{O!BGLVBnL8FD(su@Xl@8Cl+7S9D|>wv2m1tQgB-2 z4axzSntCbu(Rt3u^)P*p0@ zX|M=n`AmVc>-{!z9%GspI}12fHVJmR%+xvx_0IDlW82B8+N&pJP9SI?0%J9*V|_pY z5GkDtx~$p|+PLu?5+aC1Z0AQ6K#=AhtjJ;-N1MBp#OWh8z?5}}XA9@FeQps~1gegd z$b=E%-V6z9RIXf%vzs&AJRJ(Nlus!cNWd>Zm6m`X#IxZNy%pg7UNb`6xy)el_>)yX zUE{lskB(@nvRF6SK`ij>DvICZBmV#6s=s!kMTZI?NDmhhWPuIE7mzaVQRxCcFG2|> zHo%8PE?+5G$z8C#)7uMG(>yvoWwaeGp%8Yu#i3PnbFUVbA}`oQCFKVj+o%Q2tlmbJ zR#@~n_%6(FComeHyY5c|3uk3<1%nT?UA*K+F3iVkHAZHrR_gl97N ze7~DZHhJI(PJ)CKcHoF>X&TBR{DDP(|9!;1At$RBz*p7Ac3n}+TZR>$H$Xi9PY(MN zYub^v_F_itygz2wS`6m{s`Kl77WyU1u`>=AHLZ5Y|0PuY`%^-N!~Z52`yb;LEGT9e z>4iv#P5FO=?EGKE5PXc?gJ)~>2FNpIFlVy3z!l4TEL80|Cu{b zD7LVrC4(7j9bLG7ZaixP&?Q7tem+OX$F=y5dC&<{GBNRDsatpp{y33T@p5Hpt1%oF zW}obZC~b!~Dk1xIb+%a3A$hx5dcn8llZ7P-GGGB^QfDuXF07`)bV}7!BA)Bxb9!8a zs><=)J%85rCW>I_@m%ku-dkP^vq_jYVH2%*)Wz=b{Mo*N!!yyb`}dH;eFirjEqd{r zKz{4!3uVNmFL&QGj4Vr>w4x~tcWmdD#miUu{hhWtcdh!#*2R6rSCZ&RpWpUO*~>C3 z5r&Zicy2y-ohV~X@9Ok2=M5IEPuMqjSpo8OLO73P%U%R#fKSdgvK!F}KI zJ^89%9u6|2!I`wuAO1Cz3O(`+BWOdTYDI zqF(}SUcHJN=qh^j6n_4*Pbw?ma4Ng@EyD}qU1(y&Ih_hbm z0-g61e9Vsn$y`6oHZzVK7SoXy&yO@+elMDA_ZiwF9+OYPid&vKc(9h&UYBM@vW63F=j(EhuFfG9 zvL!%_7uvGCu$qw#2Mukv0Tpd}cC;=0VuwlngGwYIqGv(X;_GyS_rPa+1G{P1m?kR- zl|mV0LT=rEiOFIHiqTFR;{x$)Ptb#~2}7=!fh_|s*cN>S;Wdb~+JGQHCSBs&1wOUl zd*JRq+UP5$o+}>+-0o4kq=Ncc@cJ-Q(%0$i$oY+=OC;FFh@i+i z5b|f4HorUq{cN|#ZJ}7{4j{B$8LRv-ptQ%XSHVQab*;cW_?2tz1@OT)1q`0B|Alxg zt7;Sg%$@?<(bMz>w&w~&y3D$oO!~` zm7`_1=U$zlQ69V>;md3O&O@Co|6xGbbuqsRZG6;#6RF~}MZzUnjuC#ibysH#ykm{0 z?{VZDbb})={Jly#;>UZD=Lh(@zUECLaseZkT@RI}4~pA))7Fo;Ft%KOHR}l%8)qtSH@0g(1IoBb1?a--r32B4+I&+A`79}4r^z7HIjYeIc%QX>1=w0|7N~V! zq8Iy~9z2Yo;C%~F!FWy`g6+9hnUON17-46#2x_4|YvgjK|7}2L9s%MKiSp@tjfsAS zet}{c(7bFI0zvzU+M}cSXkOc4F4#^Nr?BTHjmOqBZLVrZBl?6(1Nyh@Rj>gWDAMBG zJp`;5R-_)CAgZ_J5fhwq+!ruqSI0{MwnAF9zENzi=vqQCu)SPxU@hs9mAphg8p2=p z>Z_mg_IAPX9V{E2QcRb8)lilka_N&gjA>#Kldlo|l5kG@*K@;CqD7%DPpJZh++WI4 z7*+C)^JJi17AL;k+dAecQQ5hoy%;F_k-Re7J=EpMr;||FU83eoDuV)_tPHX`wVa=VJ}F)wD1)S5d5AHJM?Ds7ImD2qGJBQ8sH;02U0BgU)bQB2<9uCPHf7i zk2zw{-JU+>x!aib_ykY*s$k)fV(UHtvEG1|b7(?=$|5so$GZc7LzMz$+^1_QS9wVe|tL*QKxTxDC{R;V1?Sy$*Og3f9TTIpf6RA=^Qhnw2x)C&ee~ zv2J~<4zfK5SwDssIQ)vHShHiX?r>wmstEDapra8GihM)kAn|~ul|@J+Y%2W% z7@@Ig7QCh0eSbgbx-ho3n}uQ1#Yu6kHfJQ<_93_T>2r+fAE6|sr$VJjm8Pwa^DD{k z!?)Bc`NJ%`1D>BZ60*u?C7Qqs^0(eU==4(TJ&> zV(;@L3JBeqZVcq~bVz0YzK;isYPyr&{@z_mPqQy$6X?p^BJDKoQEOh1{#^RSV9O*_ z@!Y!!_wsUR$!{o^ieoQ@*s19@QcjT8kS>u?OW$X=54%9hSG+8w#>Ab&pc7PE%Z|r3 zjK+JGUg&VZ0(;LI?3fo+FSF51l7CKKCT5oJ?%`DPrmskYjOIwF_`FC)c7Svo zdfI8q z64sA{^)V9MBlDsykX5=R&3c2w9&{KfP|JFW)`bF!1Kdo*uOk%`^zxZrN5t{lsB1{r zkCtZzwu7ca2x!wwPF=9>@s)FvPQTp%RJCQwZUD6Cr2lU$02)S*o8v00^hQxIO|iH% z1oZJ{7~vd@v+(*X-JqG$@{>8ix)6qk46)-|0#=?`zzf&1$91Wv`Qp5J&|`rj`GBjj z?s<0L8O|8y5*`_z-+N?Fa%hO_=DxlhYY28|Tz4unoX_;|^F{$lCT*x!I=%}09Bwu*6X>NA!@pW1H zVi_g&;}s!8dT)=x74t=^)1K1pSJ%RnM}CpogaI!H*+P8-Hwk*5@7Ga)$F zCgu5rUxN%5CnhDzolL8V6*WF2yJ1}g7yFVd0JGI6f#kfqFD}}Jdo4+kRDc7{xn^K7 zWosJeUQzF{ft%v81|FNWMM`;q`RF?^b-$0yZUm{Dy{#Gg9Y?+mp@kI9`T(7>hi&wu znATWy7$0uDrh&qnN~GSo*YJ^!lOPi2vEKO~FOth+>6mKK33kX}79NGb?x+R|ttVk2 z7NeDLJclr2ElylJfaA1Kk3or5ueo_#Dx6wxF~ctn%m}r7xnIJ{BDawP^Y7t&zS=2v zNles6v`rM{_ddWklPtGxJqu$xGDQ;Bc%0IE-?@$Z1oYjVO!|1MKIZCYU0yTO6|wys z{ydSp+SM)sPMb^a5#grfOTxU*%$8o4ezP4yUl-k-(NPA8C3#C~f}yK0?GOCRiadwK zazr!GI+g2nCZRrtEo+jYbFH}kO;kq3_j5n+3-K6JJv8ol$@8v{m)aQXGd~W=Gqa60 zYY|T>6+?X8ScX#1JkQ=XpB%xnL$PjD^P0^j-u0)&=$B`^(Rx7~rle!+y_*3-KuT#z z!ZoJJUhWIJdRexx1U9}&DVa)O?*oRNf*QrUi`}n5>!+*ko}`C1W>_jV1Zj<2z5ut1 z0BVL;Dc@4KUKRQ@Pnp)8hL4}AMhazdDYomH@=~bdfenU-IsN-{dIn_!VUAcIM zJm*kTMt5A;;aJbta%oDLZO+$1ujeDl+x=cUYy6Z+Ofb4gi@tYRskP9y8Ojms-T-JC zcn3b(#bu&0C-R+p!I%0J(&p=0&ASPu{J5tguNa(MVYRimtV@ zh2C0`rO^S5Y|x-~`Ama>KmcJs3|D-pnSYO*TmOe$2@|hHWVwVvd!Z=QKWWkB7hw^|02?SK*P(R4}1^ONfJM2iGy^)bcH6AQNszu;pAb|`a^`d#cU9|^QXhiP6Ym#F7H%T+F?hDyg# z_FnZd+7XzjihG@sC@k!9pm!rQYfS{oUiA&iOhR!Nq?5}?zyOKloSm#P057Cr z$*l4mIr(ZV^MjvEICo2xxj)e~QGnIr6T*i5OKI30P)sboN;AtZL) z`$RwcgR;%L$hh1uoC!*WTvr?4$#cY46n}*0pBcR4((57Uui#AxD2J8FpI|!NWKNan zENemUR#%Q>bC8w827e8{6UrPLS%^8^bh;^a&qDMzBEg@0G~r`ks!)GG(>g!*4X!$@ z#_#fi!(a!Lh;|4v<;ned{<;X#QuCC9<{)hRBQQl5TUI|uTPpWm+{yr{d&S_x7Z}qo zu_{b=UcH;WV>>Wse^lfRU$W`fAG`+3e%iu!JOF#}G*{{73{0$gt;FQ|nPTes3)-|g zAKDF;`e`2~E@TRa!X??A(ie{3l+G@e6$C!pU>Ot1PdA)uf1b2tOq5yfH$8h-g|;<% zUL9FDMqwLG17Dv)gGN2qJL86>2x7#x?Y5+!9xAtbG&f3JUsrs*nRvziv37u+9Vx3e z7e<|d3QhB*#KaMuF^~DeU$#sj#PzW@zL+^3Vy`tRC1^CMg3>xQrObJ`3hCHFW;owX zNV|;+ns>_i)H5OM38_GnUs8KXF14GauCV8uI@o=g%`1_%PD@_Mb43pq>%Z1n>zuRf=Xvh?y078B@9TH{E+~T5O7Az~ z!N1Z0$c+qwu*ojv=uM|XOVRBveV){Z-tms8=H;8uyS5~!XQza1NKk5+QIBb)Q>nDt zdb^!Ee313>F7$U}sMA^v%qrRIyLcc`xDvV^Yw+DPo3Och2C< z^W{*<`;2>5j`#}?vz^npt4x0U>=i!0zNEd3b`X-$W?=>5nZ$hD6)DMo(x3JevY1Gok%PnK^81$!rzDuve!37(2-}knV}4pdIxU=bf?#MZEL*59 zZaOiar&sJG>}TI>!d1{WsCPIadg~OUB>FC#|I@CgTz&?~#=^ zxxW+0rQDw0PswYn-GzFvN%@?lFGJ;dD;Dw+I6feSM z7o}>Vcp#iVJuDUhX?Y#e<6mlg=wYjSzDXg_y)J+_bAvuw4)^$xr(_ISUp5%8+#S9k zz{pXxPrxxOfw&ABd)ld=O{jvpSp*$Vh`Cy4Kc7#H9$|zo4|gr!V=1t}#c>(#t?n#O z_b{&laN%Z70bwE3_Tig*;1HV%H*^)~A7ykxA3pWZ4#gkE$v zG5hWktU_Y1Wa>G}KQ~dlE6%ttJJ7!=f)6@aM94gGfZLUKaN~0aZq=@{Kv`QL+_=4f zg}x)O5G}_FS3|k!82|~idz!?NNI^4@5}WQuhxQ1_(Z!4b;}GsS zBr+#U+}zIqk6_^Q?dQNgG(6t{>=IcK#mUEks%LPh{~&gr%4x+JI@GkJkU5SP_a3?r z*91?XY?i|MEv<>SKf!(y$sXpo4oSbAElz?3IP71~HxdJK`$Mqdm3yUEcv{jL?tfV9 zJk^pUZMg3I4?b>kV3?SO8!J@01}x@k!U~ymP^l}`r5O)9wueyp^NegB3TK9H$t}bE zWr|WX_Zr+W@oHy)_V{+9MYwT=FwyXgqH0L>x;^Ae1ok6E{y_;?-Ppb^Qe;3y)xgJu z{OKYeKFl4gzEh>THb@lm_)u+|VAIlNu~9htYO6#gH@%3bfT#PV-_E-A{_6SoYwn=^ zXU9tAbO50J$Y55P_!QEb@kQS))vJFFaD)KigQE@}FTDbwh$cWv+(RkDo)-+`ru z)3A&ez%M~ik}P|p9Gd-BI8TQ42a5S_tzCL}dSUD_P=k16Vczl@lw`l$$~Pz_L!c(> z$K4Fds(4w!XdWbM`tK?bz;z)THl!O-DtKDc>h|kNr_YfyTHTeGJpJE-E@dNv@l}1Noz@xYYUyx1){;S+3 zPe5G!LDh%QG9r)!NKH~hYSI8RGSAC`AILlVP19civf&7M#wj4rxb%th{@BT3&Ii^F zDbKs??`5kWRKz_FK#QDG`t`?8WZp!>oX@7~Qh;^jiWx08-UMiiwgt4@eN>Sz>W%h{ z6Z2p!fO-DoWb6(5219V z!~kV`_*Q*|NyGdR?4M}Qe~q%*92%p8590M8dj5n1rNrWa^f^jHaRUF|NTV{~og3gU z%s7tswfq;a2Qinl0U=52LrBt4K6zIrDHM2Y`+=9uuC`I9<07s!HD=ofXk1Oqd90bi zq}z6C0Q77OcDSTJS}N0mCV`ns0-AZ|wT|2B7==O=br}t$lT`$&yZ|h&(`Vp4jCnO> z=?;Z-Lu7^_YRHwNL1Td^2&xQ>w^SRYT(`cz>$gDy*HVk6m-R5l{twq&tb@xF>w&wi zrIS#urY4kx$hZ@P>zN-tBn8jk3e0;4)zaN<^U(NyZw#wEcAou132*Gm>py=*E^9su z1yuv-SpkrqVe%FY$U2xJe)IbO2nb8QmQ`<`x zJ(pqLn;s$Nx8<4GZvB^_1pI&;bZVeNcPGJpO7*tRCv6ef{F+GKAHwY1j25n*omat? z8k*YuAcZr99bLmPvYa`voH`zS#IT&oPW{7iZ|r`X6)dN*nKB0~XJp$-2P|jx0$|uB zvZVccSJ=LhB5H)-=qC;Ohn~tX@2w#q!2b9UJpbE_p^V0k&%7@I7Q_(Ic5X}t4hH)# zdbTI$1>G`b`zb(NAtTb~!Pg+jTM-^?+2o16sS*Q*i{@?7YaYLg1H1+A@Q}z2=>GzR z2gPq_8em<1-;D|IU}-dihLGjdgrO!*8-%=Piuf1N@96^c&CM$)T?4^@EiRsi^hfpdV} z?bwKTW9J?wC=HL(P=WA|woT-Nppe-eNAr{RG7nWDR+0r)0%asL2{O#T z={Y=%C>-eBFFi-r8OmkyWr6&`SDwUq+rheeO>|wKJmsUX|yL2G^U*x_w#0A~G0sHr+-Vkx` zCBri9;Gi;v&J{@FvQ9Mor(Xpg%=mM&h}t~{yLO=JHM_ZUx8yg${QA!1cIz*}>>Wp7 ztB?d+g{fEgf#;@&kcZj9Qoy82&w-_IW5#hrsJ6&{&tE2g03I%~C}Z4nt!;ICMYpOa z84+LN1K*tM{%mUj-^_uwBBa>g!~~Cl|Cjp*45+V4ld@?17L5lM$Lw(S{R=;7OEWsNg2;tYN6y zC}bKj?8VDaRRfOuNXKThWsAKOEL$!%<{sGBhK%^RjP*?lkjm4b1J^+nl0lC)OG;11 zfgW*NIr$^A%*{WT!)Uyeb7;$W6Bh*?IqeeM9WL|zSMscba^ zFhX$Lr=G9!{3c~kg~O+E@TyR(<g^BUc`&yeG* zn8Rf3_tyNyCIpp9)DS}}*hmU3@`_==$4BSYVr7K0Z<^iC&oYLb5xXl^-lWSDwLdLhtKpHc-{{kiAIP10?^qXoXL(n zuf&NYbu*Og+zz%=lMfywaHFv=e)(s z_#PWMV)E#5!jS{Zt4ksG)C_g5^b5Uy!fSK+l(_fF?E`#oclPI-i_gj8*5RpYNQf;JE{Sq_^7{+|ccr-{r-Mkz5I%~W&j`5|&8M#5X zr-fES(&bGy^Dn5;GqF5(t+XF8TYe?Ffc`33sbc(a$S>KI%Q8qA zl{W)kD7cJ4r^}tB#^q_}(tK?S4~JBgr}r&FOp}IGsd-O;7~bKV(svXkEB_5fn$-5hH7*BNBq?g7Mp2VXs}^(DV|Qi~05P>^$Z9s7N-_=x9nVu+NN z+KZiFcJ-aS-s`1}`;1xWH00~{TC+u2;PNQ$_KkGyzu>YjKn_U@U#h& zfVJYi;q8gh`gb$g8ZY-v_xkMbu{-=WFvQch;3m<(Auz)&KE{uP>j|crt77DUFik|R zbL4@u?yawZQ4j9`Guj0gNnDEBORWBNW_glX2~Qex39LM>6u*tz&Z#CY{prG|E_q;a z{Qdpy18SyyxJI}Ndi7G{JO@d6_9M(0zNQXVYy8K-!0WFSj$r$JpSNvB?{n-W8NXh( zUGd_Wln0?vFL&4P$gV!hDxG6=|>K5nf7LWom6l?XcGgu=ZN$zheov(WVu?grYQS3zUI zoBc%@>sve9n+U-b&@owODnZT8Kxip=s|bu16qB5V&a2O5{1}0oH2CfYuvcD z<9h!OSk>A_u!$OXq2WKV0PSn3SNE5#IQqBPx!?G?$j6W2^DMdfY%t}B@0SYNt3{de zr)w)x?uz1>{lC87jtBp3(H#2H;o5lV!ri-%JW6hUEU@kGT{Hbm;w@^aQlXHm>+b%s&NsQHL)#uOFw##d7cHa{69lU)uyEFWpbVJbN;In2woygOQ z%X5L%Y@}RpWy^!-bpQ^<5H*gueThdR(!)W?aZ%9%FxmwsoK5 zwo`Mrg~I(Tx{sCOjFR5>-OOY3=pKFZfk5z03<(5VN&oH|*6KcEo8wQQ{YtU!OuFO) z*MJD^)slN03%4=@(xsHlfwC6h5;wcjNjFyJ?6}w9mk={K&bUP**sKg7wge_oDvOfh_&Gss#$Vf%zLdsaT>5XaZ@dkYekHD7mI)m zw-4)aj;H`SsroyCv$Oda`Q0gWU+F210y;VzG!5s1YdXs$%9ax|J-NYf&t(b$q|svC z5vo|2d+gWU>0-U>pytXfiQi}Gy{O!QsaS+P?foJsk+_w^QWKM3sD824XtXZM|CI!w zD$B)&mAZ+rg=SZpk`ahiMW9~cjKbNo!Z`@s3xDT zmtqe4{7_sf>?>NvypYzc-Tbtb+##>hgtqyqPLXyPoncVrw?TVT7=0_7tLdJBwk+h_ zKiK1*-=>v%>FfX$U$pKEG8bP5^j{;kXbIXrQFZe;qs)=rQ}J(RJcjYUJ;yK;aKW7< zxU%v|BtyT3=|Gmtl{V9*LMJag<-@x7xzBdPZwXoCEAJ7D#XY2y@;pB)<91}fpOJMY zukzCaI4_Q}rizT(wCgK}nwQONpI4#}r_nkdaXsP{y}}E-UeMn3akKH0NWQ~)uH93d6EbrCQGT%B!Un) z&9;t3xb{GEoBQB3%%DUKO7z@0anT&YY6)GuGOzpq(D|YOu%(R&jx`U#A0+tYB1v|% zQcg*ik;8*=#X#L8Nd_?|wrnyf&!0D!?knQ71^_A>imLXcyL;GP;~ml}=Y5dA#vBkm z%lHEFWd9~h!o@<#(a1;T_OGb>GfB~!9IAKcexatIQz$)zer(qyZTj~=>?`FMMF_&Bx%=jV|7;>J!a-n0Q7+rIjg`|9-z@+46U7wRq+%+3@# zTr>Q#J}FJosUQCSKv(5r09eVhzu0TOSA-$VcKunL!(-* z%fw~S8YrGF0WejUpp&doCF>iW+6+spbger8zk39fY$r9wqt6hR0QNtD(BQ^X{n#SE z55ReS?NV#E9Bx^QYlU2cnHRqU_}(*I<@WuA{zFaSObBpP3=<9`oQHxWBK<_lIUWAyv95#~mtv+Jn*}ghsh06Y-XGJadChb6 z3R67@wQIaRy0y8h5q`LJ!ZzzvfA5E^1AQ~#6(VF<3;}qIcLGRTIXZGc$M0fe_;Grk zDg=e4YdTb8K0);g@0nU+?Q?oRR`Kau`Blt_{7X@%xGz-Sqm^zg+Xkv)6IF;P)0+sf+S5lncCaqf;AB6pOyt|F9%v*gg33Z<<7<%p8G&{~p%o!&)XTys3 z%%R#O<~mA)b{=asr7Qy!l z`3QI+8L5L)`Y0bgr}2$7Y~Bv|08+L8_5fK?NmUM16$V^I-#8NX%8V1enTrC-%6MZ<$n!gk z?bD~g+5^v&Tc1XI;%?RQr2&`wBDmm*7jq&t z?nHB3F1jss8VB^1=Y=eqZ@68JnW_UJ6<>a9=p;KX znjzjYG5-|oNOell}{ZHu^Z|404L6wM`*z(IQQdyE~FLdW-y$>%f>esfAJ z8Z5r%dW3Xs{>z7wAl*i8KzDUjP>QRWn7&y>Ds_~gQm5PXH2)CR9Hs9vKfrfL51-qn z>@1ui_Rz#AT{-69%cpE_N<>OOIBl72`OK5?4_7$s+_X74(!hgZpYBc*@mz@usoqq3 z)_Xvkb2VPy&TGAu@8^{M0a|{erh+Fj^mHcg6F*}8R`H|V6SaKt+7~xmTJXL@EEOIz zOx^M*Z8i#_t!;tR=0Q|9SM{lzt7zzbB)ha&OQBVs-M=G&`nb*`DtL3kfYp3p>|ueo z!nt;n+5_D&4ziggEoWa`rM{+L_8yz55O4BD&&mN)l1w6eX@QHU&|~+GQLQVjHUE@{ zN>t-2G`vK%&j5^jUoAiIMSo84HvY8zkQ-624N2O!Wed26t!`U zVUV$3a$S=nt=xF37#z~jOF1lilvEbx+%^ujQD-rujo+dDc+z0{gk8nPsxv_6rB3$i50iY?dd-JhthCmVn5UW|(6_-akGP2cmb+2-Dv zb#X-i=Lxy$;_yHq*_#Yn4OSdTM18Z`Z#ySle=`G3?fv;3J8V9YeKR zyK+Lg9Sb^7Ln*!pKyCe#=-l#_2-Br8bj0m|8@|Ps#EJy1x26|4EU1sq1@`I=sa5uB>no4Y{TO+|pf-lSDBkO* zx@e)AMOk~zu!u_|#)=Jl`MdKcA)kJMCmTQN&x#E8aRNc#VixY|&fPoaJ5oCW741pI z{9jQt33k0#OpwXAS5J~FJbiSPU3gyCk1=}wI1Lxb!g6xJ3AaXPBQs6Eyuk086kQbP zlv8RS2IuUNpX2PR=i^Bz@++2`~Q?^xfII^F94gQsHG9hc$tjTGC;`$Cv8p zHv?$fN7w4lNfmJ(2xGt8IPs?N%I$-rVkcBtX1gKamTxeeGPzA+O5q4jh7HI$j#)2} zgt6DVDM}8q7TN=9C__C>PBMlwGq7Xi>0Oh9FrV#u{<2A%T-@WinV-sjWn`#Ye8`-~ z05{rvQ+&INX+hUbzg4Hsj+WiIxKJA}A~ZI-t#vP$_Opb?VmcI_X-sq^=ALGHa**c8 z*(2q7ME-e0h?{~zV7jgXntbwj7)hY!l+ME& zj-`>`M}=4EzA3Qb9_=H>@E95JED>n%pn4NE@s)B=v_*{3!RAZAO|`I4-eFF3=~vew zF=7lO1;$SH#I1{Ub|)?bvl3(xaiS9=yG+6^==|{)xSm6OS6997x)8Ko)Fwmik1#%T zscwca#y>wG6w&0Lf1}+09T+n`jh&1A^CLtA8RdEUfO)$4Zhe9vb%>>2l zR8nF02C&K_TJp0u1J~2p_x@lR+3=YlNo?BGsB5v2UM!KqMNtAW)X@FJ)lO)j`RdxI zbe!;|{`C`7*be=;?3T@F($_`t~yb#Q#bf2B6#(`J0B@|?|rnxwWmC`sVENkv{ytoP9D@8)K7l|Mvx3^&j zaQoAd&uHLJ*3F`ilA)TiL$$`XTMt?_-Gd*?S*D*R79hqv32eNiaF^)$F_3m+%N0K9 zi}5dJy$_M0ep?l+iI}xz>KS4TvML2&0m%-H4VyngV6}9~?IQP)-sHGgm&;K2jbLrx z)QRXPkEpP6XC)Z#2lOJ7_NWyK=>Ne?g$+}ud#O;TTxVyIa_1-|Gl4atvUh~kLntE7 za7r-U3+NT&IWEkFR=MsbO|qc-+Y*7w@*VO(%YSH?@h&Vl154=(OSwTO!Qf93p{f}7 zQohbEsJL4lF##dX@Kv63&lAHg*Udyl#d%U;f8yiyZB7LeDZDubN+LAz#gbyh))NgOcn#7IHx=@j! zveMf>6>H5-4-Lcf1?KI}56>;qU1)@yRypt8S<9)k>Ebi4I;wSeXL_OAXB z+eN|+((CwX>sc2f>5Jm*mYIyi7`hHsc^EG;fMHDgZ8vc;VvMGS)pS2M+K_G$eOgW1Mx)*lOVS)^!;398vawULwm$^XvF75NPS1K;1x~ z1IHv7p%v+`b+Y?SIahfQ34uV7#RXgb?EHRqlwpPNf1o}uz<;>b80b9(A0PqCG53Ih z0y;q=$_YN;4@GI-jQ(wj42c&Kz<0T# zx8mPUfMk!rs)!R=zBtLmjQAKLVhp(+Ne&no;vR=FMt}H)>v)a-(KpK1Aq6MizgP4!ruB!K7&}}8L&pWf{^+3 zeN%sUr+|Q7#65yF{t^oR4Z3Vw@E;PL?To{hz%?D_J$D50vH!_8i7^Sw^_3u+co2;( z$!w~Z^u^y?GWZlEnhawO{UI(0tAmKbrU&=F;r@0Mo()69Dwk1xnu)oT)lC?t%wsgb zqlvebpS9fwVjb;5#UXA~cmJNk+SU~afdZgF0X)|$rxGb5ehY4#=%Ei?Cb6qLzXc>v z*p(3^;JpBa-O+A52LA387`1DtlGjz~i+i6TL+MtO=w{-2!uoplVNG7wXH*LzZZw}{ zPhm@M=*5A;3V^~^dk_8WIH2%baHGN^1AwFmvMTUeS!F+CP}sqdxF0})kQAW1%l+-( ze>hK2AA_^6u7S$Nf;><)w>&{*=?yk!G!VaFMFf!>qU-p!(jRJ(4=T$b%Q(FA6F+TY zampY3ofwRF@|8>P*#7ie_46B9IM*g+cLyZ!4lM)TLIPE3r-`3FGn?;+1lggy6Q9pO z&{Be+#e>pKTq5YA=AQ#s_S>o~`DQQ_<`O^fM>dMcCI&!K$^36pc#?@lnZbI z5VcRBnv^AkDgXY@=tX!h241(kXt}_Ki@TU1C@WcR+0e(1SNT@Xrg_h|aFEMu>DrBv zwXn$Y8(y7r{b$`s?NKrp(Y23^Gu^xB=XK*u=A1c<3mkYU@5&20?zk29u~tWQCR#IK|U_sT6ftFj%fA%bunKF5WgDpF^t2c~nm7MZFF^6&w~E4k(E{qQ;RL-N1=AxMQM zvY5sHEbJxhItgKrO)yBeepnOfy@faqLxi$J++1bzwXU3`PW8VhWMnJ%cZLw07f_zS zLg7f^2_l0&-K6)C@Z_cQ*CIoH_%~z=`m?$K@p5j5_wUW|QeCb*9x4_zfJ1^El7`XH z-bopHBUya^kP-=3T{mgpzy&YTBlF|Vd@hhb0~1E}2wX!iWQqgh-V=E2wSnG`TVE>f zG-#9SfJvXd401ncC68?U>MdS%)%;*!cdT1!Z2WeyoTI>Fdmn5>lC;50!uihrmzYhP z8wORL1|v{xr!~AOov>|`QMIS`NfCQaq+=)~FXgND<(ojqj&P>%pH)yr-4@K`o4rAL z(DL9g6gMaW!T9NEph?r9u@^k%5(9eq1gn=3pX53yL5wjp^PCyvMtkv#6bF~v#r4r5?0(VEMyLhg0;faW zfu>|UFcEIAwDJsu<s zeDm`JJP{Xf!p1Bp$jc=S+=DrJ`yU<#QEbF!r0R|FZs_U5?2Px6Q?EQEl0hj0C5c7- zebOQrhJrD4@{og`n=H_9F{E$?Qp;^{t!e?K|4*h@rhAkD^TMYX$@TBh~XKx-5G)K=k|bt}HbH<4PCxq_2a~kRQ#Fs@_~(a4#)DLW7wl z(L!ale+Pj&HouJi7qfd1PMFEMDb;ZrUX&PBxtdv$Zt|J+sdO-XSd?q_)+1F zAS`ZEc8PBKuK-Sk&A)AfxrUrc{u!(Ov4a5D=p`TsuCcmn{<44Ko5O5*2DQG`&~)me z@TE0DAsz`u1MM6wE>NH7Yfx&@IO@4N&$s`;5vo)7#xjxp*Sku#8^|&AQlH?VtAAL` z-unIWd3!PDu}>X2`8T~(s4ZyaNcN_@!+R|9I&m0#z-k%PHVfVPdWFlV;`ZCrKFBIV zi(A>6?Ug|Vd5RRmj-OYPp{hljv;g>L*q{hQSLU^OVdX!u0O}1z<_4BjSixgo7ZjPV zKu2gv8(3zx>Rv;j8q)E}Fq?{A9NAi|nZP z(YldmuCWbZe4C> z8;z`pYCp!gVSDRS+ zmWGpdSDj3ocP1WttW;sb{?uVJOsSldd^~pO;|L~4CQ+B|D`&vDo<9?2>iQM_YHkqC@Sjx)akA zFOUa1x4dYK9vdPhx9DaH9$TIySA2K*b-Gs5N2jk}-Wi^5dBz>sjxH~omGG5QHL0Ld z#IM+0SA8_;t1wKrns{n$CRB1;!OEi+rSDm^P$3%gfriDFY@NwjEYsVUsOL(`u)#p(*qTFT-!xb!xz5V3Jb~~cZWVFxs zT+HO(ygHHJ&ppY%%_k<58S}X6h}>Y-H)4i1YFN!=?j+?Tv}Cb;zuU#2BlZe)^lf&m z6%u5q$G5Mt4L_!@2rRfC`39(j#-Tr8ED*`4P_ij71Jm$Rq>(zLQY`^#0@yj4I6?EE zLrl^}P{PL10vQzV#TJen##RWKTzrOQQQEmWq;D-I+T+F>C}g6bR8Rr1E*StV=&ISS z9gYBSOEcDEX$;&uY$=7rZsYDs0#DZB=0dG9#E3CqEs9wk_ELlGTWbA7CZC_`2=j9~ z@Tui&L-ZJj40j|{dny6Rnk4{ii|l&&g(vcqE>=LdLML-H$0ZK}VYulo@p2m9>TfIM> zS#;-{92ex6PA;SbGe!bts|Coe$HHZHA~xr%)R3m3QzNytX2-mJG_zE-dmoBPFMra^ zQQ7!8#kv98mRCr_dt-@>mpXazNXx}VU~p?GG;bP106E!S%hTE(IR69bjw3aTK=v(x zvK8^XcIGp*WbqwhE*9B+mCxETL~5y#ct*%#{j&a#CRO>~7|9<}La*oPyG-ZL_dAWf zusxS|$$6X$4$@v%n6me);p-U;Pc7#bM?Ma4cZ>CGO(4hcD`C;6We(f2e5)N{X6oD& zG&uF++qSp-zi=E}M zg*M#`&0emLi|8x|OD_G>;aaZ-I;jPQq8+HQqu#YeDv;qUuGv~_GMy6fHGR819Xy(6 zQ6I1@V5+EaT+0>GZlA!51JE!|>UkcHQVF!RuD?MxjjWL3P zZw?dhAAv64KU^X;iGsU^+!erfKLskkW*}-$htpD#$C8z>2$3U{DHDCAPThchiMjz| zurDshDjd``GKZ#}J$jr+bD?5dGnJv9vX|gvE%a|)2bfOufeSgfxuL4^Yw_n50fLu0 zQDpXx4B5)_>J?m6is9vgUbtmjK+#s@H10<+adZQ%cyvvs>Juystg`qA97IfL;((23Cgvp(*XF;2CbniK-s6o!JyMBWH}EI37vrR zjqbyrcMIGW;|f&pncF5#>#siBb=fx37EO-%p?YhgbJ~)QH(CCqXiGGTNmom{+=%^h z-Qe1;(T=3+CP)d87a%MV4wPNNI88E+fJ(wDnC6?5aBj^X>yg>Cfcw}{kvxd*Hj znY(z|h?~XmZmq9AP-gm+oyw*bsdw^l!ZE(EGVP>DBZ|x?XBw4mbCPFrRyVj(i4SlC}KxBu(M%pEl*JyVnOuv2t`O z0@I{LTM}!R-?R{QQD^|IcY=%qM_SFgI@!4Q^+m}jog=4Y_?SA^S-MV$cwgs4I~3IW zITr}0!+BsqJSA9Hz(lQj7uG&f+|`y{h$Vu#LwfsX_rV2bqAAvJ$-|M$*)g!5wn%{Yv-dII7C>RM-=2EA4BqzD&i%f_QGgfLA*1Ez zg%-x@0nn~ENGVkIf;iXFe7srO$VJX`_j!o;^9jtDh*PC3TcfxYd!T5$qq zLO(d#FP8vB0x#F0hEo4M7hqbZEeWvI1Q-D#iTih4EWyc5yWa?-tdPcDyBo|vY*qnq zSEYi~H-_XS&-`47%U+t))?k-9B&K_zGqR2V369-O)BZU2bys>Ufj|wfE63v)&Db6C zOHc?Az^t0S8|i3{mDH zQ%Mktdqv-+k@GX2Q)XdDbc=d?C_W=yq2t=38Rns=DOZ$Kn)jzyMNu>2s;Y^#RCzcR zv@W6l_q-h~)VSFCWaHtf3%6?8^~`&d_y&m_r?pz5PvmvquGlJC?>xBTV4xcX%`uhc zNJJOjZ{W6d+2vObEn02dDTXyB4bM z82b_TYdh|0W;RAIA5e8HzmVMRIKdw9r2NKEv*`HOaUP-D15WFvGszl@g|8M@+A_wX zS8F4Z%Lac8`ID#Ngn#hOc^`rsUtBa?6P9t+N$usu8o3GXA8*JdS7WOvqZ)6q%h`=Y`vX>?A!O0bkF_bWoF|;| zxH={D0on(;_ocph21sFnnMr-LM}3my$)N?Fd}yj(kA* z`qPYzH}~Sk6JMLOJS5+pv-3_vbG1AXPrPPSZqR|MVY_wlOLo|3$i!aKMXTsiPv606cm9iyu>@pM=-Hb)A3)k&I@AtzRgaa7xI z_qbC^32|c>c>wLEbCr93%H^nIKE=B@()FpVkqo8rdX4WdRYh5LEYRk!J(nv>Y$ZfK ztvQ|?A*pNI?D4ZIZv*~r<#H&85oaqd)v`yTBIKFMYv zDb!-=JX&+K1ZYiY9w^VUAK}NJ&w^z%qY#+Dm0XGSCJR^r28ghO$B)dD56@9?X~5WEfqSYc56|Yn&$8^iaIf9!n!Ph_N_Z<-q7|qmZWbr)Tb2v zaNmN{jc_OYa^1Jk+xC)CNfPd=fgvNR`1*t+5@z}6y0f;QI7@ribuxhBqYExM6l#OY zeYf{>C7%AQv5-`?Kx3hHB&zB-TSRzn@6xHRFC}O$uEpy*Q)}Wj5_ zSPW}cXIsn@ho}nU#Wp|EC(<|dP+cRdGA~8(JbW|l%2@!&5ny@mKco5#&#xGF`r#=F zU!92N>8UIy<(}9BSL!3BhpHEcW>vc;5=o2Bb6O0LOE5UtAH`x#wypICi7>Gd6W>2i zJrK=pU7p$H6bz9r5A!k%>M&ww@~IY2^=vZeRH%DSm*E-S>B{S>=A(i4tk29lhAev7 zyLVxZD*L`3+_WuZ62=kSKiDubbZ{7VOx$%k{jILMXUks^#1{c`R z-U%wFZ>eU!rCt!e2896Xj6)Z7Z0@tO{)pDB3-QGh5(<#qqV5V6KXE*jL4XclL?H57 zyRfH$e#krRjDOv+%O)2T42TO2d7VY3e!l;i5Ox-TG{<^ol)7z>kG+}N4dbq_88)Bn zXqC^UX)1YJvO6qN7eX%Am80TyM7jJ$y0**_d;a4zyWW~zIak~{B7(cV&_C=R>`98T zcz9f?T%aaaN?uhdwQ3j8e28&3&WqL$Mq|1VzDw) zBMbNGhGtrl<<+h#83^a72*36oH(kjuCaAU)H6;Fl4*%;O5n`DcB8i ztBLL~Xmgqi@DuS)1hu#LTc{sx?>k4&xyBIb$HGM|iCz8T9KO*546&(=SH5yvSU0*} zesKEBz++tES<`@l)sWDSxFdpLHH3_=p@Fod2Pv8gRn%9nNEi>6&5gdp?n+Ihy*Ol0 zc0DXfg4LCbCYDz{jD6a8lzrWF;nupMdT?lS5@g}j6Onz-!I2!xp`~PE4zie#FZ!=!DC9y@*!N=sMDL2GYoQ~@9?TG%$KHHC({*qv`N3*v?Z;p8Eoy@Y{hGuV41YFjNLZ3& z7NurNN&ZHZIO^uYM@{b6!}QUQT9=5O6*5*ETk?06jkL>d9HASo%yD5T$Bjr~*BN!< z678yG6hAMli5|;3{H`-#HOY%oDf56PS7>*wJ;(Nej+oLJx0bkK+VSRNlTUm_`dH2$ zKyt7S2H~c{w6i=8LzShJH}M5W=tZsta!XKSj~a~ltR}XW9QqObR;y3`WM8@G;+W$2 zRXNUc^*-u^rjVX6V6cDtcmp{4_WJR1JPzR5aRl=A-Q5 zk7;(N@9lmj-pylJ^rTMQ)>5tfw~M@Tx+DUIoFRTAIlj>>9!f7w))ZTwirjl+7kYgn zuJ+agmupXGg9>{Z6w`Q938D=mI-6s#4~2(mal%Ar{UfOR%O0V4YEAp9SnOYs~ zRoY4oW$3vET<~0pUR#@|i*D=$XE-<6M*i^M9Q&HVQ{=QPLMOB}m_VsP%@Zjr7k=|} zG-{f|Z+=tsb&|t7ojUrCRh~g20ekg@b;7Q6Gj+v8p_lfXOW7{T1qu&Mq68#*WA-<7 zDr~CnGEVhobQEipU02m!oegX&^5{H9x7Op-zqmU{9D9FI<3jqV`-&IK0@l1@FA z5Rt9e*TX@bkCKTU>j?ENzdV}|HGM8+o#-;Zv#^vt@+dFB{X6$L#oS@ur z1a_ov8V(VJx3?>-jc35+d9_i<$RPZCyQ61j3)~qB)3h*WPlNTfp0V5!2|DlfI;^6r zu`@t4zmIuMoDky}WE*B5u z;CGVk;=M0qP9a3;&2nYXE(N!&#J@5Ki6H52iK!<6tE%7M`5KZ9_gQ;#NNM1QNvr!D zl>z5@Z6RGAv4{nW?E;4r$01MB%ZFh!t@ck>Hw|s>&d@}nZpJZU49%+~i45FwsH(Co z8H!I&${hfIbcr!RR9J%o&-qU}brRkPL@qBW9k+}{_eBsXFt0$Ky-`{d1K;yx&&px| zG-W=@3tpn6ss>kaQbyG)@RI1~Np48?*i(nb3&4E%E0EDTF2eU1Aec9nzi<&_tX&LF zYT#|_reAB4p*p{poQL#NK#y}4+{=aoT+I;BRUUH%EC5y^0UW@|7oM|`0llmjRNix< zh5eWN_=qv`x8vj0@wS9Bg@$CPaNK#}G+aioZg-biIUpxckT3L1$;^Vh$zKl-S(zS~ zquFDaBi|#Cim`;fJm5zBABKd7$}Y6mYx};gPGGxieKj2U0x(QWekkoB=o+ zy{K^>eE-SvXV``P$@c+=T3Xg801q92hZtYj*j}#7C4JR&iwi9k(ETYiK=-&__zBA|eeN-$!g+$<18ArOMhgq9nMH+7DzLG;QkQ!;FDne*VA}op zL4Yp3ff~b}Rw8>rDeM3Ztpw!WZ>xdYNS!n0`**|J6A!4(M;X8=4W@GvW6Gl&bU+6T zKnFm?8fo0@$(O+*lMBy83!|Z%}|Plc9hV z%qk@l19~W3hVsnBEnikKp+{_UIgft@FiN<1P#Zgofs-&+*_oH-e?3-Eo8%n}D+BtS9U4Kp@F1;;=G&VUAh{(lGk-+%tG3K(Pk@&{pJ%z>LH0S#k&ehy~AOI7us2q)4bm9^(d3y# z1oSo(nI4DH8Y3R(iR%bhyqA?Yz>lWWXKEbDP^;}OfN|=U`xp&OU{X@K7u~ zWK7ttml&YSYD8fSnteC35Ypvx6^xazUi(zc!52NgE#;yDa+xvhFCYbt;RlVWY_430 zMJzcHvE(k-5z#;SEP$hZZ*iu-=9i6kb-G*ix(*U$HpUJQ$LkWEPS(@^v zOFA|B|JE0)UMH zr-z;r(`@{6 zmaS|d>yWHvO_i|m=ece`|VmeB*pDhkq+7(aUL6|2XX(VAg4nR*aU~sB&(ql>l7O^IQV5HDL zS=@%OpHoo;oFEbk&zIML!*j@I9g|yu*)Xua4uWJ)~8Z1eOdr(AaL)TSD%C6im&}TuWc%v zf(zto)>uR+XA1$q=a2gCkFX8V1t7wjb_p&iNNcxsP~XQj6Cl@V!u=f z-T%@YBA?7NLG4kgdA|$R->`QI0#k?k)ppuzamKpB@y=L90BqLL2HjEH0Bli81apH< zAPMupcT{M?A3i<)aWene!=DCoBfx>D=S$*Im|w8dfSV zq){wi7><6Z;LK2m898y}rXuo}wv18m+OUplCkO9TZ~e~C18Gz6jjC#4j9ec8)#^-i zQ#BQ)etZyf_hZr(0!(4oQ}(7kJmLuzdecE|;^qKyv!6#GcYc85)TbA#4>mpf&p6SK zsR>wD+<5PhaE@UW-rXD`CdwcqfPA?mP4v0u?l{K^pLu8a!S^w1^hQX+f6c+s>~iUJ zfHP8ojkO}RnKQ$mN+iG!%@W?5PB*3eT8Ou(MbY|T5kU5uXDupk?p#MW$)^=SX&yaa z%y!Q-Y-Vhh?;bG;y+!SkV(!c^)+&bb=?%~Ne}94Z``#5MzXfEZd||in`b-387jRi` zk5@Q!GkZCTsb-bE6^(PHn|TdvR?Jlq=x%nezbR7(?%hXR6qxz!I zEpZf0_+`mc%PIjQ8l>XUwT=J$7ATVvk*4EO_z(@W^D?zMy`UigB{sLHED!F1(e(rJVmu4jW@F{87yno%< zo>n2~$HshN1(nx3d{-nRk9|+-F<1u1@y%CpBx34xx{5QV{@Xjt1ZfY#H+IT0%W`{d zkSg8*4=VM>A0Hn?ddsUx)vd8H&F3N1Qr8|4Ua~KI`gjK16{kl)>U-?hijuPuakzpFm1RGVn>)Gfg>eB}&W3qnMb z{w1IV;DrquNw8W?r`W0%&5$bc5d&H@6_AbyfQMBwTu55N2z83m?pEuBeM{h@+pJPu zV22`#s4s6-IS;Dd5L5j9%Ntf%MHLYmPW8~HHT?o7oG$o@kASjT+|Grl@ll|eQ5&BO z_3KNVmJg`G@d=`qClM7X*kzpF{oeGu69Kc(t8gvyz!dum*l*ZLp0S04s-tx_O;Q6y zh5Vp;H6qwViZWNA$&>B$7pzD$M7?viZUjHK`F z!0kBzowyGAw}RDma2wKr%g6^B$4Ba@MsCQX!rorxytdLo0V}ndQI??td+4XY$w&uQ zhR=au!^cLMEprmYpl@60+g8E(D^ZitWBJH&XZ%s4N0F`P-TU+4C*LT)^j3(e<#y@E z>)#d&BDNa>zCZn4=l3N?;oiQGG;lIE0$ry7+ z6PoUzARgRj;sJ>UP5|RYc@2*KGO8N- zj_x@aKfzu`JN9QjYso+m^UW`t3xjGtOCwz1)MOl`nF&wc>_`l|EDu7cM#eeHE4LJm zJ}_IS5s=1NT+OMDZP6*hdE%Z(6}IH#S*HK zB3lOe#(9K1`2okTHEzH7s6IU89edHfBy^xM1;Hwi*6z2MYU&24k%8w+0y1WbrsA&U zIrRkI(5xVZgh;MmBCz!^UThsgd;(z06N#k)?(yWeaim^!rr#{>D9o^ea$9Y=un|Nq zJSHtumy!n@533y%das)xt9G zV%qmo+Ka!^jUc^?2CMxpxb(&gA}xKK0ZYfE4$KHLqRE|M0~#%zmQ3{`svqd?Hok8u zL)8C>rc;Zgi3a_`lc}%FM~!%27nOad$<$zzZB|9i=uo7U$@whh$4037kr7HA7%rwj z_qc~N0f)@B@NBfUO5eauJ^Knhewqp`9$T@!SXh$yutm|A8Oac9FpUDZQxy*-t|p2? z@>mlv+D3p*YBfCo$Nf{c4z{GUvr%G%M;<}p8NX*4^guZCH;>OsNwda2D!k^@RXKx#_v4ri!hT6s*oi+m_YqPgs?+BOQLDw)~5@N|;!+>D&>5#bv6Y?APW+QpY@$i~7JzYLiYDOKJ^wK_B(shZR`;TK7<};-W;P5a6e}=|3IaApqamvdI=Wn9`wFPyAkgx!qO zWyspugMMc`6DcJrFDfy|$f7V#;Vg{iIgK4OWFFX;woz!)Zki zK_?;$(u^~i@}m>>G6^pPa^{}dfRUSetA=lyb($&WZLLxQI6kdX{3{3LC0pb(1_GAu6%z>Y2?aQpnS~G_#!Kg(3 zby!O)thdk(AAISyv9V}}m+)CKgYpK%vF6rwMlehWcUhaoOC&|AzJ1)6GMW`FmC3) z-_f@Bxjkd=+gWUk30CzKEgVJ%>z{|P>`n!&CP5jJmSK>3cM}|^3e`<8Qoo@@9Ws>0 zns$))T9%~>Q0TjZ@NjM*TkVo38+#arE4{N@6?GFyivpLuijhi98P&)~jQa?OAs?+h zk{cN+ueJ8B*4v5cdz`mD3I_C>Z3uV!r;XSyEgcNZB8Po zWy&z{_R#Jmj2vQp(7Wi5)L54+_y4LxYAS-$P|k?^x`O) zoYwcGf$W|35yLH1+63<^np^b`-9;S66!dAsj|D2wGq* zNRzxUB9I_veJToU7}`SDd>zM*U(N#mIQoP}y!j#dNLc<6bv)>vfc|~tnKB3N_gGWg z0cB=^q>I#NmsIgMiN-)bhA*!vFZ48L?W1qv|HB6>x>PauVv&q4$ zEX=qydMKxx%%V4VDLJvER-KKHy?GGo6jR+Mvbg0Jvu^$@cz$_UFRZr_%Gj=$EzmL* zt~En2esu%GY|SN^Bo5j&zN_>%^EFkghY0~^9rBR`3DSRXH$2cBFTAzAOsB+o-HmZV zPQD&wdL{waLX?hlVC3B=WEw?II7LUsccqAz5E8k)Ob}&d1L-v1O5y$>LzzcT@N6;% z%K+h4Hb%if(D}}I?Bh<{brc*Y6NYaxRICi~rDw^%Z~pqC$q{mKL|w*$nzd)fOS4>P z>63i`V_VD~z(ph7hrk~=usXOnP^Y$d<@dU>GtS3X1@6gE8rGZ>aZ4Q5(+D_VS=lDc@P z7@Z<$TfQ2gQrqPz{U$HmBQb`2bRt1ryNT4b9J-t8s0;cO9`9-P9eyMq?Z5G{;gcYD zIOe`J_XtaLPm@OU!T2Yc*L5Jq^CDw3(6;MS(KrF#GgsB= zuPWEQc9?ye5k9>DZF<#QAMzIyL0L7hvSX+o^v6MK8Xq0~%Hm{P`!f|1#BCI112$bF zoen9sO7VDZjod%4gUZG$Hy@!}WV?r+l>jTE{T<+zlB4jQX*&S238}WEqbIP=z}vfG zMhjcJv;92DpoQ8asMpg+stY7#NYS%+ z=mgsn=1SXXx&O%%448vrR%Y1y;R9#u%YMU>6643cV56!FQ+bczdMegL*GRR4(9p(V zG?bc2ecNAI=bD7cm?=ffrK}+90o?9tT$Ju#SukAcCX+_U8IcB$C1Ycx;r#$2G@;8cO~XnRwllTRGoh8oM?J zVbmN%YmXCNAWdQhdmm&WXdXVZ=z3-HlBrOzu;rY&9teR&F@~*{wxKd=Yl=TU+*@?j zV8&t2qx$7HdPKz)2=#t@e@K@~K$rIzXUuhhY4>Jb3kE~A=SLG)D&q*-!WlTlV3hNZTy!qv z5Qw9%8-{)e&@$-!$M-@Y!Rw!6#C3Sztb^IiZne~;a5B3+o)Oz$C>@xYdN_M{KN?RtMUigqR6X|r3c--yk)cRRP@>G_gOaMnEoqTF+p z{p|(_Aqp)Y{ zLg75?Fn`1&_pLy(6r)TP2nj7I$;U3>4plI}xuF;?OCb-}RWz^pT` zEhA;9loE^~EC$p=iV>m$OQnD1dB?GUFjxb^`#&2bIENedBqX8zz!Y zeXgI1S}$A3=;hqp`FRD9h_x4MSQ}AwvDi(p$O_4=|5FCtStAkM2)QW*(H-eBLDXLR*KEdf<|HZz$b0uo9p~Ki5*M! zGKXm=xG3qS%j{HJujR`b0A9CAKl)mR4884+TPX5NZ$qDoq&j9dy5Uj$it|GU))gz@;Yc z7*^Cs|B*_xz?JtL1Sy|L_k)2RB9>KWqNZUXa(=*DUGauTjl<^ueFg(hQ_v>hi}=sp zf3#Z<>J%ipDAv*4(wAPWE%D1&KO}%NmtX&Osj}ogG>MTG@-;j^(OI;KFe_b{ay8PZ`PgL|DxQPd!CKLK1t>* z1;gfA5zhst%_Y@e2ucPp6z7wY@pmz;-8Hb7EPuc;ROX`iH5knu8qF2S79h5nMjB^V zD_pHoe#G4P=1WM556t3fd=8LqE&?JYnQe*b zIS$HAzAKD3aOp8r;}US`J&;T9c&sl4Ey6G1*mJ1BFgF~4sMoXR;r&D8Jke!kzP)yb`3pz>7DH|fd2T|uq&|m0*mzDYwzmnXXzHkCZ{bSgNC5rW z!^sKmxsN%})=J-+)_X+AfBnPai~_lCN%xZH6;Q&eQj#bmdm;6TJ zuQ3PHQKLRX1zqUllahBm+0ira<$PBX0k$hh$?@Yt%ax9(P-tS`0_YlcT4IXli0Q^W3QxPY5}=xjTl^dWvM{SFemizA&(`f z+zMmc{Q(^4JsZxW4N2pznu2OCQXFkR_G(f^tFP@`8qCqqAp+2&^!48DRw=Dyku*Bt zh{zWDS{}{ViGwSg5#rN7bzA3ip#BYJ8EwvDU}Hgyavj9~QJIlaxaIlRjHz#_fQtd4 zD_K++c*4hPpkahZ6afeY8?>P>y7;3r=<;TAexbf}n`Na*2FVr(( z8@^w1oIB#Ue9jz??VGKg&pa0}Mh`$MG_MBn0yUZ%=S%OVw2M%>Hjs4BsXtV|5p*Y= z>NZj0GDEBnVt=)Io6{253p69LH~zZcCs=~}Gq{b4H&!Cwq%axbA1*Oq|J3JfqhTT+ zC*Hfiq9dhs0EWR*AJ=+w6VM>R5~h|u#^N-Xo|5A~tm#BqCI@cxl}cA(_HQxI8GHnC z8pfdDYd56ZBrwabf>zr!YBHEwJfW5=;A9(A|NjLpFkr|AKamDrT>_K#%&NA0tU89~ z2JeSvf-Jl&$Rz@pBcUC1VvuF;0m3nL)hfO=Eo@#3ez7N$ULGyG)~>ar26~1qBn=JFtO5z$<`9= z53EU1;5Ykq!wd($fIt&4Vr=U18W1{ZH?i&Q{{Sq=!4$DyM<9ESg)mupPSBM*!zRg2 z4UeMhPtY~5cJydpx(9^1avL*iZ$eLL3zR}Ir~S`Y%&FuSh5GD@exNJS{xon^8tNhs zLs!-W8i;QX+GT8zu59zuDbbFh9=lj&n4wIpX3w5$cGz4RMU`wr0O^6#P5ZrOyb`0h zy(CrXdr-4jBFfU)?M<#G!zW;Q4vLr=Xi&|tegE@Gl?(vp|Gxl3N!!gZ=&=g2sTQqJa5bQHFRAi)LtyIc0VOwSDgT0!#6|d^cjN}m} zzhdmv?GM)t?-_Hwmxtv1r{g(4-&h_ROM+bd!Oyc^1o=*gLMtXuMjuz2NRePBBkGrr zM6qmVKcafV)4G)xy8CV$sPO9l{BTd77a--2{H^f^Dd9t$xJZS5b+4aUN(b;CdF2#r zZvx$=gIz0joYg5zPSh{H>%R+JfRD)WBxrR^aL0H*bv}?TS$8Z$NIjw`8haN6 zeF)U69-m0#6jiYxFaZB6QU&Xe$O%+3X?{)I_&yoWFX23Z-#IXgk!Gy%S-y`HCK*Y; z0Ly#2;m5#!iWllNr*)xX78~RhC)LWB<4PZpI^ucq;7hH)v-HpgaO`cShP^7g(#`to zspc=P7EH2WX`Dc;3kKrx0ISfdriajTa(_FL9x(AuYV#CI@kmMidh{tCc^LnC`T*Rd z5fhO)@PAJP=>7Wg{be?66}$3LYB zu256kAT@QnQMv%_7LlT!N2a<2rYaZDO0+nCp{D&0rWNSP3|Nh7-}Q7> zuo%N`acG|OUMkxknAQ4z9FpA+m{&g0Pn^7`yadnajzaPh5Y?F!n~|z!T(@P-)@EZE zFIPA{CS=z|MJ6jTs~Y?>i%MK(>*c9kY%SF24hC!AWeN9Z=T0hdespVL zY(Q#?zF1Mf6LPSm6oeFdOPC~!cfi0?VXl{7PsAu6)e+aR=h_a64S=3GKy9+#!E-lX z`dcX@hm~0mj!46p6+y}z1ZuF5<|i>?aLKhL;5jhn9pJ@+77q`mFQ>lP#2qVQcT5cr zv<_mF(@bAW4$glFs0Hn2LU}455h%Rv_W=r9+icT3@Co-I0^iTTYVrih0UQxPvo?|l zaED|Nz{pp5O103BZbvbc_7@dQ%)aO^j)#~G*XtUlh_9B0~|*YpfBUV-AA}N1|3++ zKuC7%O4M#>11R?Y#fCN7Ao0d6)hGhSIuT(g;w&(>0IaT&2tZg?PCte7A58OW&%VPQ zU?B6B>LcI|9zLoU6c5WUV+6pq-H8_`v&xkDlH|nSbBwhvFmMkxnRfL8Ien2d4GiaD z7Y#zgN!o}Bq@9tdsOi$1vJD>@4GyPDXbVf4? zyRW~rJm#VojCNNc2B+wTz+*PWkX5_@?=`A&HAf^o*W*HIj$MkhDBAl{kBt!~dzBLR zmEJlWFasUXlTCYv{!Ht*?6mnWr&4Dfr58YQ8qf7oC9+>=&g31{b;ghbZY&NJ2nk`P`Lui@ zQ+!5#BLK#KV02qqO8J3{9^7GxbK%jF4M)#C&NrCPCy3s%4%?}C21UY9zM+}}<$f{D zK6R}PDCw7)A|=wfs!+$>#*WV} zs>y_;1Wb!aMu!xTG0eQxEnhT5eqzWII_c*?40QG=?Akqy3GjPz_QB(plOYP`ew592 zG?X_Lzm8B2?w1kTccB+Sk8_OSs`$Yu{ZJJPNRK9D?{h$ndcCInJPxCaf^{iLR~Lu0 zVRDcMwlvptUhIfqmP^s_+@mMwbV%AUj3z*UnjprzbfGMS0)XfxVt*?POAl40kO+iO zX-&~z@(VMZ=Ss8|s$kDolBZBoG{`&{hxjr_#|8dcdK8*-_%lLK zaJ+o=ktltDOw~|p5+vp8b#fi?8vx8I>bQiYQ^klT{3P#_$e8=mc(p#T?l>2N6&GnI zs%oBRga!+Ca|m|a)o0DK(6=Fqo(R8B1snt#1OBnamC6CBWi*>@NF#IQV^2Zs3SFO8 zOp~~Id0UUVOtdiSS71%cT!Cb)ff{BRLYY;J$_+)C7oo9Y8m>hR1M|ukkjs3cQ zJa-tbJ~EW_TjeV#5P>I>Nr3OD=o=Q3qy|!aX?3!!2yLhou^8)<#B z4HK;$V1;B7PKL@hoCd>5;A`r?;rv`8U6R`4(BX`fGpKBSlDO6l=2V!tdfx|p#cGY1 z@RTeiZ-Hvd$#l0gr2j-X`)gen6<5;B06_30wWCqEEJLjFnMfM5%$0!Deo67nJ+tztBZ1jZ+zD+XGxz1SRi)eQ32XG zk{j(BeF8l%8!dQGOSX73op53DTT5k-Dnt>~53=PZ!@8hK-{S^2{xgCATqeV_)`{oV z=s6>JMiX&4p#DKccCjh74O*Y&_IeAg_9IxPzSuqh`CA;oup|&TMI7bZ7Jr~!xKz#P zB&gclZGz~qE~Ck;M+x;c6W4~VyFN`3&;;P^1%C6l`w($Xj1WbO@@BGbWlcqA~uc=74qkaT8AzFMYpqDpL16Sj43ibzbHQ!XB{2rDBiZyVk(LKMv-2 zIsib+lgvCVdZz2*I|75k*SK|isFk{xNNl1OC_mb(g%SR|6|=H4*ID+r0hW2QQ2x`} zI_!@(2JG>fufgU@Bt?}CxuOizc>JT@>bH|z5f{R`Fc~G>8e@>9!gKubeKc>f6awC9 zo`3(l06}*^T=#VIC}P@x*qzWYa3lhhsoivQ=MgB4cAK;~ttnNLf!!%lO}WRbJ)4{M zs<*(7^BW*ibAb5Yy&5Ft*b@g0OBZmP?>~lFUNJ!s70{_YWuXTWuqZS`FKXTdkjdKjIj z>T7Sa%b9}JTsFWDj6o^tk&z2vi=lI=Jtu{t@j$6lHQ0Atnm*ogF;^HVLZ_lizdykA z052bBeiLL$mr71RTbTwJdDgR6wfBg8XmAb8cMRU!j7UmB#3Nwm7{n_9PNB@{l^s9< zl=mah0X`6Dk!>b=a7_S`$58VIEJ>R}?mf=5S{M|_JbbNaL>&d|c#On@u`h4;_dpr8 zMf4cizqMawbIFpH(E4V^ll#)|oj zFhKkM@q#(2eRn@0W+jMv2$9&zZ!c8{UG*jrDHoe@9xDuNGFT40UlOk;J!+(I1Ox_i z?W*MpewBb0=n{Cbn`paJv$3zn!gg?9n84=KCN1V3A7vdatPt8sruC02ieN}^T$YB0 z{MrY)7HV(@4Dbhuma)t-B13?+ge?*(6`Ppb;oce`VtBk8b>j-=n&UBjikUf?jc?Fj zEY{@Db*KC>R#arcxWpd5;(jxnE&h)T5`PjQA@^u(f^6y`2G7XAaj1+z%wTtS+rwqJ zIOF<5pa(!YM5@ijT4JU{zavKpw0+u;0qvoPVbr{mp?Jf>Q+|J}uwA%C#isI>NNgn1 z$8j$Oy??X#w(yDSW#G!4eN@@*phb9yDXLoK5lRqJpT-{jxl*?}bdt5c=;HsBfs~ZI z0nI;N$T*^G5=IWtFwnK^i5CPhw5nnaonAcpE7tGFTnhE5W4xA#@5;m_>{8ijXFNd_ zAAbnIycz+n0RN#YD-*K*AO$cExA;TYMEVKZG}g-lg@c%}FeL?VB*f3$0%e{gWLr;- z*3X*&ViPzI-#N!m`GD5eMi3WAk_#?+vhVQmIOw$34<%y{?K9W+IRCNmNPZx`;-FuA8W{l*OoNs% zQQ|2{<*n?Q^j`-GKoec;eBG=dH)aYt*h0?q!EU=`<)Mb`k-8X~0QsT!Gnuc*sg*Pw zhoKbne*@UHY-pRE{FAXF1%Nt)RN2lKHPnFewJ$T+?P zGI%kTbiHjB)tPxA`OAOuVEyj%BTi>grZ|$Kdg$>KXpzFG+@X{458%AMzy-745!%TE zIAVVAaKojyPY1)j!+m_b0=|OM%Fy47@kKh9+Ma7=5VefOBR$cGch2lditgh5odu>P z1W}Nb8qP<&=VM`>9arWsF+W)bJmUYk`6dvmC?B;_AGpC=n* zY(vn(zC_3+oku+Cxu9u$Leq^qGW$$H^5pxo3h<@@|4acgqB~jC@w6a;~|%{jZV`Q4WG>!tJUiOTNgc%I4Adizon`jDlIjd7xw^l^Kk@ zis7j@03DSRZ$+vAv1lDMN)Of-_pBPW5!yknXaQ>Ni#Ltn#))td8O$l-L)%Kcc12l&`hb$HLb}B-O_cwJ}RNy`Q7n zysh_Fr-Y+5J57=hdyH7&} z_pWyUbN3J;_u>}UFIFo>pmS6Xi6T8J4^fMTtq$Sg=E_>$(X$;0tMK#U)eS;XBS2L= z(E;rldU(U#%<-V!D@5Jhzwl>_QYZ+74T6kep(fDJ-D*3wXKf3SCi|cLBcYIABT-!{ zaX01)Yw#Kw@4l$mQ?ge*hiqjSdaN}htf8)>FCBEy8~0`+5z-7$Is&CS6}YzQ>_oBn zK&PUK;M~s-&!0ghzY35YY=)Q8S?FGI{Y zaD}cD^&oi`@|tZEIxexO##3LXWz~LBQ3P0W4b%lK3f2!_$`23j-)g46Y@ZUbcH?83 z(<4aT7qr4smd+!eS;;nk7R8Js4GPJ8q?$cxw#I$66o^ovRvvhVT0+4Jb)YVZI=%o# ziG08|A6Tk(1Vk*S%H_@D#id~~l1f-*uRNlA0$3c`H0v&CSM&S#g3JZ*tY5kmf2M5K zL50nh~S7b($ACD_*P)Dw0{% z?>Cg~Z~FldFh(;%2pjj4Li=2!u^*xxD8gh>}dmRB;Bl#1Kmcg|jsDP7S zz{49%KlM)9<+VBl%nKlg@BHhhyOPhn`8k$TiNLoX6uhZj@<*(Ig}S1-Q*jKcI}-GV z#^pkxC$d091>(>rInQgdhWkzTP1l}V3olvrpF?^E!u3ylZ-33X=M*uOwZO94k{uFES!_^z?DWSBdn1t|Cv-g6q~mb9}2~x z_h=U5Ev4Z0jx=q9hF2SU1D<`+EC;~b2y6e=vFt8HQ`QIMo5#VH7a843qm-rlGg6|g z1y?g1El0x_RHIFyIr-dUngBi%ho!{_oX)?^R-;Keb|k=`inbNo_Y2GgwZYTPfkga0 zJe8q*-emFy=WlkbgC9lN-W#;>k{u!!42BOpGf>X9HlymGIw)kk*W{?+e|+Ha4%+BdALYQUnTT@HKA2v3q-*sy zM}z)5J}Fo^2ZLSX?>aN6kH#sJaHgYl9)`F>-5(BFFUgDZ`BCZ~u7Z)O>bDb$Z6gZx ziRFx?J&&uN)?9qGe;=F7fP?)MX!u=CsvpVucRx;^wE{A+kbnt7C9}PO7XHCd*(?4Q? zjp5PVbIu5t`uzEGzvWXqs`!s6AMtX&YZa^Uw{|zO!~*<5$c!kGYNyAa%JInr6ExFkAd<5F@P1ivf|^ddJLU zO(1`^`Te3>bsR?Ts-JFw)mN=(AM@H6%`Ye!tQv8InFqv-Co3>&Id0@Wf6b$Ij`_Pc zkR_GS2#qend8G8NE~=RR`K~(p#HDE|=!x#RU3-kjng%uPek&2XSI;+IxAu~{?q!T6 zOUutbtsbufYy2PU2QR||BbTF+c?-bnO^hqSngxc^JU-DVZ3Qj8V6yyD`Bqe?6jil7 z1E}#;2KJ?(kc_-4(T_e32l>n>$HNj*Qsy}@8Y#f9cg9kUBs=}Nd>`(?IDxmOoz9DE z%|3+&SgnJUs44Zdqd%jRgE1rLrj>R+>5l<)4*PhsD@`=yj%d=F+JbegSpKE)s%P74 zyYD%FkMNy+@#*mcd)E84ccn*uJgnTpExdd7pgY;k$qzE+(kWjU5*yV!D0j1&Dtqg` z`1J!t%Annv2&n}iWzV<-yay`y)I$%A_>g!|q3FZ416RO`-$EEMa=db-e9C{G-8VTA zXGz(e?&8ZgM&s9A?y_06bK7VWRW&zVH8}RPE-CBR2Z0s&5;y5A$kz;bRAvr?(yswN zj|#cCb4Es1pEoIgzxZ72eZFL*^%U~m7r^CoTe_=JQxL=Zf`ZZ`ryswgiH}8#j8wv} za3bE?!eb74`JXWKhD_hpJWRn^23;<$J&ic#&#SnZ?2v+}()ZmF{lPTs&JYAn@i*dr zb=&N6TVCkt=^4uU{mW^ze$><(UP`ik|87J1<+`GgO~X{W%_#RC)#(D5ysGU*C! zTIhJ9d>n^R!rr%FICP>FGp={p>9nX9PCFs^0sUnc7)wI*c;WlmEsAEK+O4fEmCb?U zMj4>B;}G`97ZoPyr*$qOjwx|V9re-QlQQY zNdWfp3~)+wb91ro0;cUXXY*iW90?G^Z#spu*YdD3H-FXC>9ka(o6oZA_M9_1daBwi z`tjE561=UYgIm~eu(e#pWv3!HcYvOrWbG_Dje!aA`TRR6$)=>fTFWa6 z^QnB`m?~|Q!g)_X){yo1dN`z14BshM z)59+_h>)LXWn8YZQlhbI=N^JMa^(~=ilAhoTik8x@9ph<4VvYh?dji&zqu_>lx@@} zlF_d1;M$j!Y&~c4-1<$GtY!IAs8^|n87)-t`>91nX989m=3`%utcYxbt5@%Mmia&( zpszAZC#+Q;+EbzkQ>+*~`2h)1$$Z}mA$4-d)DSjVQ0;uVd+X~nQK5BxB5_!$TlcNK z<<2r&3Ez`)lWz;#@yo-!*XSKN#9Z4yw)!BR*BVv5Kdxv}bUjXa9<5x8f{=4XR@U`e zHKY>vylQw3Vx5_jZMNsH|Krxd_}43iorX0FZaJ!}!`8l^K)^^V5xsUTo+zCv>+!BA ztxjxl)F~^;+E87Ef)WZ7QkBTKjyotTk9(4pcOWEs%3_xIiS_mJ2}|vt+XhQ;)EGbi zi+Cc@168GJ=cM8`e(vhgt}_7;7^lZ_xPPNDemfQQ#%Gfc_HgW$UXwrMVWC11RLD{) zJcLM1zI}S5nVj+-l);13zju98%y%Ki%imhrS+pbzLsLN{O3PffP<=Q-KjP!Kt^cKE z!vl;6z0w{m7fA5!!VeEgJFrc5Hm}(J_L=2O$n#(d$ZLYOuf$vny}x?xJ(%%rsJNkQqps>iH0~A(YLG!_RT9(F*=}VBYbum)7u@<1 zW3vD{9nbMyP>&kBUiCR~kQz>kGCY=FOnCCQ;d^6POan=7wf=pd;MhCI@mW_^j%B@W zXlEj(9*ay=c;$G9t$6WxiDj^}ED@Qlmtpe5@+nn;TJT^n<9%wvq zNCpK}mGWMAm=_~;-(v6v<-})OW0#UMTpqRQ*+TjkGf%ZXS_WeUAT{pI;H+%p0Z4if zG|(4^Wlr!wXn}uEf%3w`SEae9%!0){AX<0Y36pqNqn3LtOUI!%7_BrIoWFYhnZ;aH zh9&k4@`C?-ovsSV5&oIhFT<77>Ed{grbd+|S&uim`U;+Y05Xzshu26TkzmhG+CX)u zh!2BAZ=#{Z6pEd>s{7+i_=A6c40g>1PVcRAm((eOx}n70v%y?oSzWwzDGDa4S?K*z zM9gyl84*%aQc8^-h(6#4QeEp7A>Ab(C?ac=ENidiUAc1QD`;F^nE2BD{XUp2h@GEH z1S+|RBqsQo1j+;kaczD5VIX9W1Idt5)YbPDy8c0j?iE0kB&DQoIEM)p8$SeH^3NHD zTluhwCubz(OuCFAh+DdTm`n>lyF1MF_i>Tt;Bkw4vO8w@}0Z}aNj-9#aa~2!Ag|w;&8hdf6@U} z?>}!L8;d9JYd4*j)2>eP}XuK+XHG0OqYKF!txGj zW9};c6x`AqU4dHRy8~awd;w?V3)6>rx*KbB`HQRL)QD{WQgl%Y3~E5 z6TqEh5QG9Nefr3tUa{JyL`&bQ-u>gBa+GV90?sh}dC6FN(D30RZMLN zB-T;pwUwy`OUQr%^lsRD*tai7$}WnJ&H|!EwPINFU>uK#fU6K<$yVGswAeU>M+FP!NCDXdr2_4SR7R-M)w#)0al z9XA$oD^%bW0HziXAPBnV!Z0R&4R~<_k4!$ zB2akEzR}E#NNBlx^7EXC|rUVtR5(&Y_5pMXGJ_;SB%_YY{?YrdbTDex2>-EIQb`~{eH zOs+1USzW#LI{>Nz9mth~P?#O@yz9LG?*&;GS0-8R&ZjbRV^c|g?!i0c9(<Zt>Y>cioRevzyWfXqk8i<1Il-mCO{zyAk z;S5fru7y%?ei(U9*L;pxnqNSSld8YTOG!y>>4nv_1O8aEdgp=r3vC!Os9vd^=Rg?K zF>uhhFYQqbL`|4kME2j5h&=+2b)?2f7?pic=ITP6WdWE(q!ojijgzhRy%$$MuKIG1Q$+y_ zT2~hj3)q-+SoYlc^BR>!;2~Tr(4EADoaQBb9BtS4`zM7&sovHA(v#;+Rp#Br}BRAewwbz5dq+E32|GZ}W(0{H1_}xsK zgXXB;?R^nQ%OUftE}vr#sZN?e+y#(Ev{(AlP={L{yS$&L`Bi}-x3T1pK+4x{Ec+0A zp?ikKUu7`;_^C>E+>qk`lndBPly#=<30zRwb@I)Z+1+xqye#T(1V%)v%Ll%aML(BJ zwpvzRG67)83|Pk@P+v{#l)!8)=7n6gM}L9|6#pvkU)@bv4mX2+Z1jFmHst|(k?>sT z>nfJwPfE4pg1kjJ!a4xC>hJB`$Sg0czjQ`PzuAdkL!U+?KF z4uS{NiNLKjvK-SabMETQo&A0QA1)X3aYva&PP6T0M=mMe5kmN}+&nw@`$JdiOT)#> z#r0)%afrE&uBpR(!F*3zF7zE4O~SRV0j!ztATJbxrFv~ZK`s@+@*3x_ktLBYDdu+q8zEx=ZAb)#$} z={;FWHXv1{&!$s5{kQU{f@f6rEzbw7`o|5%4HQ|=)=#roPF50Qq@tS}*_VDE(G9=4 zxn!Qg4(>ng#Z&;Dz5xpTIm`ju%Bf%0vjx;$?84i>MOk0X#>+qXQyK4r{N#!}N3^Pd zt;#b#t@1jX+?WjZ%FkY4^2T=RUO7kUGdzckr}ELGN1p;X|5?x7z4+2l{!D_IVKAc% z(7ONv=K!)-8=>^?8-O_tb>JZ<3l;o9)PHUh2mlse)?fW(bT(B&1yrT4!3{=rhJ&RLTuSxR6oqwmPU4X2Ae%5xwgjzg=*tq!S$z8cumS$!P zeUYZH1TiacJ&Ip1Js;%E5n~a}5tg=a1X9qY8Q6dSB5VIH7$6b=E&UE?n#mg_2)E8x zXaVXym=QrvwhJ)v*_#*EFji3{5a>>xAXuHd%4bo(=WhsR0jk0~oSyhux}`mmnPY!B27uG+mliOi_G? zoq;||*M@WC`rt8NSq=c~d5}x|BmUF|cybn0i?@=8LjR_j0{Bn5XSJyRew%a_JbAA7 zZ%3odhJen4_5)0R(r_sJr?Xo}?J55JKj*YbxW-Zc?;k#VSU)cE^6xuUPJ@CunO5!& zH}Vrg4FLu+NS<(mBB!gPV_={3#6x5#46eJ5jt(6U?ZtoHzQ;&}n#;R_d<-Re7qLIu zGYL981hNLeBM z<6JFY%Y4~(vtdh_&0S4U!zu8nWoD@;tY_t|)+{!n*pc z=l4C|@8^8q57)E1Bfk^e95=CA02L`D%=+ig(T<@9`&O++2*tpH6hhdCXO26hV5R`% zX~&myMAhUXuI+lALS>j<;c)@tXPL#F?3`e|CQw=&>cq?(v}%A?;rSS7lKNdO*p|T`qXHB;j7>I_}TdPV^Ee4tO$fi#0*4d#=zd8 zj_|9irI6R#ty-elmisr2vV$R*sZ74Zsq*H|A2L)?PAJ1%a0T(}(iSY{17Nm%e+LQy zRM5l*wA8gwiew>{VV|x^)Fsg8Phyii%R`4E_{uk8A=^qAHi1gL*F30sI1Jv5Zn@@K zh7c+rL|`9zY~5<-voy*6e&dUs#1K2#Uzk;c5%a%UrSJh3T)ls^KIClyM}Ga`tl0q# zGuiwT6{dw%bX~4i>bg?)GGIdRobX84(PX{A!k3H-!gsPUcxMf3hw{^#btR!`@W%xZ z(ayz^+YeuCqWPl4LuX!P>*;gbDC^@@(d7-VIf}#x zUc3wD@YQ@%*1=#qdEu_9QpJy1K8tF3chq5V8)>U;03182QLHlOrB2XF{w6%|9M z(((k-&u&??7VkqSgRuOIgn5Ejoa67@jLqrC$smf-{69^axApT*IyOOdqB-0fn|qPh zJjouEfZM}#-#!L`a7Q*KQI-BYH|g>s%iA7i=;_eER@XJ8=#T|wDcqn5b8Aq@trf-J zgW{EX^HYc5voQUKs6vS0NG^IR(Dy)7069h1Ou4ZMkBR^4oTm1>*^BKb8mtRdHwFZcIeZvA#j{lge=$T;^!`|*5?*@96s*eV!-$KIG+(Q^BOp9KHCtE z!n*iD4te+KYmo2fkLVgr&{+ZsNiE7o;qE#QWZ<3ifyw>Gk&};0yxa^L*ASx9-D5M+ zoy3oQ(Ctv}_ngQEPjO$(Gb)7=&BIf{2kxE^QJE^gqxI0SV&js1`=x8n0*@3Ek(}ld z=WK{AqcN3>B)Z)S1XXHFZ9$!G2IEZ%S3{M5ri7B90*Ug4M~5K15C-Mk9v1}CQ{rA?pDyV~Uoz=V^SW-YJ z&o(OQ=vstA9If86mSY2(P~@kL9!QmOHr75Gu@E`aS{Pn~_FE_{z{XeN%Hw(UK&f8EUTy$?qcwiJC@9vzO=HYu+0 zMZ4SwJV(2eN!QajUX3L|e*!v=SkcEHVdNz$?fZ?ta7JBEsnj=Vx}HlrfL(?;x+53^ zm2-GHrje(9>-D#Y$?C0+ Date: Mon, 14 Oct 2024 13:18:28 +0530 Subject: [PATCH 04/11] Delete cookbook/example_usage_of_fetch_scores_files directory --- .../example_usage_of_fetch_scores_23_0.png | Bin 69461 -> 0 bytes 1 file changed, 0 insertions(+), 0 deletions(-) delete mode 100644 cookbook/example_usage_of_fetch_scores_files/example_usage_of_fetch_scores_23_0.png diff --git a/cookbook/example_usage_of_fetch_scores_files/example_usage_of_fetch_scores_23_0.png b/cookbook/example_usage_of_fetch_scores_files/example_usage_of_fetch_scores_23_0.png deleted file mode 100644 index e052e88b75be7102ada8befd86257791ed63b4e0..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 69461 zcmb@u1z1(<+Acg12}x-rrIZelknTp24rysArInBlML`J>X^;*{rCR|hK@e#aNkO_f z&sb}_zO~Q4_Wyn7T!(9Wt+ic~ImaC1eV^xk?sy|Kt}Ei>P~o6ZD12olIZYG_y$=46 zV`IYK47No!!auIL$?LmmIa|AVn%}iTshhjG+;MihV`p*E!|LumJ7*_;ZXs?y&WpBg zZZ7vkcz7KDdI7idT^pXSIM`wECg)s~4DO*&gyzT}v|P#8b|^FyN?A@?+belx!c$vY zks5Q|#!l5aFd#h5Oj@3(RzaSDk==sl7l|ro1hIgi1!sWVnxGu9I$ z{Li1;57A8+|M<~VqFE>Y^93@q0SSNpXHsIUI=Mf7vYrZ0v;6tWkTx`)Ki`UtnZPUJ zk5?)&xHhT&`AVD!h_YMzbnTZ)hL=J-DF3{5A$0(ik_dg}noqydsFhCR?9UbR4 zQCBCX_EHd^oSa-kQ&XldMSQBZCoSz_xE$kI42*hD135YEx5(#a?0TG@_&&P8k6CFy z9Qf{?h?~3nK$W8rr)dKXk7>hm&uxjsBBN@HFK?_iibJ29w}whH6HDvqRkw{C{G6yg zA0Y?-)32}{FiJSxTGZOx+q=lgxq?2VyCZmKG{DqvAH(->r#(mg<@)jNR6VP&+VTY&8azEcy~LL!kh77!7Vf1+9o1_VK}XkUnQ zoj0m>YJW^E#OpdMm*=Lcs#^D8pEy51|88DFWF*cNety^KCbX@!DbuCVcrK%~;^OGS z!a`5>!^Kap*SEJr;^N3wR#!P5O#YhdoLcl*TW*UW;T00<9L!ej{wV5qd1mul|)xQ<83i`v=QN#r#@ zgNKKAo{TKy)9V|S6Yt#jmI_KF-n+x|Mjo&a;mw;jDTQ4wa&mFG&bFOPeDUI3XUAje zu=~3|XZq7+*L-Os1!~|IpJDoRc$;MNQLC6dZhZVR<>>C69yzUE}c%wZda6ofWJX zR^9Ooe0(>(inFq|q^C^j>FI|`OzD60rSj~EurM<}C|!R3y0DLoC?;e2xiws`4K4+@ zoR5#l$=)1cUb7PsH8r(bBCoVpNZ)A3V zPPnd&@?CZKj7LR9rC)CSxHSIm;m&H}wR@L(K7LHk%ZsR}xQc2D!KLWWR;5^2T$I+* zB7sLQrKF_vc6GGcnf{&oa;W`qzBIi1*cg?cpWpkwK8g)t5s_KAOAdoz@Uc>h z4qi8sg&%sXj!CPk;vO6vz*AF{lMB|SgYO1gV!YOqur(AvsG&h(Yio=5!Jf-)YwLKU zT}D&iZL(;ZYk@;U+6=3+?NK%Ncby`LTAx2BReNy-!^6X)|MTb2;$rSw#>TFzV*(5} zG&Ig92{{v>C?y`$^#9E85D^i{fIU<5VE@WkwKJi*y86-H+>@3vp^ z>O5K3MvpOB$E_i}>a)M`y|lbM2)6vA$Bzf#4&Qp`ru=@hA(aEAq^{l$i#=pyq@x29 zmz+~dTKb{(g|F4lil1`S(=#*Cjg5^*zkD%=x3H>82vfJufIA^MP+DRe{_7DUR3m0`Pn7p zDs0Cp*sS|f9@G2nNx$c}?7$oS`nC1_du;!c{mUmun|)VCHct-M8eLpnrDbH!Jb3Vc z*KUwGS^Pe^-BYcFE3#cw}p#%5{{0Jd^Wu_sHTO1 z%n*-i=P47`%h#@5C@wB8t*-8TW7XYXX4y%+T>W7GE+sX! zSJ8&@F;u0@OuV%)fUcUrEuX+`TzdNh@lcTw1$(*Gf=AaSWS{sR#u*!nPJHCzJDJsQQ;9KgN}8H zNjyyyb1E%dd<5~};>(|LmencW&^gJnPa7~SHvastJS6A0;rvPU1s1WzQ{r!D- zQD{|_;L_)!C=R`1?Y$(6GRoF4!V-< zL@#N=?h6(9sS>j=tlyC3!yJGV7Q^{Ex$q57_J7bLt)Qx^%H{6e7O2o&VtUHT=T1&e zly2MzD=6UbJ6sh~OO>Ggm?Xfl`;JNBQPV)C;>^NA`1G{d-u`|%Tz{@{tzd78ILEiI z_4ko#Q&(Rf6~{mvfqIbGHw;%d0Jnsak`g=hRaO?Wu&5}Lq$K_88>yHmXx>arOz3E6 zXy2=1!WS%?5%^e70@WF|ds`%QK!)efpPN})GQ~OB+vE89`iec+(_pW+{+N^%2EDN<3p= z3v(L3Bdv582?fv=6GH?&#}y!4wSD>9xBEtp8kNxID5XQA>mG;q=l{BrN6U!nAvhg+)a(b8|sa6g(Ny zL70gG4!R*FtFyC#mYvZI0s>@k$2w|U=hoL}WZeJ>jn*td)z8%}N*a1{>2#YxLJ#gn zJ3N~xUytNhuh8lyl^j+^%W}0|6F_&rS?}X+K7Czoi*JtmqnzBT?K%;knN;jici#@h2@UEu`};EG=2|CSNP9stSdETYT&78KfyQ zwbIAFd2=^nF;?&86`f${_iK~&Wpgyv64Gje} z-vX_9D*vN%ZR^@_fnErjHZ&ege5x(oAKfZ(>^l9KiiAkxfH^?eeTkG#;sI;nHkbOq zYC?*HZ{)Xcw-b|+8iw5gGa~D%!eN9!K|ulVZaXw=UMO4D>_2=Z^e`|m_BOhC_@I{) z_vOJ&2x!5tY-wq60mz1+T*YXbX27H~Gcym>UkcXi_(p`Y<02!?R_{B{wP<+IvoIvt z!cuwR&BeuaQ$r)5)^kn8k(rd9{>jkL&|NHYtFo#pObuado=6oPZ2(TO&z_ap^wH&g zOw7p0i2Po(kd~3l6%!NF9zD_EOAQyM;?t8u9+NsR z2D0y5Nlqsc{-P{)p9?QseP( zXhbn$t}6VnL(A3h6#&k@YAO#TK~g&Y?9mkm6 zU#3wDIZf~Vnrm@jz@-)S2u@9<*DW&Cv97pjVDMId%j-w)tM<>uPcRFh~Ha29` z)bQXpgIQGLn*cIH$KvuhOg>#2tK@*jP-Z{Op0|~)njphW+&nzIU9?P0K@kSy6`5+^ zhY!+bW@Ztef~QDfqJgE7aU)e?51s~sTvw(V>0#dE-W_}R@F7bMMNubL63*1?8}v%d zvBaLs+&*g(Z9nq;PfvtBf6_$Lit4WDLxY9uL6QD^e|(9Bh2^UK5H_mImoOsyTL=*{ z9ofL`7=7o?fr&?nGBPsq^72Z9?(qJ@hvqNkHf6||MJaTIN!~=xwFj7pGLlhPo zY5~x70bY?;U7m*x?~BwsKxEKo(LxF73GUsyC+59z_VSICV8HVPG{PFQZ(;4jRilLx z&_)7Kf{}ZsPx6%0mE9HI3J@HDTGG{XA72WEL0cIgA6Mbr1#I#VO1@#W)8mrH6DpXW z+q&X7(qF&Uo7bM(MXJ{eew+B0CD8GaZUdhi4fp(_m>7*w)g9>~!^*4;0~nS}P3ap? zPek3^+|shML!gSrzwLO(eEE8ElXK%Srn9s2jG!_+-r&qkCZssPfE4dj3@Z*=eE0=^ z>x&{HRM4V25H#sLC83rqd^3E#@p0!9`b_yK@`a&1lH}xMGkg0;82?~G#2+a(ZiSMP z%{bu<10*G%#o4P@ua^33+oPHi`7BFe@%QwIGq3yhzW^-;Gm+d zqr(DpNGweEs^4RjaGX;I5n^M6?VWfJG+EWcPN=3V_4jw0X8!>uz?Z(s@JU9q&VUtca+n4rVw`>Hi}1E&}{Q_8M$=!}KHIZ4jab z*@va2ys+_zU>!ey*XTLmcnqM<^?MiDRi|-Em}!8*c&fvXLXBs?_>&J*f%#$`%1fF} zUrP4;uZ@is7>8ZvI`A1Br<)!k135qwG!&Onl^pCeq#mPSDo5kwNB6)Ha7lG-}Jo_#j>%n$-7EHK>^Ey0QD4F2T)V0-(kT7mY0`5 zRn*nKZ7A|5_ZZjJYkoKT*6SODv@iv$WW$iu+S&P|zB@W9DhS35?WBl^bAy9}>l@!y z#qRIm0k~$Fe+zTcebYuxxHG<4>;;>d8zH6!cu_ZTzZv8Ed>;_u+4@p(YjQYE&x7z) z)5#JOv7Z$mrvlG&Pl1IvMTghvhwp%2#H_#TG9>4%CtaL#BQ+Xkd*$qic8hDnIU6qj z;y|;e+bqg@Fl%yha>AcHNl=M;@+1uEH59BgU^=Xx?6mU40Oerg;gN2<$NA01ZZPI&bs7P7SJc<11iXVHo%CP@ zPzrMp3g@-reJ?NU{l@)yY6PM|8)yZR@7Gu7#+kLo(+*?@etU7%ju<{949Xe7PU=b$l@rce|e1F6Ldga#029C&_cX;9RK-4@O_oSxiA zXjmvqod?^?Gqbad-!AZ)p`dK=-QT&>*52McIZ3DZgpR8!W;m?lH+6iDhL)BgMoC5d z=h~X->@~d-6Rz@GH*VbU^6_bK-k$v1H}&b>@7U7)>qe0hGyRK_-e^IUsPVP@MLQ#X z7y0ov57x_}{MRC53~9suldX;!=WXLqMFv9TCq~91_|IFfbe$P*y^HksyJkK8{j0GQ z3SL%`zu#3;>G!XGhze&gG5G!K;s1dn7x?QcS?aE||LYov*q9am#h8B!slD3$kDrS9 z&z~A0H%X@9^7|tGcKs$bs^$ND9|Ha-_W{U$36+6?0bt0nadDq{>in_QZ!2mmKj|ZV zeU&2@a0@b-030}G?qX>l7)mD(^%l-(aCFxe_}m(-Ozq0J5L#D|{WMfWu$eL;p7--7 znYPTcJ(D{;Eg6>G;w6grjE+R!VMQC)2gNiVqoXu#>b4A}toG-n3)oXG&$M^nNsjOe zPxVZdIofnH5Rx~?t8m8nF@~R>cS+%Pi&mkyKXDn4rs~Hv%@G1_cdBN6BP`T9s{n>* ziD}dDWx^1#25#T}{)%@)-kprCWjjabUR2E7YdOi^z;nM7$oI;KbVu(=)ImYb-M;04 zIyyhvVf44C^tJzYFUxd*5Xh$yb6KoE1mS!beG@1IfrB8@=4bv&jyQ2fRAxD zb+&q%#49P@(Eh~l@ykqibqDPce!1&@bd0l>GxSuCF88IL^WGA;%9mj!dX=vP4PQq< z%GTZV>QFD>Xp50czm9(4iRY<|q zrALPK6rV4Jj!u6uivOs=Do!mZuV-|>@S6XbPlRhyx+dJ#zF$c4Rl2fMo+ZabHx>t* zjWw?(df19OwTTDnDGKQ?P^)~$ts#jn@hl{v^EV-gcfTiryHdg)W>oHzI9$RMPm3o# zk}5d!IaBWFT6*BI&eSa2Hrq%YBA?xJ^Q+fb3hX&5Bp$zPE|MlWqM`}^a9G8}Aw+TS z)_rN6w_7Lq=`XGkOw>iQ9adX@o)Oo$sTr8+z!R=x(%Ex0e8j_gu|v9GG_j%Auh~OU==#uG*r?^zr!l z`JrIo{Ah1$YXZzSHa6BjJS=~Da!f=|&qK5O>(@gVH9nV^J^^SY16mF0X;M-oOpq<3 zqm+OW5R?f(L3ieWPS^#7fMkSce)OonK#yl;6qthPnHe--4Q%c0TZV_pVDu)7J_K0{ zpf3Q$prRr!;KvYBx~-!F$9=NGjs&JJED*Y4l!8IVLN#S7KIw1t_Xh@~wZH%T&!0cT zqoXlV<1i>DB_+XlP~cJo*ozvzV2%5-?u+m7Ikxs2fKEXez{)Ksu!Lrg3IM>;`uQ_C zu<*HhC3L{lRA1?S=Q@W8Fa^kEd=e58ybD*(0$GR(fPppxARj9$>r;_VxFJB~K=*F+ zr-zT`<>Pw@GXN0((SU~a*c(AP0-in$rgkZyLO{l98mn~3-VpOUq6FGIFg=~2qN1X| z(18C|jf=E!1Aug4VPPq_i--mX2omO>t~)Oo&q>^;=I|EUBOfuz)bd z;&T=1>YFRF046e0Z$$opRfX{|;_LbYtHn>q<$L zc4_0myZaHakXNqx)@AAD6FB^L$)vaQ5ry%=~EXJCD?Y#i}k@3%l^+c@obNoigH!7Kbu2U8WXP(Ba55 zkYmvdM{~Y&hZA^@V7Sc}q0>rBOD_Oh&rEzyx5VTz&_w3If?yL8b^?Sqx3ok@!Ltjf ztrgYO)O1-IVmo{GEa-Mvl)PpE+WVkIwSt<7&=2P7c8z|=PoF*w0PHpmOcMwg0neV1 zz^`=`tpO-QmayCE7#TEHd7xztD{L8P=mqak!mJZ~e7HLYv<0HA1x zJA;OTnFhWE2TVV%+e;K>bXA1e(_L zhi8{Z8~r6=_lF|$5&9~>O>YzE2PBu&nqc56wf;y20=6a4%w#^V!r5hX49wjW#(0S=lxK3bBOvz@nV$dLA}ff^w7*SslbY!mEGd<4E}-7ArEuNizR(0 zQg6@CPdi!AEK$AG&BbGh!FDWKk}{UZh=~}~`t)@;Kk6~Mf~DP)X3CX*O#7}|F>iDRqDX&+9$bFS z$}^Z=zfK_NJc(yH*Rn|2+}wA9)!b5>f$-T2S_2lW(^X9y7t-8te_4Uo*Y8FOH=mT2pnh|!Pun5;bVsmS&4Hg^< zh1B={ekl(RK{a(#{{axT8#REkg90hb%$___>N=-@kj<>D*snxAJ4VYaUH8__kJkK8 zgOZY{kixgta9G@Pm&0PVEn;EfaC=AzXbMh~I(?-AgYq0+DH;(s+pPcoG z=E;nO;!~TMn?Drw{Fw%OgE$XGv8{Yyc{ z%FFc!x`Ge(11caPfg+yUI1)Jb45x{A2qgr_*cI*`B^CMgYn%sY7^nxnzP~`pz;?{l zDIh;OI^uO4L)65^VFv|mDp^PMTviSSJ}y~yaW*az!5keGvDa@OU&Hhpz~;UusJlRA zL1v}4HW%(o;mjZ&HPE)P;9!e}(k#D{J(y}^h102`CEJKI@4iYXU`2NO`*(|(53*iI zN83+cHxn|(B*uh3@4?fjqBK|fRF#|K5MUZe;JX)k-q)<;kYlk=VK54BH1R^bS9HJW z{=S|JzN93k{PD2rqQ9)BY5bHa84()g@H=#;4)Nwzn-4MvflaOJcb6hp>82PCD`aDz$BQL;-cW*%7T!euN`w@0kWzpG`Pm`gV2x=^P$|E z*`Jl=`4(N1x9nE#(|0)9IH7a7rM3O29}d)=;|#`n1OHOB%g5{%8gk+ zWsJdw8L`EI8pI=5a@au=u}c?-i5bZTKKAt~>gtk%%9x&K@St83*8H3DY$jWI$*l9f z*oGDYoQLm3a~vfiZ5DaDKbB+^1`k_~Gn`qUGwrl8ZN8yVo8-=y<9>N&zpm+c?bhc{ z6*h@?%{Z>=wA(sbq4)7Lw5?>;hDbX%O^keUwA6g|YsCulf$>3;oFd^bo;{XW(x`ZS z{B8xe)(T0E&!#u`X^NIDZq<%Vh4?=Cd4KInqvO|e@t6vU9@EZwTc-jJ_yClxX~rH` z6eieOS>f}%c3Kx%uO4bj%)P?a7NBQfZ~@dGVbBqy=_RA%IP@$)4TX{R=;C(=JLS`{ zxRewEe*SXek&-1adKjgIhIZT^Q3kGO=`DCgv|*>T9g%-#iB9^J0vW%R)Z` z*b8WY>1zhHKjZL zjP0pY0soT+dA5=$g`hk&w#66kyLkf2iruDeXB8N5F5#l$b+&J|D$!GmA7b07l=!`m zJn&_wu_)V1MIg<%x=(%UodE@&gQX-T-+htT?AOH+3(woG zba!#EN{tshTn>7Ec2t{Bx?1n0X6;qS!6&Xv)>9))*iE+mK3%}7z?60X zH|+v?HDXL4ARuV@1q}x%UA57RoZ{lfqooBIR08(F&_tM6ShCw#OM-&X8JU=}bFL-W z9BeHnUbTzWPSWS>_<1bZpfjLmYoE?br0{)Vqwl=xZv9XrUPApI`J0i(ATy}pN-+Fr&1LW$nC}C02*52OhltUq* zp+J?R17-9yDe%w~Xn7FX1blW@BIY`uFah-s1Y$e*`CJwUv+pi1udY6ZMb`ZFD>VQ@ zKpPZ{35W;_I2aa92x!o^YCZ5z52sGeoSX$FTq2u@jDiQCl&MjdGPr7Eo5bY z{DxTFK)*nIYcPU=Fi!V`p2F$U`bVLurk0j70Q1^FxPo=Yb0<{C@a{&dWl>1C<(81Gr$Yj)Pi?d z1rq^BR+au5g^OMv)-xshI{a1)nW6IX*pTlG3l3r8Kw9ho6of({;1@=(ndRjuke#4E zodMTUCs-a-xwJURWx>I)^o#9=-RFJ{*$I(hjq2+&*33Wx=Ni4HQd8glZp4RC&OObD zS?Tbop@_PrqXK6h-{WCu68ni?Wpno+(Zuv{fjH`-C=Y$ijb~YOc0A=VF>yifUn{@= z$P*CxhWPV?Pb7~y)qhPKplj%A29_0*KXR{3%P%~Cs{MYvIlN%uYc58T!H^vOF+1g{ zyp33QkCbiCG7Hn>tNX2$lgm~lL9}CO4ax$P4vT4_eq?wawn3OV!>$L?GYa09M0}86 zx4)npQWj4D@6xvC@yeC|Cm&q{mHww%OMjhfpD}Lv44VoBJkDd7$N$MWVT!+I=;0st zBIMD^2n=Nl4*8jW+xfYU)@MAEd{w*1D3RCsjyAQB|7RX<$5~F@75R z;^93)(_OuLwL1#C2PL}_`&EvL!egVe2_%Y7U%W(z+6Q1rW_6g*?TJ?E%;Kia`cca{ z_ebhx`I%uR9t5RAB@Z_VyG=KC4M-x`fBbr(8ID~7MD6udiN}b&kc$f+)D`_YFFu&H z(MXGL8ozU6%TarA2K)?Lt6wRkW=a-7^=S2+@(qK@UluGC@CqW#wrrvZIpGI;yhzak zRfvg?j|lp_?Noy}RIDyB3KX!PhzJPQiW$I+h&c~jWIQxeHLgsT)Di;#nJ~d%g?KaJ z*Q3-cxw><2W+Ju`fFum!;tM+}p7#J`ajXE%4Vm=VA3_JI!my z2sEU|IydZNLhb{YFVLtVS7FG3UX8FoWbY>F{f{0#M8}eW@rqp>hG(4u zU3u_z{93J^V!U>3e}Y;E?YETpAwrHh|9R)p{wDYZE^mVs)i1&w3??#ueiBgHvIf=F z)Xq~-=sCTVk(C8@3;z+#HBI(R$a?Y~P=N^`6APYEY$ z`Y%20gZ=ReToszAs3@5BW!QazIA}Tj`sGXd%}fRGCn801*@pB(((NF z=OBnd%DmK<^IUqtH1A0 z%yY!+3pWqgEE3o>>&QKXj|I?+g#r_Z86e8`-ov>klKtg2HxLP*T^!0eVm8>{{6R!Z z`?#q|s;0KK6)eplz+Q2{`b#N(j)snT5gG}A2ZdX=XuxIQy0viAoT(r&k&=~7x$_2m z86p~*M^JGoIBvkmHBw^Q36TZ_kc0g^{oaq>budpZ)_Yz1SCS)^BtnUKjs1Dor%xm) zDJd*;xHvfM@w(Mc#)$7_)4|qu8aNdCH$G%7znA#G#Xx@l<;KRZURz!4f7pR0lr#Uh zV}7YVnB7yUr11zCA4Ftruhx zF?qmrSnvcJ{;2N7wdeA!*!=O=zfPqmbyzQeNYVaV<@?)rpbqu2`s+gerW&5}w2SBZ zy&!SaIkMJe!>Eu+?ug9lo`Y(0mF)`i;A;j zt|iGMSG#kT;#_iKDorbnr;MB;RpXmJSF77gGVf214vSLmf0aa`$gEh@U>bWxWtbUS zMrTsj)A1raY|nd_txfVqg1eRkwK}c6d14sT(pOzY9ZPYw#0sLzfllvh4RP$=C#dt~ z+*hSswqs(vL^t^|dT#7ER+8TL>sRvuAtz0{FW0s&(}!T~~( zGPic=;N-`o8@Be5GuNtclSKrB(;pHzDM~c=HLkROG-63m9u!Na;qBNS{=sw!t^5?H zsWNv%lHQ5S@z-+oPhpSm1PVo?Oj!<*I=^Hk6>EftLLXLP(y>T%cKGwmlsq%Pawp`> z46(@zX!Qypf2Kjk$ixaHf{Q{z6i_3Bpm<{CUx=HRt+R>jDKZf6S(-X0dE!o^mzgr_ z@WXoVo`t_~uVEMv?Aa-L^^x4xJImp?o>`5-wz+v}=J;Bil5XVHbSzRgRB0Q~lS`Y+ zh2DLf;9Q=6Ab53X7^XR`qjDb7ZVJK#Pj^z?UEQk0eaXu`<1VCnYvS$LBlDw2tx|4D zb(kOQSo|dhuar+;^?tm5OS2`pDy{S|@!fpdx|k@>Y0!u`)LpT&1Kt~ZNq@)HtqhrdrpNM@7x`6OdA`C$X*2q0%7(gV}|m|0~WZUXsEs3 zpM=y7T1UbT)WpQ8nfFI>^s9aFe0Ge(gWD>)oMtb#7s-qFP>r6GbP@?I#k%p!{m1;C zLl;W;q_k?KFD!=6nqVOuH>TZRJ5l`oImbI(eCDgtV%L45ckm0>pM~Mhre-r;TuI@4 zDXU%F=cKX;11UnUf<+6O3iq3(>9qTy3rh0qQ(t_!f-LpCieET(_{B!Dys z*nczpPfx(HLJ@tqx7P%=jpdONMX-dY7Z(%!5x03C!vr>Kq{$*P0PwIJ)hS>ihp_?d zDv+rGJ`us8#6ix6&LV=Wna3w9rv4FW?#FhC)=bLY-_C%r#n0|bM~ zSrk~urNH3?;w}os!BJqLm9x6K3QlPzF;l=nD=RDDGQ_~e#eGC8O1`+bw$r_HSdsZ2 z<{ZSK2bYf6xmU+3TLEXHp}-=RDD0Y{?G4!l(lMhUYY2Ej_m$GqqX41`6XoUYoep$< z|Im;e_!)T}K68GXpI3=H0>Zh!w~A!Ssn*>{sTqSPXbntY8=K}|D%sEmT=9Uz55d3MQJ=GP{R*giXBx4n4!)$52E!+%XAjGuvsQX~r=x@ZM!n zP6NO52_<5nSAWp2pBJVRzupqy=g3}emzovB%~iTOB(Q=<&^ht?Lt?`stI0fk(?f;q zluUSD?UX{CU#K4?whdWyz8p)m)Ke1for-Rr%la|uvqZ&6$CBpCg?Wcv4%{T3>p-Em zfNd9UukDvNEPxPIKQ6DW5rTzoo0W=$4E~uYeqXSsrw0j#ffZ~V*t-dKJ?Yfp03ks^ za+p0@!iktbMSKX<4l?u-N1QFtD?tqNygpmD2zLY8e`#468j6&Z6mbLqd5GA{&zv~} z^gKF58>RA(z{p|_QYz^Cgot$t1qOdvP_2*z9k|U}o14+DU%#%TtjtzkjE;$S9y1_4 zJw5#K;}BT4U~V1&`!fj_}Aa@{^&y$caB`<@;94IXF_DC|o8%^LhfH4Ul)+<6t zqRwBq5CP;R_@wGuN>XEEiFFJ09|HA**nN=*8Nf8%na!y!iB(hpjP_|Dhn$aUNB#@9 zX~QE#I_BY7D_TOl%7`@&L|rn>EJ*FG@9uUYY9&}C3yrD?0A`c*UISAW%+euH0g#IX z94i+^9&&0+aqI}GpPTRfK_{rM80IV3NMPU>kl@TSIN9&l z){|Y|a22i{Bw4<+E$?_Q)56>Ei{b3x(mCu~S1~0YFP!mp#5cGqoeuhYO>Qo0COC+a z8`lqTi{u!a_i;V@YhtV-e&pumUlcVu2%BG7xplRy~IXm?zRMsGsaJNcHrMoTq6BKjqsr!LEs}8MljqCRfmwf~@ zKDD7>mFsC^C&<{(!H?6^MijIN^BzQIvr!y!=5Q-^;b#DRH zRYtCiS)Rxi#VaTn3REI04JInv@jdr8BxZ4Xv`Gl^DIu8VV2r~8PlpgJ^XZipyfj{! zTWv5Pq9AWMTy4^NXx%o1xNSqnY_{m+|$F1j5>hH9a<_P`<9L zs9uoIl5%h77PHvNNII|2q40$w!=X?uMNw7`iVnLg{N+R*TvV0{B6H0_Ud*rSq(->a zVO6qN(6M}|Q%}9ps(Db5Re`7fGHzo(*O(T4Oh_i-OSZp+^(k3EYM6U-yH(2jkKKw7 zEst^i}OyNb3yJhQ{gdjpdg}WgY_U72KZ?(M6mv%fr9tQ=mY|MW)NIYghVlP zO*GQzJeZ_QJ=aX|z~6sqb+3@I4$Qlu;O>Af*k58QiEMSq$|FS!1XG;LmtPb2MTLh4 zK!xHR#RvfP1#u_=10a)>ot=&R732#L))0b&U;(OH508u_&Y5f|0#WT>v9SJ;5hNf0 z6Kn8$Tkw=Zs16cAVV>-boJa%(5o>{Y2jd4~HG+8D`yNi;dPTd*YFcx1bK8;PSG=RX zdPsOIz6v&21>}8U;)d992awv?jD7H;?2{r?6Ofptj$Z{K1IYmNCK7yydam*@6~<~v z(B>(6?7XJs>nAQS|1vVc=eT)OOx54O$q(RkA>AASQ2_m^2=^fl@rN&QwKqzC^x%*C zBnIGCTdsc`oKRBkZqvK29xR5{JJHgp_mgqsCS$beyC9;dlhAs1fr@<7yV{Q?@u5@p z0l1Y{QzPD4`_&SMi_1GvK(Rwx6CM~iBDtlOT1f^N=5qA?xs82{J$o}znrj|p#3z(n z(sp?T=8FqI*T?jCepn{n)4Ez#97@#fk^b_Dq~Dm|89&*EHj0%J33lhrSN!nZ5dZj@ z8&WfOZa^PH%VMU2?p=3=WN*6*iB%JrpuJjwdQgiPX#ePLxO z6wl=;UGEN#i$Lq0eB_tP&T(}|k3PXB?*dp_6yr_{-HR=9AAkEsk)6VCzM%k|j+E&Q zl5-Judwvgu#Qb78zj+@CUuac4#>96Qu(gYddA@a~@ks3K6Z*>u`j^O5*s>e13=Yf8 zZfZ)!rN>+5|7=m zU8?_fi$0_4OU~PhwPfd?U$h|cdJgR8V8Dw}5#r-(23lX0vk`HFAWlZm9wCEl34R&G zV&ybh7Xe+HiJSX6>s+H1IqkEMKKmwI($FuUz(zrk9!aa0R#eD=Yz^l?06WEcXKCva zM2y6Iwy;5oCC;d;cAAiZd=gkEOqVKYXlQ_t!y+Ri(>E~ieR>cU9Bc-k+j2=6oKs*& zB#%aDHHg1JXg&5|J4M`-ul+Y{4uETnTBt+=bovBK!$5a9`kiyDy zxT~YB4Jkg2JL5G(kVS)IB+Om}eS@rn6;#_#bYn~Q>ysNiDLGlvh52U$$gJ|P#WZTLqBU9Y zzvWt}9QN*~S2#^j0nj5)sRoS&N;n)ufe%h0iBb2-&o%iat@55ZmmF<>Oy1-aRo8nBZh z88iT^W&nb1!Qum<&TzmqaCQkjtOD?t3wy0!eCM%>0|g4?^Gskp0l=YlTYgHmj}&vI81M1;nDt>#_D_>Zq69@n2hg88q`EJ=IE1=98|Op z^nX=S`zVD^g06O&&y+Ez<#KR7Q5mwBq3-UI7ghWSiJCdtj# z7VKx2JQTIv0yQqhIUSd2aMBIa&fF}+zJETdL{um!M<3rmm2IUYK6=SyZ-3Ms=gZsu zn$2&LsZaE%E6K8d%>S4kU#0A!>?bmK>+Kc0MZ>i`ER|Y?&u8;BqRVmovWlj1BW~SC z&+C8E`l=Ign5fygIaTA#LsLMmh+FjM1ji9y^+Mg=o>!hxaYtuo>*QpEj8#Jvl+OZC zM3F;m0A)emC@4Fdg`CF(Il>1e1s*HJo(IQ0G=VoXF_ayqcW^o*I|PwyA()OF>r!~@ z?VFxuIAH);Cj8btO`vYYBqm}*aJm8qX&+m+2orE|bk5 zW;x`|F>uKd^#Hl5`My**I)(6UMJ7b4|Ck@IzlsECDFv)Q9Nl9J$Atv6OvIKL*J8rU za&vR1VGHpHy~9O``)oBq00D^3|V+-?yr}z!2xh^gcG_lKt#q!>V~EFv*V)ngOtmfgrnq(&46vU>%F?fWtl3?{z3un#Y?VNM#tl)?1^YavnJ>7> z1W#IG8*ea$?ap#h0NCp;n=|LV+TT*+Y;2}2Pf^X3I!)c@u5_I(xyZ~qpJ#jjd_mrH zZJDvgL>(NpbkF4y^BKwB@kolrlFTKMv8BZ6FJzZ49eACHk({Q~M3XhrNt@95KVa>9 z*x%CEnPswSR`@!^i0>Tb8!xO_lL`JhL$ZnLNy@%^+Y(;es{v$|<7p+?(VZXc^lJ{U zo``tskgKPu01X-n13x2pp@5z`t3g>wh==$5ox6hpv`!*Ax@ef(&!Fr-7oLOV1ylnL z`Z$1NFyW&iIcm-%G}L+Jns=!SLC=(!kwY0eqG^rpEGfwwJThE==petg1bQ#18QhXg zI+6bqHG{|7#@xH0ura3E@f7T=NMAhd#IxLqtSPMveAS?_E&OG7+6CA1u z47vS~GKC1@MFOB!@VPR9itO><@=@J5R02m`d@n|@ArAPa5LJ8q&tGD4$A~4e2M>Yh>$+2l>(a!b2b3pk6@z9B zWP%Z!X56hzLdBS`x+#!4ZGjjsOh+LPr58nu|B$9J4z#2Coef0fh<^|gH(Ibu)FL3=DmNMT$0KAspc&r#nV|CadQVs0 zUxHzt#LM{ZTAZz}pXnrKe^UupXfAcvQf;Y#N(eI`V{O=VsUkng5AauAL9h7DNA5&| z)>IN~Y6x=cQyLfiKNE@n{HT+|YwY6wp6B~-z7W-a{zCtxjG71NRsHrD{4E?=7fv}B z$MO&IGL%E zuFK?6<}fdb!Etw!4R@XYIua2h;V)jo!z04`-rc({`x{o^o4~aL%L9Bn#LdU?u3yVOw2{@JA;JX3?>@%vX zp74EvOH_ai4|tga05ZeL7Gy9@lCf_ZuUGw{U&_hhIQ`A38vmgZIp_+ht#BhD6HYM* zM<1{rH3Hm+Y4faug9Dtd*!%C4SWiN8*We2By?1RdEcXS4?} zwPBFp-mZi5A6kI5gxrois3=|az2H-bNlu0cUpb-XTCB_ON|ziyX^!>13px4>IT-`m zhb&~1O7DERg4FlD^%*!ilaLV3Uc_AvK>7?EmSG9e>C!jgYdo-baF8`JqK3&9VkYvb z628a*5@6o99ILPcS>PcYBhWMU+aE)u{EsS`f41_ct_k3bf)1m+$&>J1pyewezz$oBy>xu)Oo=D4Q6c`9Ok=xAw;tqmaNC+x8@ zij{BB?)qOP;P;;U_RZ3`wSe_+d-M03{aZ))*DuB-yWp4H`P&BndzBbeL@c&2umbP4 zQH+ChkelDn>kQ8EgJEGy`JS6wFmzV1MPFLWe;|lCRvmb6HMC!wgz3r*+vgO?2uRgs z&wJ)MU?qq=HY+SbM|nL@3Vb!fGrjaIOoq-hLBiJ7(0HlNGG<2q{zrsbmO6DRX8LiKxt)q(UWArp!^IWT?z4lre?OW3wTm$ykw@ z%;Wn#T6N!R?Y-81_kN!D^Ld{?p7q)HUftbXF4uXU$MHM9qeb2muZ*beT;}a<1>Yr7 zKL-hkTDOc{Fc`UVOZU))y&T=k4)aNwh~1T(x^RLgw6i{Ynl;a~$~SH1cyf}0(9$0^ ziY_0!@1K0&OM88LyJ8K4qrQe2h*yWDww9OoNgpaRFj>2Tv7;@kjWxB!`OryMb};2j zyO)IBw2Qs>(Bqzebz7&~I(hv88cO8Hcg0;C4{OqIuGzEHPUKiy%aR<2dzq0xp0906 zWAI_H_1eeGuGoB~V#Z{ye81PA+dLmGSu{ zKTi5oy!kw5zvSDN8I@yw8ky*$8kX-d!?D-S1^F-SDII zNAHZ(!5y8~-xY)k9hO5h_V7 z0u4c{v$A0I*h-;5Wlf}q8?aIzJGKa?m$rP!o*85a`@n(rJ?BT-!Fs7a?Um@TZHKrZrKlHtHQQG&=*8S#6iFnE@^)zV>>u$HfZOF4Gzq8I!4#6J&w@X z<>ck<#z(Pn<3`r4N0uO=jzR%zU520|LJlH56#v&I&etOqBeE3^Uk4Jq3k|P`xVU#v zP*8n#OXt8B2n|Up6b5Tz{Ed;P!D%5bER|VCqbc<0 zzL`J`( z19KNvZQ8pvS-=XD6^DtvwLiOueuh97TR%wZSJ}QpTQ{-H?s^{4H?x3n6}6o6 zldea_1Mcfui??36a-||h-jj%+u_JGQh7wz%4`@w5xuVEA4CIhz!x5i2PN93CP%wFb z15iPB5Q*|aNF}icfNZ|TKaaT1CIsw}EYAlWy|6+uF)`VEdA7n3=qubSK&^JGtG{qd z(T}s=d=7^h!oh7Z&iBK~s{^c(JKzv)g!63t_T~;zfphclEI`~C5Y`x*8Jx*VV8a!0 z96o|bI2wz}z!Dr`Y=^(7CFM;{O%e46@l*h!yA0DYy&bTD)j-y~Ar!|@OpV=;gyK;M zJO?hcrna_(I4zi%h|GgHZ+GteIv+pH*_=ZBa?pxMIF0ZDvi3ouE)DcPW!UmHU zUPh!69cIBlxOt`APUiOzUE>Jdv9E($RaOyAK^Zv#ft(Wo&AOrS}VMCjXju$;;~XbeBi)Nsm4@dYIQF zVJdcWj5V-i+3A?OGqro=f+fM9i#@RPxwiHv6%9`OlEUd9I@NFgn`F3$>fI(27bz^k zWV70xszPhYM7#W~G@EAkjZY>!ccgfx*mIQGA7SxIz2(Oppki?+J54r>k=U&T?Z z`=L|UU)bvzZLGLd6xXTmn@BDuEYQn`cUT)wXzat(2^-G}r1(O~Kq-c2r54MAA(0V; zA)E*IR~eEND9a%`#qcFz61BE6u zdPR3Geg!ehx&=_eudG9uI0YXRq2ukk>&X->CN7Sn#ngdLDmm~Zt$lqAF@w^^*(aHS z)(?FRGbtQzQG>Gz4*>T?87%U8-<*dx*EH5pQxcA;X~{ZAg>GIapa~;Rcw@FK4BRB; zztvUGqp7J;?(>Y7nw@sO1o>MZEYN7>3OkO3^fUzbt^t# zZB0)-kXU~1e}_=7Rk;j#Vf>>x{_l>v9=z7*PZQiTQkxgcJhrf<*l+TqndM2po!n35 zln&AgT)2}Icv3)+#zhDe3HMGVr|z?7U(nY-N1PGtln`#E_0-d#^IY#y`C3vUrQj;MB^3fG2E&P{y-Djst}mQPLx1D-diW7ZxD!5#HCY zBQZcpQ4z+j-K=s{a=6yy8vFSzFxbk*I|?}uh#e&I*EBi0*kYMa4l9)dYVRi>4Ddc>nTt~ zc}*1#v^)nJOjP-V6~^&X83&xpMro=)y}?0J;+P8WJ3nd@ELn(n@5V5g(lRr*;#sp9>pi$m)^!~Sp>j9|!FW!{^T#Lh&Zbzw1dfje zwkTb}H0XI>y%-r9Dj~U>;DFk&{}5~e&}A()E;^&ExaQj%8CIp*3i0t#D43VpG4GIv zov3Dz@k_EeK*EwxEu8H#K#G|kE!>$S?C(?Q8xduo^ZDh;>Zc?w_qVMW4E#ab zZ};jCPg?7Y)qWLBdxBgboS832YZ%E zv?d0z0Sec*oDB_*+72$=`q}~tZPNE=F9qb}OL`)B$2m5|CVMQyCUouAcz=tKjD5Av zwre0i`F-l-J@|cgsqWq4=sqPVPP6jvgo38#!YQXnRnd?YaDdU^>ZFFbdXZlEXjJcv?-$C>YUa6ccfZ*pMr;vZBd>iAA zYU7*v9|t?PfZ^T|XI^{PBlOxvCMqz~YD%^*<9L{2qm=Y`ZVY>`r0ij^GmUw;?-)m1 z5EZ$QXN;-NNckzPecIR~t;7{`-FECL^=s z$9*wHb|706xgg%)4oL3&gMC8&IMk8w(I{zWvXDW8Pzex66nXebRGlCB(q2J3QwsP5 z;FSZip}_!?u#qJBh~#Ac!s&iV!i3;UD$~u%2m|rx#6F2^(y2kjkeIh^VMr!n_jr>f zH#YC*H>@TQ5pv6O><2iAyux!aBb^O=6Yjt`G5`$_(^VF6D9?#{R)7 zTT^9B9Nw{KZ7biG^({U0kFru|1Cpmsm>#`!w8N?RlPb$ct=0WfshbZ}jHK;~_16^F z-BG7-YtaFN9l654DP^&JoR%l<$AZTu7G+8?G_iI)x}Hf%g%<_xx|0ESPQrnT=1ydc zy{~fm_B86EeMYf(#Z>*-YOZRI@TrC#>AjEF6)lxM&G3q&|5D^JpRO)b&y0c(?bQ}( zMbnnaDW&gTEO>liBZY!Dm!7>Zex#|Tr9ZB7Swr@qLU3rPH{ylOA-5v>aNJW=t6VAA zVSEuRvkW2wUr2lN&VT1xnyJps<3v3 zCEeiQpxniaQY3Zksl9d5=6k>pppq{o+Zd4oBLfY5v8-1I)}C@4e24~^B;A6`Dkss_ zU0nukPRU70W|$%IDB(=M2vdYF-VA-Ctjm;GettfAVQ9CgzkT~gL=UNFCfR3^MIt-l zthW!_W>cYyBsfHRgsG7#milM505!>}4$fkd%>vmz5gfto=#^cH#EcSr?>@}Sq^AaC zHIP^S@qA>Zwy41bNX}W<{s__nD>O;jkbP#wr{!#I=#zJuztFO80ir_ARLOd`6gemM zTUsK6f_4#HyTKuQqBjmqR;Y+tvH9bnc|wV%G0goLsv&%D$ahxji%a zSi+`kQR7o**?eAqz8s-YRNkf(PvEpUU*Yy~m*d`27qXMhZVfDNn|y`fhztF6c|Mj! z9QPA$x{8F>i+vFg%KUswX zWmysnHUid?IOp?m@~5%4wzKW})j>#vSaWl8c{!XL#S6c#LCy!PwHvQz%HF8!x1y)u zjt$iho^S1SB(EJeZ|bLiSLQoa8f2}oRqxA0Ca*ow+vA@v{nt5uWqZ23fKm9NmeX&H zeV^rTP(5Vj3WdLLj{gGRk=p%tyx>`6jQ$yA|BJ!!zs+5G;nW@Q`&<8H3H)aQ^xtfV z#Jz)m7iM}J+)w8J_8WlR^3N~w?@xpCA3hDE$UpxgzsbDk{`W&T2HN4PC3RH5OKUTa zYGA*-8R3RKl%y8o@5nrWl~98{?C)$I>{j}szh5r+zv2c-a0sBb!O=#O4(#>_OW#By zHjp&F#F2#OGYcGOg=C=$;1Y2RVIqgx`1u3&-!K0Br3zcS(SJo0B2tPV3U~M3p@Xav z%nlT?R4BWl)@J=|giYbto7=R2ZAs)in7K*_i!$H>c#>wi@V8eop%wj6!N`{$efH+f z7ExU$W| z7G<)oj$i$Z@YnHn#$8#KxrD#&<=Evh+n~bpGg`oyZ{TE&K+wCr3gdP!f5s=b-uE9) zy=15f4b%0Fnjz{d11ioYYkqC}RVJspm%m2_HuaoR8pA(iTz__F^F~>mJbCEYT--d7 zZh=wd4=N~dQMxts?qA8j3n1qs6-t0kydObw2x&|lGQfGG-U16unxQOTzI?-%G}N77 zqfH!6NK9-i^`=j}Ims#VD2mcY-=x*&rVyT?k_ffAlMC+S^za;8^*O?)epW@2# zekFkS-cmS+Dj;-TIf&y5y1gzARj?2k6wlJpcgudOCBA&&W*DTVKpKhQ`h)EmNU}G# zB$g)RL#hjDL92&K4+vM@_$Hg@{_C^+cZ%{^or6!s+){t9kbjZ{{9|5nj?dpq2t@ui zQ~?3Wzq1^k(;gRl`6n^K?;jenviYX!pH&I}Bj)q>!uoUT`TdfA`aSZI`~0`@5Xepb z+qM0lBohDhI@oRgWW2^A5X}zL4DPF5&(5Dw=T3+JI7!{En~BKC%p}z)*qqC?;tUVw zI1F(CvX*f$=CA+1!OH&&!O9xZfpDiV>Ripp5Cz&Qix2X@6|KDYy;~Z#5A$P1S95GS zgLU(KBI(%PiBt?L9B=D>LK}Zzz&qQYbGyUX&7<2^ssEyPt=>czkCaIg6!xIWm{)Sh z*`!XM;|U#U0-WI&Y$Wfpf4I8VHmJ3smSOdjj}BpWJ9^lAysDzZJdb|9T}?fm@}li$ z&~uO9(ZvciqxUp(M)_8_?Y(d6*6_r^Z6PJnT+gf7<&vZG-sj05=pJfy9J8^iSx~fS zvH5Ue-?JC5E7mm{YwK+(C^~uK*j0rcX%;W$`oirT7l%;lc%l*{j zl%kGl(KF-G5-cu^#(RzSrChc>D%SJ1VtLvg+v4fq&3t^tSRP5_Y=!}dl#`}7=2F}T z2W^P6_gCUFS$IZ98iT_C$H!vhB`7=qH|<1q=D@W(mSJ$CP#_#dUDI*`(LfEZXg$-m zc=6(RoLWFp!jZHPT}bPJ@Y-RnP<<6#ym7i>V%!ZK(vk_ zV0!pj!j;k50xwvjopRfAxLCCBb#* z0<*qpKf^84ss{R;!9l9H{UPZ*U93yRvui$Nj?BH7?lNA`T;Lske6ydrT4~+>s(pGY zEZdbg?&dhWa@)F`H9nI5Lw;_-KJ5Am!NJ!V*2X7?)(XZkk=rQ(SQrr1}Z zdFe3NN`(rb4WR@0T}dA9G7c#}08s6)R1l%Hz)0kBJ+I_Urd~nK73+qaKBOp8-}d)Y z-fsmG@mANn)z5{uW^hk9d8fw5b1KVwEU=7t54WV!@wkWdpx_PN*tipp{$sfC?1`s` z>@sYNPYCvjvLduiPBTIvr0XrB-WEJ%yQ@R<7A_ag$al#Hx*b< zV!d1XlmOR0UTGQq8I~X1!|fIHuspBB>|6@WfQo`nq>1(b;q)_~cVQ?u17}tmSqE!M z2`ptOc69ewYfG~tU5y~f;6Nlgz4JZq7(6^YNV4iu1_n|T3g|XGvT%-iJ7mbn{4+3c zL%_#rLIomiuo(9a(h9C(B8!36o&b8dqi9f|N-C-->bNVgYLVAJ^!OAlg{1TV#f15m zf2lU~eSbJ|S@wF3mn&4zDg6=g%f;ZrekQj}%wFN-sa>HTR;ri0S0Sq$po^nz8!) z+K{QtnYm=YCB^sOvD<9xr{$2*SY5}mfWs$jzy7K5iPeq^C!f7}S@y}D#!u6EuB2OQ zdC7ATx{eWjxj+GyFS-M( zQK{*Z`>B7>ep4E=P(~1xmLdmVD`bm$vAf6<4>_m;6g0%$L2}X&8jj4+xmvu&pM13R zc3Vycz>NtHEnSPJmsj16I-KZ~FFZcK;Nb}otr5->{tfB9J^kU2C;6fhiv)KR0Zl&; zWb3=6ILM7X%w?gheBa4;72)shcy<1u9xpm~Q0r}!*$a<{HM-34*`W+lMH5U}LH(;2 z6;RomXg#^2rdgR4wr0@oI}PyM@}kx-RUJW+^}Du~;qBZ512?6w=N_d7*!CH_JsFYC z8z^`=^Z4{8lHUBmqbRX%zVU(hqx$l2+Y>wLGL7RxL&fuN=auvnx9HGVOa)c%oH;~G zE(+90`Sxp|6Va(w;#z@-s~1w6U=D^FB>2$NLkakZO6S2Wvb}imf-J$x%0Bfmdk@S# zRXF=szD>sci8DKrbx61Y>DR(?M^sBBP7teKa+B4;eb&<)sM9s!XJeqiaW!!M^psRW z!f`I)B1&am9sHfd7i#iXU#L^|JDKkBB%9mW%NSSgr^@H({cQ{VEL2gU!f3PO`{=SP zrL_fJDOOygUwc$F;*ScA{H%JdI^aAUT{~lyQ0PJ+C=+1^Vjdt~B&{tOzx{ zfRU`_k*(qnHu0gdk~^wz916k$ldf`nVr#PKO?~a>cwoZQNLQVSEj%*b*|Ty&JY4eS z^@}#e(<_o714G{rNe_dgOq~=_dKVSRLd@nRZ>p-gR3YDgA$0< z&qnje48sJ0!!@E(`s|jJf0bN`H6ZQx99++RtXpj9Xl9>z(!0{eWVZ zn8egY(S05cks*s(M@^p`)1w(NdBl*k=3vE(xZRjxN;hOb`^k?T+%R>Ji6W<<$B=zR z(^hb}@7;#Wig8=*)w8$q-5wqO#-bM&q(>~27VR~Uqj;}+GdD-xO)tvyntv`(G29ZQ z;geOpDCtp>^hbG(2aBTFky)Oc6PBCn5Fzl{BoQlJ^C#+kX|C7aYU?Q&S?phzt2f5M zNUo=qz}h{sIrKxq2`vF}pCjpcn36`Q{TFcgh`>dz@^k5ebg&F6Y<%n_JRWUr0r0CJ z7KzRk9r6pj&+E5XSYeQU$(BLV6S|Ae)9@2^arvvHc6?Ej{f)vA&#c#(T zL?NODfFA_@BB&R};8xgYOO^E?nD)fmBaZ#kr>`K^j|i$}!U$osOkB^B)(9hFd2G)L>SfA?N-fGl%cr@RX@%=V?yFh-5k>35 z8D!ttyyQx*FZUDrBHd-kpH0z<3l5*7MlR+F{gf?i;Rk$8ij67m{#Q9ZG&~3p2#O!# zn&uUpuWoixQL@c8qqyB{zIACsohaQUy0NR5F5ho5=glbRSYah-(p%Yl#oy>blcqWS z1?}3V``Z4ghtvy8M97#bMPYinxJ zQ%o%kCDuynQ%7p3;Pd2A9kDSnzL@Yv|7SKtoo znpbs;Mm1lH4%Bxt#&4X`?HxR@6@ZWz$SUIA1C@uvu7vS=FJ}x%a1IkqMVs|RlJ$n=}AEx8Q7&!=M1~KAKza&(wAcz-1Jqz#i zp}HY^TiX)Q$;5ny#s*e|-;mnYjI?|A?)ef18kG(Rl=Ow<1_y)#N3IS|kI#WOBc&w7 zJdJIRq%J_PI};tP7ge9J!*k%<0B`lZJ>82a6CGU)ufnsm?i+0FYk z{doVUK{|tdku(l-$?4t4PsaS%SL8derpGc?VK$QD{x+-V`iFPU5$ospzsZF2^o@Uf z5_2~paNlcit8tg7wW3Yu-nRrF9vtstu{dpXB4tjxZ@0cCjm6;$UWIv!GFu9jW&%3H z-M-m-ZDLLxyA7TzZ{x8pbN%&@gs8rLQEoECXv;UF?CmCVu>6N!1;q1779pKae>8Ng zy7+XgbyIX2CB{Yi@Pl>joQ`unOSCA(FD&E@>;&)kmcG1SX0{{tZh}|FL%M2x`)HXG z!TFYJ(?PXPmAjm3_DxS;Yu1g}P@i27IF9WC|Nws-U~*v31K;gkW+bL%oYH^k)1Io>=Z0 z$rU96rrR(2*NArAQMq+5uJNk)?y4C3WsGc9KlFH+R^(G39+ z=$xKye$$qC7FwOv`L0GYvp?YALB4=H?i2k}eB`URLIipTb#ftdX5K~p(+82bsj8xp zu7vYUrljLORP0?3xEGNu88twe|iId1RttywEgv$!EzG5PcCNsE}z@#&-}|^ z=8;}{_+Kv)r-hQqMcBYm_$dcmpPX)ldF@A8}gkU%z^zQJXaG;OIis-DrZRl9eqoA9ox6LK`LJcW4}v>@aXddKEnT3~Y2o{;YEZooM;RiPK&nhlx|sr{7*EAgm}uG zwHw=9-TQ@<9XoblbZ-R_y?%BVel;%yvgsaYp`iA`6Q;{JEHF)vPp>UEw@uoX`5T?@ zKqL|>AGsUuCMVPB={0D%zDDB@>zXxc*{~lIPZ{X)^`mUn(XvEcB?_^1(irwjQcjMg zsu=s<5F#nK(Pl(ysb4&!`{M!z%PBIC5a zmKT0`CB1ay$J>Nn4<1!eP(ac6T&F8BKw<7CGHldHQ79zw0OSWWrwQd97$-@q^!?=I z_O9A^?fv_wtH+V9;9Xegn&fMm^($CcG4U9p0C6WExqcmSQlM!CLbO^$2|cHK4R(Um z+5nuXg$EBNs~FroIOS9VCxOJugMfG5?581&Bsv$!E|oA75d#Fa5K~Yr;ZlxgaTS04 zES_t_hvakPFuyJ)84GrH-gvVljtnO|^~asxzHy=W8j1pnJ5v3h)4jp`s*}dNb}c=^ zhY|nKfpTIZQ71+ZE2{uf6#~mw;+v}952Fhc`q;q9h30&&tJCSeup0-$c}HhX{C04I zgsI8={v;O+d$TwQNH^ak zzqLzBt&4SJui_w`!T8+IKfWqiBW0q;h5u|JYw=FgSh5yN6wTAJ$2tfO-4uB9yBRa0 z{9g}Lqn|Nrts z|Nc$Jrk5X1{k=y2Wv^If`Ez^X`cK=*|Lcc+yNv7{i8|m-Nxe1pvJFiB%hBaqGTYJK zE^|^ATsF|_InQaHO`GBo5s3Iouc)YIm9Gp-mbgRO=j1e{(x>(F9?SG#Hs%)xs7hR* zIGB^nY^cj+bBd7r33m|B^uh%TVt~aU(y2nl{!q(dKw|iN{5U!zqt9BiOGf+`X?D|?v@6rW{s#HI_MdVO&sc>#vX$m)UIVcA7zNPk+m5_FMIrQg7~xl5+N+{HVpffrpJ!^X$z!ZmC+@Y8_nKvv!ohiavG{>!$a&%EUKV=iyT3?alUnsHO=5Uw6*6$z37(_BP zRw9(5&A4>`t7cm^vs$%^{%Jca6~XllddWhar#VhC81pwA+h0I;chovyV?0yFpsJ~3#m$54lJ!-LE2T5c-dc{VNvC6si!$vH=Ei5J*E?rXG~kuyEMA7s zKX$rN!?v}C`GK*_f^4e@^|1)a6vjyLNxJ!4xh&GtTgpO1<56%zCjoEo|S?I7Ztnswm#I@FZpVslG*C2p>pT?Cv9hT z(_Prxqu)MBN7wkH9-=}YZIbZ#*4poFHNDm=W_g%rI|n?b9|=uNKH2c)%eT<+ zs#x_6Xy`y{51dFIU~EYI5a=mJ4m>W@BvcgB(2aT-VEbL4a<`F#E(+V$yG~F!IwsD$ zU1m4t55=x+0iOwquJHg}LNE*t$V9x-_5FJ+vQ>x<1Y%C!s+n`D=McIM7=WHavhq}U zNwgoJQ31ydF_@vsE~sE%H7@FT(%6_3k2u; z5*s&)O)=0C8<9O@Xfc554t-?4n<^r|1L*H!lH$nC0q zXqz!@|NRr?@Z&pWi80d-x5IsCd{f(XYNVG=J!YWD>FLp)>06g^_OKwC_5gQDF=t0w6mbl<#Z z#&IQMU^m~gMLr#7?dN84Mz!+aJXeU`KB_LGx>U+Jg4a>1`dP?_83hv-!zEWL+Y4B1 zHqC8j(y6oEESNUtmD z3Rs7dTTFB$_!h+*R1}~>m6*m!e5az4QX5oLzVQ~%O)?7?ytqtfBevt_RNSW3G-3S} z@g8=gOhIc~5_jsD9JO%MR$Q2HW4*fi<@6^h9!052Y9Em2JeM~{8SOr_$~h3A4kr1; z5BPs=x-E2aZK_Lod6n{A1YEw3yuKy%Tt-*wDDOfEgIgQ;qz=?=Tume2W@|I`;!%^u zCpK5_Ym0+K?ZYKgtvP~Z^#hB?r4Px;d(eE8VX4+vZT{w>!YMLJ04=B5Zn|tx#61HNoU3P825>= zoTT}Jj8;Kdo(PbLncr!r{6mQhUM5XM6eERtns>Lb*z zX22mVcB*MPBxEqR+{|aBkZ(gytsK})0zLvWF^6yoR%34WQqI-j!4$!CAP2w$m>)5C zhMcaftRyyHlm(Fv5}07z&c1t5ET=)Eewof;EKMN0+T>`7wtiNV1>5_`IFpxo;h8ZqY%6UhPPs!!mbFv+$DDVHMT`LNgs9 zckX!Bq)P;@`?jboc^9(uV*`A*bvIri6FK_U zHqgLv`AXNFbitRF_;xPy%8+ksxs|*t68&oxU8%2^v#!445is6fe`Rr#NFhsP{dVE; zY94wV3HcatF7w8|!G;PiOV|-Taa6%$HCAFlidslG5QKkt>JUrX(%FaOZE0=o3KGll z$PQLPXvT6-;gq!XY%TxPDF~s7TNdB$0|A}}|5NNb=;Y;VuxfaCSid{h-=7xMysrC} zBl`{z+Nx<8lui=s1BlVYUCBUPL-vkgOCbtzlB7-^cx*m^U?~(*7>u@H1_XEDj8pap z?JZ=x>>PB3c*qhy=<4ac9QkoTOjD2f!CdOLyS>9z0k0Z&S8-AT!e+1T+&10X6`TY- z+F?Y3*=^lZkNzk(Mvo|&w~RlIk5^2-%>sQMvL?B;Wzx6I`(ibAS6vs7GFjnbV57@*DV~Y9+FD7v^8Hb6k>Ung0Y+o5 zuFnSVw>^nVAFW=v^ugSkj>G=B--yJUj2=%Lat)a!Hdc5=lV(>j zGgDFUD1qjxAmzu%l8VCt7f(kS!f#1eC^F%0BgB#vMq+skB1wrNBI(bjsY%wV2t=Go zkKrz%nHX&6XWlHdZ7nQVA~TJbR_kSp5A~Yp`%@K{YBPS*8*P=m8+Q>&Wp3Vik#u6&xs_xb!PT8Q;0<**<`h9LPZ1B`+^QZjErCPa+t zc;d`qvLHhf;6B7(8-B4PgL>|82Wa< ztrX9&cdJ<(Et~L>bOwaEn#7@Ay%3L@3P6 zChbw5dUNnLY}0B&f``{($$%Y>WzCfcC}fZ#hyUVs{_(idUF`j(=orFY0LOn`y$o*q zh3+~9TZ)$nyKICQi?l`{zU>k&DMS!xB!0xmVSx~HEb(yhlQjq_{xx;{u2CP|_UY^Y zv`oV8h(IW!oIyn5L_*`#JrXeta1#L?WX{EMMf_Kg0+|9iBeBK^x`y>~0esk`3=VGw z?mRLh6OIbTe>tRpKrcoVVS<8}P4;x1^9|9x@%s1~^RLSpy{a~Gi*2V>_{_H3NNLUD zW}(5%lYWas-fqkI@+9CHWZqv^eitZM^WK^wm;9S=>H93DvbLjC_Gb0g%t679j#ROi zDR-Q=n3sHV%{e!|f~%jW^&{0o2uLoq1g)O4H4sUY)zL9Ff1P(7Lbt`|Sl4_9e6>PZ zIgeF3lY5mS*Tk8k4UVsIvE_NF+uNf`K0V;ycy-`XQ_iaARyxlga}@b}wUAn|;*M9k zuRm*DE-g71b?s)QnC3p&6m_?tbZb$m+ko^v>$bz=KH=gC+!y8?X>M*@G*PHRf68sg zy5$tH`Wt3uGvh3(+qk8h4jw3b`Kr;OR5*Bj`HzM$H6x>i-;TKn`y4rW(*2N$Ue(LM zQ#_mQ(X;HSJhju2T|n7RNpTO;?)Yfa6Za}>wD(t*6x&dWFV`9kiS;qx>}RAm-g6Pf9etYd&>=rlea`4;lD-wW$NBxp zue=r#!nJ0r%ePl+fQO@AWG>!>#nd-U<~sIWT=d1DQ^8BeV4*NTWe+rf>Qa@cZ6<0P z;I$%0o-HTIuLz=_|FRVEUuD=jNgM&$E+G#KeRXeE7qV$jkXV>?e8@o$UMidO=gYyb zQjzj-1JpMnj6df7eLtui+R$@O>ccSs5REq$3@%yO^+2i-(!`4H=;4DAUKe`5xv-u{ zu?RV?!PvGy=698@q@)iUEI+_LZIh_e zd}kLs9gT}-;F`}X^isN7U5{`nJ6bEBJk+-Q&`Jwwzj;x^1A0od7De_d3~%|Ly>SiD zkRKl`TI1>vI;or)^!O%QrK5AqA#v&aixF3{I?FP~!eoQ1E_b-?vi-UR?tYP2>$SQK zZ_5jE?y=^ZrX4X0@7A;1HyG3slu*BPsd20C8qW_MUxrtx?sfL=+hlE8wqBoSTH=s? zRda5OdQ>&5p@XsHs^vbLi`J#YXpJ3hpX`3ATh+X@@K#ZnRP@%QwUpMN_#Gk^Z)9T4 zpWp6q`;0x`2uYi#qMu3Ah6OHT%cZ?a@9m=ZaoER#A|t-_3Yx@DMii1HrE3GSah8KU)^ zSn;u`+Z>$%-wv0yInL1}Oc=-Tw$9GQpee}G1YK3Qh#56(q(TR)?*XtTp+6+l9QHhP z)~z8Kt%#jgH$s!HhI8enI6AZK=HJ~06q(y=?{2m^AH@UWX%m;j!UxXtKmYixb!k)@ z{|fvk%&(O>eOAvhZu(|2up@xl&ZjKv=pZ+ zUTz6s4#=GV*SV#*qGBPbL?(t|+^pOPHAWx{@cG3^ap$zNibF(gAXH?4<;ZalW|nlI za7-+hglK<5)FWy*A0Yl!zx@Jm@uYp?c!4G8%dT$Bh7%d(46>5zC4a%$)JgaCBEN=S zs-gM===OU-^ZR9}&Hf&}{AY;ufBN-*g=GH);ieb=n*{p@bd=>G|KCFDf`5h7f0IMY z-~0mv|9{%oKlq3D{|6TM2LZtIZ_?4v@4CawP*uUz0p830Xd~kZx;vHj@Y?vn_Wu2x z1N+~nmul#$*}cy{L@@uMwhl8HhYSMgd-c6-ZL-NEfAqWc(y=gE@hanb#+Ov|-dE)Z z$|q+TufDnNg+D4TNL#*ZcZNZWkjd?T6BPftR5o<~GjyKsKOo=#1Z)3h8;>yg{%Z21 zRV){M{q^$ipZp(qkBVO}wBk9>Zw6*T>CXIr^CVL|82m_o)YYrY5ROb@YL6T{b~DEf zxSS%_zKkFUbJWKK&P*d9MEy?C?;qoF@%ut!P_R6_ylntPp1pou0j&;6Y66SI{PY(d zp6~%8WKs_o3usQK53X1YEMZcO2n(?L7o~K+9+cQ(fa(O1L5s%%3V{q@;3a`X`>+&n zRq^rjmjX0M2F>TH01+K5XuJ)n_wMN*X{l?!cI+o5&E?^z$o%8?=`$)Ji=IN%huYf3 zKz?Mp#R=7iG##WLK6>^Tw)hw@#bgCUlG36K1H`FW z@Lb6;RXE@v6ir|h%;~<22+~m0UaB*&ete*1zPEaAYSfB+euqEb`Tve8b*caK5lcBI z5H6a<%Vw%w{+=UU5T`BwQY`G)L}qL(Cq%*X=ZYX>A^j$#_yCep3I#`S6|ByYVwS_v zRo0*Lm{D)Je$*IQK>%-sN0*=a%@W?PN2dyrYy$?d!0>?E!yD=;#K&zq7`szcbOo~3 znsU!=0#YKla|~ZZ{5r@bJ@~~g2!8&1TG4Sh3jv)iLlRax!rBm^lv}^%{cladvoP27 z&47W50psGOaFKs1YA*C0dOn8zP7xwLNy)?AIe>>^F_OSq6bT_u zsSL?TB>MzOT^e_Sep78zJkUv_&r`tmX=38hj3+A(<=AjS31-kMiY*m4ukiJYzo|#s zg#7+s4R43Tf82gt|I;V$zyI~gk4T>Yo)UU?&!4+dp*C*TeMt`DCoW&jW+$>3XRYYg z#+RK#JlqB4v(AlHUdIk>zaMMm{$$cIXIzZ-W15L_`%9J(myvq$L8I#jY_^K~=4H}x z6kYV7;cT?!?KfL^F;2KqPXBmdZ~X#TzjMN_T{`%*dV}Eh@3KKXAIg^%1@`;wFJTn9 z*tbIMsZa9OyQ3H6RXQVU8g;7Tj|;ask8QkQvP7s#i&JuH^vuHVdCh7w zTWqG^#G8-n>F5@xbEXdV)=`vw^85naeDq|a!FMiv-Na^Zl`wdIzZ_XV! z6RmJ_@S>jM#gBzl$`>rD6^w*FX*gVdFS(anFmK{VL*qmCjElPZNsn(oal9|?kfeJ{ zbCf^)U6D{^Q-p$=Jk>t`YEh@r6;f)i`JPmBYOzTiwiuLS0Se+`T4(wUw)yH=EP8&eRbu5g;Aw%_18??mEZQN zr=BLBu}|@gt7}G;M0j|6`5hZYX)T{PRVtdb*~K&VRp^kTqHN4N?{)Js|F>wF%VE~W zWfhON-_3I}Egf)Paee9mmux#ryj91C@b_u#b5A-}?Y4+AJ>jd|B%Ld4c=z<~?v!4p zpp<=jEZe3YS7bknW6wA^YgGH`4RyzM_NtCf;o7{bysm6bE3{0GwC~|7dgZ2CH8wg} zwm|EZ$$8ecCo2a}&mU--_+fLtFME}x@YaA{*|F)pU7wz>Imfb2@suH5AR*S$Gmd8o0rtZ zO9Q*aOW#<|)|{zRPB^y8t?>!$jhSP9S$5ER!~D3x)+wdS~G%k|K2%I8L89c`^>lI^uSr#K28uPAXN9I-Rq#GejR; zXld|_9+<890+CJ(R2KL3QdU!1Nx~$>0;uwubG5bIX?0@*E3Sc;d~uC9@r#WP!$*FXU9X_0^D2+{}XYg*F}~t z{A${IdfosFpev!Gw7873lNgL_=tQ?5+2W_VZ%)#MHgBhdncFjQ!+;=p!w=^kER|SD z!=NdamA-i>{QX=}hhe=DPrj-{V*j2HM*Kg$g@uHh0NzY`WW4+?JAa{wv2K$L!$VA3*SulG1pB-U;P7 zrulN}eY~%Z$>d?yZ?&w`TfEv$O(i%s%2Wj%o-gmYEj41fKkbWWd2v?Q!H}vSfr3e| zWk>8vylYMfHak<^b#EKo(&E>#YaMpH5q7wckmsuSoJLiWJ0=JmhDifDc=Be?4pnQA%TUC%=VO&6V z9}$+2ZgJR7DHH%Z!RHMs%taB;y#T4yhKQM@K($V)Et)=jpr+u0+M+QKsx(F%x(F1F zk}@O$@;(Q=e}z}$rYW8Y0O8951LvlLX7Fx^9{}2*R-C%AohpIVBECNo9mL0{T9%f3; zgS-s5KDhL2!LiQI*eAbAw(KdEQ&<`6@20;f>s$-h@WHJo^`|G61%G?m?RxCZTD6Y_ z_tZ`t{lWZ5SC5mr=EIc0eLj9puJ5)HU&D9_U-n3>^6OLEknI_)ITtrAd$av6FUO9; z!}OpbE9U|#^p{vm?@^qd65pqpHaJuJ;PK7}$=^HL`*O_3?;+6ha(de7%SEZu*B(J{ zKVv6N_irk#SzSNwZ1b1Wq(VLaf!d0ADpyITg5FCnMQ~PSJgNjDEn-90`py*@tV{CP z={qAKG8U`XwQ+pSYB>3R?X69&S0eA~@qYZT*f76B?R9mAw4kgsx+gJaf_Cx)?xwyg z6)rtx9Kfk40AZ96ojW+#ra&y}gi~)wVZjpd)72Hycoy;Y}rWexB$bn8XS9g}iSX4E@9v zh94@jV+R=rfid|48BjGoJ~J^CGXMC|qjD|TSuZG^+Ynt5`UvVYbIgG08Jiza1BtL` z&UXyy``PLUeIF!?Y9H9d`5&|s`xX*%N`XA{uv;Q(0ZpWbhqGpMzNc7GQ|e4KOpa=~ z-C-!O|2P-0qRiPTj}|Oz!d*2+qrIBW3k6=b3okLA6kwuR{HXF_E31^#?aOzsoNoK@ zX2oURJ&d+?w(dZf<|Hm;z54Nzi`+`HOmFn7jgOVwbsFkS2~QB)^Zxw0@s&C;4^w^G zj3QeHKY4VC9NiZ3);Ko#>c&U)dZKw&+a5@;`c*hr$7>p`J;mBWKkN3v(`sB+YB=zI zX4|^v;fiI}yvv!Hy}^yQ0VQ#mo5@Ycymjpw1=|-z?sJ|S<9;#G&H20TgoIqe|4wwU z@S{|MYi;}X&BwUFNo~x!A(htBxhl{LWny(sqcwNFP$!9MB6qV?rXU1(h5Tg zcSjw` z^w4@zNP;9zN{g}fkbq1fbE#0ChfFi}N9+zCPaA}ARlJ*5z`SasJ^ zxwayEWcs?7y8R%c`i6$=^6Fg(EIsw%5iQY>f=e9gjCN~>dX=|78gCW1Z_;*1U75zy z__l1%7P;Hd5`8Xpetq<8Wc=Yrp5Cr{dv;!sOP;;u^Ew8z^Lnjy%9XboPn@*$OiH~Y zI@&~)Bpf+nDb}Eyeo~QT&*&(j{doI#G(DuceJZ)*X@l?J#H5B;(ovtumd90ZNAz

Q`LeL$<$Uq&H3haKHLK7#Dy6=sV!euW%+uo?*y?H@if%FSFVE^U47?{HW%B%H z>wU!qD!l4ZEtj1FvtBBjx~Hr>z>&|FtL^&jz^cbUtSL4-WEQ?Li70*fng}05N^#k1 z{*I#CApS@nwC8ZkfY!)>WF?+81?&z;LZBtNyyVlp%q&0@`$T?&t4=x%K?V^{lxX;| zqEz6Jk2{JtX%L9m?tS}K;K+9gkgjf}+ks6D4Gp|&WNzNQJHkAQ1QD?lH58~KHfN^A z#+n5`9{+Jl>$U{d{{7!MwdZ@+IXOD2?aD{r5jp6ee+T%ESOEzxN1Uk0z$VSRU;*2a zq!qGk08xM*rEb@H!3iTcHZZ7wH#{E2`^Tohibj|+8@_fpNljdHyzg7sUIbLrV44x4=#@>G32 z^_1z@gNFgBcHJG*3X;KtTnv=ux5n1l1!~qN?v3krxl?-O{=ze!D`eM~Os1Cx>>Xb( z>sjC^9@tgy#oo;55FF*5pMOzT^cqLSz6!auNxTnMPh+O(*l6vG*1wVS;@5@+X;xNV zsO%_@W8b*a!bR+~;mVbFd-=j;?8Ev~zJ24eYcKGuk3>W)a z^?vj0?q*p>PXFsqEEXd(*_11mWV^i@y#Z2{kx)nb8^Fb?DdC`?z0ogl?8MY&@7}#j z53d}mi{Ic8-=E76i}$p*f7avk&u8i*-gGTVmkkfHI}>W6klq?Qzm=X3aGey~AEzLP zq2bnE1vZXthO|VuF?{4m5$aIJ&p1*pC^J*y0ly3^*BJJ)PC8nMEu6S&$vZow?EabL zRmSF*U*x+bT@P;*y=C)G|8M&y2KI09JuU9gffXZHU;gspb-=K72DkI8Tx&VQ;>Q=m zZa$_D)dmeQ?^a9a`?MO@)tR35T03yIaFbeF*6M!RY-!+Tnc{AuKJt%IV=~SZ7?s;M zi%ENx(aL2;kFu$?T6NUPel%BiU|u^J;np$j4Y&K^8D6WU`h(wz(c|Z3MsSruAC@mv z>bsjwyMIM@NuA0*Z&9^;kf(^i!)w~Jz`>K!*1Wv=@R(MfyJu0+(U_LM|TCHib#~U}EDzU1W5KNunnm88r@J zrKxPMVyvL|pg|j51HO#Ewyk|NnUBK#Tns1BjYus!XStf$fwQuqg#pgc>88#@h8(Ql zYip0o|KkwX#T-5FvP-v5Pu5Qv^(EcszYcNj{l6OG>bq&kr~#uh))bDetF>cQ&Q_C} zuX5`CmSAq_7610?_k_aH8^0InY}VJX8!*$l(f9q@p&_F!*H-u}nOQN)?R=zP?X7OyYxLSixoR3lT1ywYZ(KZ@4)*nEObOrZxN@V7 z+52SIc9a$yS~W`?pB{H8FwoIyJvb?~1u#Ng$*x1Xy-_0Ra3cEh^6*N+NgxAVVm==AYG;d8foKbGBZ zb;*8{0Pf z(&2q>qSUKEtOX1*iHP*vxvsE}ruQD#ac-jouWq@_NLk=0Jjkc^QES z&Y${hE(~ZvQF`!JtNG^QLMDSAFqR;FrbCyC5f?%**_vZvVF9zf664c~&nZ70Up+%} zD99@?=ceCQxB(cjVNjcul^2LGVr?&fh+k|uygqP*Zrnfe2YI`!gMTa4-vp<*C%YOf}|MOj&|C;xDeEyhEVbR3kbDuUZ zJ~%`zc6RIMt>33t*;@RwTGfs-mv1xZ7Dde3yLR3I4NLzW8;Z=I%=HOcKRTrjWof^c zxf+7B?bx_t*07fu9~Pc^66fAK)C!2E&xy*8iMer>fO&Ti?!~*5LV+BKPluYmQ9v zn6uyTrn!|%O5?NJrw;FsT?uyb%9X_{1OMU%_8dwE}fNBYM?QfBYbSrLml-Uh9ujKo83Hx z&27F}*l)9bo!$d`?;8UbuWP+y*p?Y)-#jw{HUxYvNS6sW?UMsnj=z}s^Stqp!2cUM z=8l{DD8o1H55)}hPZ~JkqDC9%hUVZiFy|8QsDB)5#j6GhzI7JnsB2Q$J?nYC_Xw58 z^7T>^`qAYI-6+OARIr0wiV_=0Umr5)%Zv!?QIw-W4=Q{#4M$9xGNs0K)mFOb4e3Is z7`T6%&d`mmeG?TLY`)@Oi1KnF?dq?pZS#wxa&7dl@doYc&;H*yt^e`&4{dT)@2Ahd zX6gPJulfIr+xvgy>i+lZ`iD*Hwf)ycRZi3J{92Uq_u$~)gi2cP{aK6x{JOPejZ+RK{y0?f;Df zSRUBq&_?@3i^@N>TKxI-I$%HFG7E5)bi$hmMcvLVsD%PTHr&w48sE!co_*o#d|BGz z_5I6ifr5svAbrdTiiT^MX}&#Lc=3&febZ%y*8$)(V6g&5Vg^xM~h7^)5^9PAxpk5a&7&e|GTn2&()jO zay6^e>m=`DA2HfElN*3if6dnZSeb!UU@B5ALqo$jkCf!S=h-mJKUm*6Fk&Ux>sU4! zARqAeT*81RpW^klpeI`}i&wsRH}D^#Ft4Tub`+~e=CL+fYF+jzMbglDPx+U z;k#JGvYNf}`Df>AvM*CnB6|4BhCFubI>tZR5Ij`E3(>Hdql1IZFKZm>x*;mX82e%S zQ(V7HH`0%XR7WC~A} z^S{z<_kYd5X8GgJGx5f*YgJmC*Qn@buJ@n+D@kEo>PL?^7s}sE*n^uHuV?@Rrs3Xe z=?7)qcGt#w2UTIy2vtLuzg}mPus{A8sr%QQqD(FS9q0%YPm4(65_F^6nSTr9Lc7Foq0T%pfo z->S&U)hbne8{9qf1ocbbiawA-dpI59LPS4>$;7H!&0wCbq%Ke%~R(vV0gE|@HLWj=yN@k{(Rj6BeVL;=JoMi<@FLkeD zSV3Xoa^7X|XXk=>@0%fS0qwPu;ihTRG!Y!eR~r%mjVlej;)hPguu~^pSmO-FI^Qyp zuMsi8nlD)kwV#AEEaQ#l=||s4D~BlDb_7cjakYN_T!V&emA}8N^5zfQgYFGa*S3M8 z;Ck>|b${~oX%tc+vB$`Xb2g6JlWEYZRjd4DpWkKUJd0XqK2BaIY_g?ggGP-SISd$} zYZdKQ`Z%SBtX|=urr~*D6yh+o{PgVN%1%vvd3RLkCi}ODihl6pXs*|Bp|T8QPE;VR zt$QOeaR(46W@363FYD@>4OdX0F%Lbw#M>?=+GL($6l%ak?cozATIIR(SRr}Uv_rze z>P19Eh>eHL(4sDoJvUSD9$E*$FpjaP9B#PPKDR;6&LK6mx-I$C67xA$+_Y_5pto4< zJ3e8u^=fg>dse5GKG~3*Y>j*g z?TI4y$J*zcl-)!HR1S(CW_=PW)noS{Ylz~#6<-LUowT%;%dNb8dG*`_rNQV>IjRJK z3oz%h%N_i7y?&P!!qZ<^Q3b92=A3s=@@VB{sZPCm^~4jMP$4G&JYWb4e>kz!j12pd zt#iiW6v5;|8h2YZwXsl5-RwYzv**rfMhvLHpr|pYt0=8oxGXh3jG4gN1{Ui4Kq##$ z3W|<#pvmg7VIF8?(?#hKJHP-}yC%lQm2f(@pFX{%cD;JJu>%{^Q#zDvwfh+~*E=Y# zANJ=pq%*~JinLw$^5t5thHp^Y);_E&D#O#hKdr@Kg)7>_P3gV5nze6*KH?1~=j)o8 zhP36x)HN`ub!2$WU$fDDXVj@(Ti2|inho>dkbA4v8=evcG@M-F{>0=osExK>1*t~H zMjV1M)2C;rG(m*k&|Qe7==kSoqkdS-gpEEKlJ3QJ0=8R<0CdHJlt3 z|NWE8zkN&NOt3sFWaPbwED!R$|9YD@vQmLJtK`9{HhyVy@A9q1;17Nv8iG;1*`^+R zbJ!a@ZlzOxMovy$HgoB0T~l%s{gT~;KY6LSE*nN|_THDhdv9XI>PJwOS9v;L0*s-}G3xJt?@|2V zW)x%2{I~usb^ET~KnffB{+LDk_7~{~{MRwcDO=MUFjk>gCi&NnKbDZ(?HH2NAeIG&Z42>!74rD5u zzI`=q3e)rGzun1SvUsebqN4ZxpR9r!K5CTa#=w%BvvbXPX2fwkW;*h{3lXU+Y%!5_ zuU_bvGxb{~G@v>Oa~;6*uBHeuCF{>Yr{{#l)kwKx?_B!Lp|L;E}?`I z^E&&U8{NPdf9E^BgTZk4@niUraaAPS@K$L?Y%D20Ld7t_oXiS--ID+Uv~pdj4rG(2CQGKbkX(b9nK`se)`%i7@rk zm%XW}*PtMf9T>c%=%`|I zw4P>B6c&`01~GH#&?mCn;3gi^npaE>~FJ)^4Yp z%(FWKw%(qpxW22m*Yla8s-bj<_*98aAi<6ry;?#T(l*lxd7Gb~&rHZ#WWll?lQ}ph z;bq@++cBx4+^AvT{2B%%0&<5cqnaYeXK3|(YsPa{__%1sTU=6pryO4m>!jysM4d8W za8O+K^hZezxel4BmyvFUjqf$p4*H|;;25Al!D^rf`~W|Z=nS2@WaP;0HknUu;c8GrkzJ3#o3c)uXjfGnnYcC?=zNx5O%0)l?zy^ooK1LL zGs5065V09GoBmFARk5GvHm&3I7lpuez{D+0(BJ)*a_ zB|}%z2uQe9#rEjzV_0JI#yDdu%wY>Z9m${#lOa`_hRtF;^MWL0Dks?nEz_Fw=5>%} zj_ch`{by^xsjKP1aRbUs>G%S(vWW<}l!G`LJC&GKw!!2~`c!5e`9Lq;8+_A@NitLl zE}#4Ed;gihv-HQuyQdd@Xeu-#4JpWBLrhmLqM<K|sJFf|uEg*`%Q-EKYHJ-B-f`+J8^Ue&wQG1T zuY?J_c<)|A@`fzzq>@>Wmoc8VD?zA@yLHn?l1UZ+r;%g09ZOYcImR%1gN`Vw_=*9% zHmHE8B>7!f%xP1jOK6lF$`MP$7p26~F47+bta*EVqv2;gBf;U$4~D;naJ3ZHL*u2%X8NGC`!>;ad)%p z41E+|1ka`?B^I9+Jo;l9n%jD2+m;fqh3$n(swJl!FYDplopIyG<0pH5+^}2w-sh5V z8JtFxdG3$L>!@F9Y+4)WsrF1dkj3A>SfH>P`O?ROIq&9!%)jno<2Ro-o@i%lAGJ_M z6{H1tFe^pJN<&Q`5j=o3DM9JZ#zP=0ek>ZLY^2diMozPhs~I=zQBw2wpWP_2c6YFg zQDxz6NGdMi=!Yq;l!E&D`s{zGMzzP9h^XSsoruGVxmD6Ot>PVjlyOQA0eS zAjyp5&5}L3y(9rK{C1KY7|cStkg?e&lu9kdwy0WdeH-5KkXQN>2Y6`HkH%&9i)1-N zvw@ePxkQx1WnH{-r8;Q<7L?LHKc4jo()I4%-30n{_mvs5PETEs&VXzK+TY>x6HT}Y zm8w;%CSjY|zs(2S4#mX<0)*7yV!e77WKDv7ktd3xYy)XUR~l8y<0H(NxAu1M(8qly zy4@arG{6Co!v?yDe!dUVlDfLOtAAMCoqqYUhQaa*!*1Q&+S$JY^KyAmao(X$_y$Bq<1PhiiK>^I+v9W_dmGmXpfF8- zw<(SjJTXP%*^A_q5*ZtZG9GzlvR%w&Rb=KRETTt{eU$+L)xfw`v5iu{%bd!zygF8m zLUyYXSmiUPuzwV65BE>(@62cS2ywVndsdaARx`~TlQJ(|zMPhyug^EROoGk9m`NH( zP(a%ZV{;wwy6ARX(MniuZj2tB`qmCpLZ2ijA{3@+_LnqEk^lL^tE4yk+p=UQu%u+N zL|lgUm;*lWHZ;HawHcA8jl9yu_=S*MSX{hP#$V|~_zlwivA0cD7e^Uu`*aX2!_$?j zeD5wqGDX}gS(8Zakj=!)Lo;J<-EyUjtESi5O^j%0MKQv9_i*9ko;+Ws)9YFpIr}>g z8uaCcX7@L3s?P2`rZ7DtqZq*ujdE|gGynCyT+Q|K`q@pG2uJ(n&mFT0ii(Wp)mMKj zui2CqK;sP15IK#>U!90rctuHOTCiY2=qCjK;}|H!*6=VfJc<+xACur(4#2@b*J8Ag zKI8rJUf)}sqAQ@0?e{)EEp5e~<0Zi|br8OdV^>HjZQG%P9YECEYn>nO=7VfAqJ4wb zu3bgu#~EkUdZS@$*R7NN#Uh=gs>3{dB^UskXJuC`vj`dn&WAAV5_t!Kf74VJk@~SL za+kG_`Ji@2h0V>)qv?0$;$(YGFO)+i4t9}iRdL$)`@3qwi;|_&ZrrHDbF?F=7Qzz= z#8a^*+>Yb}#Y@w-5Zr5bRFw1H?yXw&pHpXef+cwX=%9Jtp#ulp628WieZ|D$%Y|3G zGKY4XlszK1GCCzlmh9B!P0x_gBx3aYrM*4$fm!47Sqa{NS|=Ux7xIeq0Yj_ou$&!z zYc3eDc+XkRR;S@egPR2@iR{*`n`{S{##wGdojL(nlK=z+Ak?D%ln@@njhFd#s58^s z)|0O5%kf34p>4M9JLkYG@6(O1=OZq*(B}sr=3<(Y8~-^y8Y3|hI=JdfBc@DWi|5KM&sB2J`D zVNK|zMYnah1LI3@O~sYnkF>-5_s*^Xgt8(KjFLy^&mC5KdW9q$BM04x<=NCemncJN zws?r&Vu>_Th*0JxRqyFhUxI4C(Wkwlu7r;vFCU+Fcl{}M!!uG=9H0lJnz{mc1n);n zT8TGSs&u&^ByX}5k-=8@>|m&E!R>7AjTIzETiGnL|CPEVB7!b;Q~*HC9>4=3#KBlr zt?yHotEzcfnX?9t0AvTN+Tgi9m34prJs4%utpg(lCv+zRVc{Gxc=QD!izZGS`qDp= zk`%*1&5di~-k&Au5ZJF&d01H-KzIbgX-{oc`_Qd^9!9EcAyqE7W;Hi4$GN%<^T2YS z$MW!9UJ0@UYA8#0`nBy6Ll)qmpuccD5xZ|6ZbpHjjS zOE8wn3}B>zFfuM^gDP>s>wFT&nJCl(5ZS)IrpV2j^Gd8H4agUJ_oh>(_Mzdnb`zRn zC@Dw^J%X5Yu^^kEEeC@FiDpg$@ESaVC~(&tPg(jk^!6oP5Lw#i?0}plQ_FYbLY|_ZMTahKA zOS4BW@yCg2dgOdbMiQ-$N54p|r{xnZ<0Gic>AYM#p3^>QBDYiv%Zw%Jj%U%W%gzS~ zXds#cJ%*YO0$8=RwZ(Q1jNfokBW>*!vUPzd2p)1S$KvUADogBNul&=zgeqFbCc7uRzOWW=RRW34iT@U(!BvdFXv|g*e#R&pNdQa!Ni|4V8R>1z!h8_Y0$(22lUD=A#Xt1x6;^1aI&g0NX#t>JAP_%t~wIW zFu%+|CmF6WZ%;CH34i#Rh;e%4F$E|=t5KuYXKJnI)CnrfR;>oeqYVbWM!KqAp#M2b zc9l|vUL;W~^=lU*qnExc7bDH(H#3uofKfzNiYYY?Eh7QD4;^xUnN0t`zhGW{L{K~q zy(xEZ-+ub7PFcE?(pmk)5Ep9^39vSWdRGXmEk~cN57`49urz_*Js@(3Hq&sT#(s8s zm^K+U6$NW8V`Jl_Wj}u7)b<3Z!c}ZF7${%$PaHpg=R0=O0-#?6~oQyfydRVUkV z3v7W?q!OIk!~1O$1l7U$hXS+i((Z*I>io;p>aVsN%ip%Br>H&cNfC@ARR1SF@=C5+ zZ?ceM?DgT#{)n%7mzb4ZXI$a%lFu_)OIeHOnL$gYg~*44J%&0Ii|PY_e%8M+3G2F# zi)!A`w!A{~2`w;0s?od-XFl8><}sEcvUkD@*&!i9aAV^tWU&8CY^U=z%7%QAwD`qZ6C$-od)kcOe}5%y;SAXSSA4bIZNk0<$*JzDe61HNLL2 z{j{+&1U>nkht!Bzj1KwPt25>yRQ`qB1<{uF?793_r|X3Wy}`%XZ(z(~ zgKDx*hZsoA3IK7<$qjT`$I1NGlBCo4JkxCRuUgdju>&nq+Qo~(*%vf4HH&k4s(Gzn z^7K9YN|Eo+^2TJg^xpZEJ3;4)j}*g-V$PvAd%qq0A{%wuKnLAOqg^c<0rpM^d+QOa zO$j>HsmcztET7&ymK}1LQ+IIRgkq6`WjxF-KyRCfV)rv5$O5dAaXE57`&MF3(iIRR zD_Ao(hA{T!(}P+5>y7TBiusyb-l)r*z4~Ew!&^~olpLeDrSNtV10`UJ3veG!PX4jw z9CKdFjV(HB3SYnkPAc`rZdwJN3TxHE=H^$)12_)~*4 zp|kl@8}kG1;?tw6t7~hI|F1}Mm~;>ZBx+CHkeVu(015j!2?KnSB3k~#3{~?t@lTRw z&|pKH?QHJmLQbN1X(_UT2=mqI5f0YEdcA*4b`da2jtt+?mXI;^F`&}WdEM06n=SHm znvL;9aH9ETQXf6a#q|9p!E(o4CrWQ5^d>5FO#YX9UOxm}2K;xecA~-<&{|>{#u`s(Vx54!BXYL!FxM95*kv@@?w zk{C3nHjp~GOP4N_A18MQpgH21sm;vj7 zA+wIVve8gfRVgVcsWpODeW-Zzg29Kjm;|buM6)P*TWFo+)i4_641$~BNXx@ABY`pY5bqjb@*w&(+2KNua~WHw-4Khk zoYFOsPErx4@JfeGh5YEW0GqV=Jy&E!LM4(@s12K)8ThgM=bc-(Hr?+`+Y=brZXk@H zQApgSS42*JKss|z!Qrly7fi`Bk+B0=@JK)0CFS@E6n{+s=)|}96^B=r zoAM1MsVsQ;$GhC}+P`&((+|6nn3`(CSD+!NP321IyWDffnl&1fNR~-%HrRdrk>cAU zEiG;1wrw?NRRjt^D^dcEph9>XViQK_*EmuC zyLJ)of#P>;z^S$V0Ra~Y)-+A~3K-^X-iRExR5M-#{=1 z<2C(9FtOoBULMwuGJ^!^{xl*mZqAw6#Z^Ia{4o0FFNYbU&diCii4Qanpe-VH_nhG8CibvABPRarmc%sZmc-5o9DB%;2l%++@K+Gv=QUz5G8sE&33}5 z)v#F8MYsZ0swFjyiRGDH_&@uR%T0H?-j9~$`7up4*1Q?uxHbN*Th=H!%jH;=gF z#W;yzb;@BzNn{`e*iU`$rh$SX&)HuG@%r+-E6tF{$V?_Bxh^QQj2rn(KIQP!7t1 zZ$&riqB>-LdCv&wy-8n3=z=6~ky*x&VM3#Jn6xBXqBzr?(t~720XFL0@+bWO_H*Ds zDZ3fPmY7c`)B00SoxbDx5I&{X)PX(Teo00C_JfYM!JGG&unocEj-q(K)0h`5ma)o~>D2Hh7Q-yumZHsntF@bP06MGiS{n|`vJBW$cOk}eQ@FJ?z%DpF%>{wNn4l7lTx} z)B_$Vjj$pSN3E{s)V+UpUS(eAQPFzO8tCYv+s*x1@k3khNf$5xD`W*1f}T9!{lcEB zI#yu9$uffBKfGlhrpSjLatk7k!PmB?0n+3mD=FOMY7lwq%|Zuq8yYa`L&}h4AZ&&n zckk!~scul(4)VOxMN7+Po9cw`VfBnuK@d-&CmFw!FeoG=Q-PKH*^@L*%MPv?GtQW8 zP(*dXj)cmUD?6CKlwzBgjQE(LGquH5o{81M*K2949F{c_Ltq}WFe=O`j;*9!qa{!k zGA}Xsr2G`$X_VXb{n05=`lvS%%H9>M9)fr=WAk2oe(Cvvjb!J9( zoHn$Iso`#~*{6ggfLe2TMfqxvfdCj^YXHE{pI(g;(gLBXlat&1Rn--NA1Ga9Nd{d| zA5;u*0<)=n>E-HeXxsx;Pp*COww-}l`QV!}h(VD|_h>_1TjDUM6gDqx@h$*h#C2xq zdJ%>hJkl6So_U!xh=fPptxkh*o?@JWTiP*|2u=8X{zce7IItlFtL)OyVfsZzdW0+h zAL-^>;pS&&7r7qEc3ieZP-G^^@6x$!;fG~Z6Wj^@c`dB$0AxS6iiPfQa$12IPSbu{ zn{cmhqQ#K~xC3`}3psAuw5d4mqI%G2yKU+APBVU^tP@ytzVmfvG(ef^wQU#zd{VY? z(?9@$+zRlzHa^BVu5u{)XbbV>arocJu?d&SEDakoy8GNsn#+wYDxf_De z!6jyMCUN?~wM2a(S&#L-teQrBQ@~uQE(G3JHlQ3~zvl7j_q0(r=D8zQqZifOy4HcN z{G(mXAcyTN*bpuPU-JD4$f7Lyy%=%vRVlFd)GA+Fd6w;>YAoFjhpy`Sj zv$xII*j3!fYS+FDY^_?XsFL*N=T{!kG!pyas>a59j9v+fW-!KR(Q!O+);4Tkl|Ldg zR_D)mC%ao9zTgGyC7MZ;@quyuo<4nQ*rbWgoDF@+Yuy&TuMDo2lb5HB+Hl0V1qc5{ zL_l_G3MRW?nQlmuXmdpOPRJH*2SFTVa~jWH3pf_66D+hwYkFVQ8&cdOryB&u7-g&# zu0o6^qNy#UX$7tk4<+5@u<`o1(h4pB2&BV({db0;tQ&*(VaUdue1sz z{RB|nk0Vv3RSp|0OeTR(2qc-xXwYSj3Dj^fWDfg1>!PZL2MYn48pmq3e-q@24G0&2 z$fkF=`4E#+7Bcq=9l~{(iu?eyT-LkvwsHaN<{&+pVO<$z;5sTuvUg3|6|@4Ed9sBi zC1&$F81)2N+s!nkXpJC9B{RZ~Y8V8UgdG-P(LS8*RZRWu1k?GClYznic<{g&A0m?5 z)4w|AHLi1zWymZp;9Gy_Gn`y&aVJ~9k9i01L!L^Nkm=ON&ZHGHQFz&j_>Xm94C9J} zFNTd(DVx%{o2%A4l;xgwY7f!InL}HkH^mojBjAR{nE%=fht8sKNx!c7dLWPh`#cG1Wl!1vt;xG4muj(A{7l}$~PE;k)R6(q$ zDWIP8;ucFjO=m=*Iv_Hy4Bkq;TIv?lueyA0aP7toffs{E@7$bqm;LM_GDBP^yM+`# z(&*UqH98R~E&M{Oo__k|iB0d`F)MD?9nu=%?dhdo+aa~)jrSwyia7$|$ZPg&EvrV( z@m}mm3g3oWa1TOgh*jxDsTFy${$#o$GXG1@A$6-%@vrk}Xm1nkv2HxobCGAus?{d<_C-glYieo= zXpy>#h%IU>y(Rk(i7){FaYQTXCSg8rhPBzSVS_!xmwQ*Y+0TYTURe=jAoE-W|8ZJ0 z4B*O;lT7UgKY0fpTf<;o+^=GD?murCA+G^;CMM94+(uy-pt7alg%J_-VO|I11QMyT zrFh*R6dxatcVm4KC9+rwI%fFZhX^SUj$>&0WF(p$S&zoKF*G#=EUe=4fUQ++gatmx zpdW9GoEk~zbed5}Z3LU14!kU9iv;oU6A@s0KsDFn)8<5IZG=NbkZi0 ziL>!l68^KKyvij=7(IS`)6_ben!Sidt7`Oib(A!Tn53Z9&A>Ins7D#o)WZ;#9HYNg zH%m&-!b-Kv(lenY$m@mT0B#%6wk4+u@Vyt5dgTH3rekA{jFTmnckT==XCsbz_o2uAdl>}jJRlNO=QfS~DA0-~&R8hX7oIsjgD8E)dEsz+>GbFue+ zb17HY=f0Br_|B+OZVILk<8Y@&Tgxn4WuVbjc)J#XZ;DRliEZcHEq*G5P4wJ+ans<` z@8xA_L$>?BLl2C60wl(OssL2Du2pD$*43-M@G-%ERMHkHpqMxTtl9k2t|ZrGi_1z> zv&^Zf3c}^(U`Dq-{lXUiMq}541q`^1CQvWgg2+LjZ;Xg&snV#Z5MgmmBM*_| z>wz#F*zT$=bJEG*p0}W_KmY#;<8Ep}i%5nD$gv1CH>D-@oHVJDa(!3#U^pptMQHPo z5JS%n(Jlf#WMz}aXP4%gB7OD{mWBFH)B612ja}%P&p5H z6o5p%cbdTp0LPl085LjNjhCcO9Z5wg(5Q%t_%%fm4|P!!0h5`gXHv$Dw*(qYT{a|hi%^6bWppmd+7%F{{JVDQw*nDYELqm@En9R!Gtd!1Y` zo1qYTVTb!1S%}N^40BLI%z2fVQjzATR*8{&56^^92a}@FdaxTR1=KI>q#_DYm;^cT zS7cxaLvq=FVZUC#C$rQ3>zgfv^<94Wa9cS)zi7ZqXg3kOh&h?`{IsJ;mk&C~5<1WM zBaIfJpfr=*(`-OQf&91(d3E+tPKuJSm{vpa100hjxjZ}dW??-nEG)pP?WmZg7v~!k zg5iQiH06M2mcI*in>&BLR9w>VgH)&~?kUUG@%0VqugLv6mWCl-P+L$*RY#2)1$*Sv zNhOPr{#{0jSY1l1pvX>@wrKSUGSuV7Ubgp`h5MJlRyGSUiyUZgUsQfo|zBryV?sdMOmrNbIvceWWu^&h>TNGmY; z?jZy4I}Iq_1McU4qecnf4*((=A%PH2Ek3ybxJpsFcI{f*qM1sHH5QaowB_t|9qy@> z1^J~RNb0ZFIzB!K4<}7Rr^_oIsmwT0bODX`K=o?D+eq!jf@%%8XFG00-~27+>lw3> z$iVguQ7k$-I?4-36;uf@g+Zu(g0~=65S3+e`RlInpQr)E3PKcKHkpB|Vt4NzRMe^U z$le~m@qcy``V1MO0~%zWw+mpMNT{Zr8Hwl97+!7W3|Avg!^dIGOMtMi{=F3? z{>X#H3zY|`uE-b|uq@Plq=;#6+(>j-f;v%vfCb);hkl6$5<~}*|;TjTf zB}IB{I!|PsgBdLti-=G%B8`Sf80Ad{0@Sk7RTD0bA&aUEgLLzLt8kbUKbkzsCzn6G z=9qQq(vURJ`#vN<$fiv)xRF)-W4kPm!8>ck6WxV2H15-C=WJP}%42Bu(m~X74vc7@ zxik{}kL(La!pzK)2($!|#KlDRSzo`?z#lpQEa;gnMY@dqKBLy>DA6CWaj~~l!5t$$(cdQz6V(JhPicviHgSQDfPUb13x<*o|jV4CbzNkok z70d`=W)ys0^caY@Q$Z1{IQ20}B92~wz@inSG6*@_qg~e|9k#j3l8mhwe?t2xB3@XaToRl=SasU0*V!p7Vr>G$`{bM-QZALw&asaUvkS z9peapjmgMLBv1k^tL<)10|#a>b0^)h>;u3v7vMsL+%ld7k`ujq(EHuy2p`HvYHMkQ zSCaUi_Uhp|J(0Xo;9ITfr-{B16(>3aX|m`xWg3MrNMuh1+xB1Yz*N8MAxjmhgF5{k zgBwD|5KUyXla6l%W666TUc9(+|HOJ&G`P_s1e)tt+w2O4G;<8Av3uVK^8%J>X=4PJ zZHF*SMrp}8yr#d9K$1h~2;d^EOf%l$akHv@q*SF?(4cY=aStRjK4g9yHq`m0Fse;d zN709rAu#aQ*5VCeKHkijt?r<(P zwiyC^jVgBb#u`Ex-0 zsI+q|JVycz^VFF-S;J7sZkQ)q`_LssiWS@n;MCltMROG!BA2vdFaeaP+>lPc=Bv7Q zH;{rHQIx1|P<1t7R+z-JQdM7q`l-im^7$p(v0t_U|21{sax``x>w>Jia3VslW7wI@g=dck3Wd_o1(lx1z4X=YYh5M!m4J3Q)pxwi$FQJi_}O{!x16#CXO^ljRY;bxt(x=H9PT(0zh>@U&= zJh+YgfppTu1nyFRZE`VrCXT|_ID4&}D5`_FUoWmU& z&vB-ZxJ(bI)u6#}&kH8zzQnwAnh&pM*9}*Y2vN<(w`i9a-7j%-JaU1zsgY zid6+gv#gzFsIkR12X&+h`S0;&5iihaK^%Al|n zEx<;dbd9FE!KT6fJB6t_J5O!U@E~6_QyX*TvFh?;T_^rSA<6!CMFi34iG`<;7pK$i z2#by#(+MiF$0q(0Jfhq)%pBBB!v=EFR?<44jFepmGV;&Q2W6FwA$9dW|NQj2smY;Z z>n?ujakKWm&Qw=cd;6(X*X=c*m9j*TZ(r{jvGf zj%lUcZ_K^EXtI@-qCA+rjirQ*>A-T*(pGT9JM`$0`1R|ehe?YDm(E-Ku(|QB6pHDu zOOxl%O}u+GC|V61BfRL{X`_%pPC~3rlO~R9(#M&%Y17%Qn&Q`ecA93BX-lmmnOvR^ zQ99|*l`B_j1YC5AahaH=pK$v0@Q)uquCX(^k=@nGs{Xn@9j&aU#?|!wOxJ$CEU)j+ zFV{R35bia`EsA$Mq1ahv*V(pZ9_Y>ZMz%X>BOm1 zzaN^r&(%C;c*}hNfF;btXJuyQmXySOUzWmp#s1IKlrdc+-l|{O{`~pW7?#5EIiI0aoZjx5*?;t? z3rdWeXlv&a7IbuVpHor(_WSRHhYj0OYNsgE115Q^dG?<)DK@Y4I6dqMWUeIgQDB8m zu{WQWl(gOX%<}5htKUlYY$$`O}u>H8o`qgW8`?mHWI zU+hYLuo%w%B_Fx3`-cu2cKh+;M98(ip^)c$2AO%D&f1n%co^1yh=)faw*mW)GY@B8 zyM8_4;KBa*g2b2F*?%ox=-s{129)!z!-vP&8AUNHG8n$D)6VLO-z(L@8yF3jWttj1^xlO6M zu_K+$SzK$*F5(6-t~JGH<3-#%GK=3igyOq-04>rPx7OjCH&dE5I5c+`t}P5%^xW33 zPu~3vy~d9pZ?)vp0km5aPuEtICF2UKZ0z{(;X~XMa?T>HIy3Ib*5yW%G%Kq=FD=de z^5yj6B};T_2benEym|Be;`6ItL_7;_lblmj6z#s`RmWCs+Pv7g@R4(qx*Ic!o%{9; zF73wS32JdoIXZFX%mLPsvmWNZ_&9aJf;%=L$GED}m36FhK!#mMjEE3H z*Uk@LmRfUMOGzG#9Om)qsAzArf6X=9Cmq+Yxl>e&^~cK4GO9m8ZPs;Fq(%`S>!S+!Y` za&#Y$Kg7WfseM9R+(wgHHEYJ5I5Fhat5;my6w2=VlXS4_wBnpPo1B2u?Da6 zA`BouGW#`!Q2FiKi^SWxxltta{pZe&qE@Eh+FWW^;E(sBDIm$gu4+{kPsZ;ZCj|z{BOeD7?95~P~@BWloZ5wnT ziYZELVMBLiM0mfZ9lLai2SYjIHZ3K-R_)qZFFx{gu6P-|E&AZyjYHuwc5GB>eMPDG zFx*>B@m_xTt-7+YJ1+zuqWqz)*+x;?Y@~nZf!%D#e^DQ{T}?UcU>@$$Quii5cplaR zuuo=C)5MllE`&_8L9Rt*qREyJjHMwysF6^c^P2|I{6rJBDeoaR4>MVXp;+FnA+=9xy z^84y3ikJQXo*93gyi`Lz?Hf{i%tu=}=21Y_uUWO0-rsj`%;Lo(ahFIIKME?${-K+k zV#*NFKZjerNn3HPs=6|!S5gd*Sd-B@TX?qL8aB-R{ypi>XV2zSyT{y|(y>E_t=B6l zshho5%Uze)^7-=%nvNUUpy))iaHp8;Rs6{DWGiLN^6+q-GY?@l8nDHt#ZxWlhJq52MMH*DCSkl;iYx43v+=Uvy=1P6cQ>YnqU zI=d0{f58s2i^?&^wCKEAMulB!Or`u^+E7k|1Z4m)=2Sk*P$ z{~q#?Th^^!xeP0h13R$ixPc`_he4J3Lg%Mj@e`YI!dy+XbF;J8B3d$WtW>Ge)EP5| zELn1{kY9cobgDxozV_q}37a?T_V3rvArx%%R(}2g>g^{6Ht{# zQ*9Ak;u8}G@^0LwJ?kg+K;Lc`-qO-3i_W`Wod5TCW}V3Y7?1qAzuP>KI~V#N@u&;lL4U_1 zMfoH_gTD@&9^xkP*YqH{0)?xU0Ki|P$g1-9Utvk%B>w%J|Mf@Z0V#@Ks~>gRZN05` Tb*GND{JUfC0d|LM$E^5Y3Bhf^ From 14ae567e54f643ca26c3ed0e4064aed507134aed Mon Sep 17 00:00:00 2001 From: Soham Mhatre Date: Mon, 14 Oct 2024 13:21:44 +0530 Subject: [PATCH 05/11] Delete public/images/example_usage_of_fetch_scores_files directory --- .../example_fetch_scores_langfuse.png | Bin 77242 -> 0 bytes .../example_usage_of_fetch_scores_23_0.png | Bin 89209 -> 0 bytes 2 files changed, 0 insertions(+), 0 deletions(-) delete mode 100644 public/images/example_usage_of_fetch_scores_files/example_fetch_scores_langfuse.png delete mode 100644 public/images/example_usage_of_fetch_scores_files/example_usage_of_fetch_scores_23_0.png diff --git a/public/images/example_usage_of_fetch_scores_files/example_fetch_scores_langfuse.png b/public/images/example_usage_of_fetch_scores_files/example_fetch_scores_langfuse.png deleted file mode 100644 index 16bed1cc7dfbea80efd17ddef6b399a8b40beaee..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 77242 zcmce;Wmwc*_ckmjqNIRyNr`lKS%9?C4I|wkG1P#xND7ieNlSM#lyvvd%}_)45btTLyC?JZm8z@$&fH_qm~o%m+renK>B1QZ<@KW{ zt%}BKKFsNgl@r1f+WF3;Il?iUPI(#Ll*y+8SuWMuh1ynyZz>DxeY-57K-vdgRAp~Y zLABng;Cm=hk=Rj@dq?gUvT`YFNoPW}wP)aR65YU{aZ7A8{Lham4LVWvKU;Nr+fo|L zA#|?!^J8MwSqg1zDk`R=yk&AnRB)|zV`e!JQ-@Qb|kNo`LfBvLXNPC!j z-%wMukSKO1+$cy^v-7(sNH+tovyu`;NJ{GNo}<}>VMyp4 z0p$!`U(&1x5T82xdjdUcKQA}kKWM{KFp2sjO=1ys+GUZ?vC#7ESd21MJ!_7n!h^hWND*pAQcZ;8hIi*h$sOOKPUP*U) zuakj<|HRW@-?SIPP(``LzMAF??T}Mzkt6zTUTO1;!HvMCvYO)Hw>zB}+57~P;+`!x z*2+fKi%y2ehywNP{^s7#omshKYgeHi9nYDqw#?1VTU%OiIBbM~sI@#Vn z_1g7|gppC}!P!aOEUBu*U5@08LhB2&^fn}s8g0+}C5ef&F`s;&s$}CMp;yK1nXx2a zJq`s8OZ5}85CSjpl$u)M(UFm!;6rAebK(tH+i|9Yf6xO%65>KFY0TO!rvHw{-`-=7 zZPs3V*v4te(Q%($mf5&cyU|DKa{_V3P{wA;`WFaWebcjRO?IP?t?^NU9sIt7E%Wmo z@AXuqr4&)naZHxCmgRen-@f*}k|OxF#eCNaQi;v#i)3w_%n$1q{iuGQ&C5jDGk)ha?`E3#`1#7&opB`@7`4802juQA4)-)IeYhde3)B(;8O zi?4nk$2R@q{bsByCoJEW-N6{*T1}J&c1p4ANe=E?wxBl|HpZz!?t>Ilz%9Y}l=h-) z>39Bicnk9)i{lt0pdHkACsQvJNyX(Cn`b6wdT{MHS3B`)JqIhip zr#s3giQlDS8#QANQk^}<0D2KQf|BB)ISJvjj z3E&#LUMcap8n9SUxC5&|YLYL3s%q+EM1$Y!;ICL_n+nwqGYXSW_IT3D3{HuOpT-?* zX3zOQyl^;au*lg4M;rX=C`1Hf;C{T>$sE1)qUVVytjFbI=TDkaVbnbp&r7?@Gc}

A)yDo{6TT=S|)xdi)f9Iq5%Pv}|>bXiB10zHWf~OqXlk zHa2?qslBTDt57;CH3rIT1^`rZ0U#Zqcgv3qp}v&ZcdhZKl~+#xc~AW-BZZRqz?)Iq zILR(`mc4>N$Yg|~`Q|7%05N|KTbig3+F-pa^q=`G(eJa{ zM*~RMu9?POwn7Z<;qnn?9wKry4p%gknYLc|L>th{@R)J4a8cNW+;@4YV}*&$$M~YV zzZKNuJbPIvQroJ#sU#hNx_;>iuA)rKt_n}+UI`9=)Uv$#PQ}r~1H6<%dJKZB++#2y z)a5dw4L%rFj=3{elGLI$@nWqk-8^kF_#It(IPpw$CL#t)-Dc{CvzFyLtNSZ++0obByrS{|&u)TFC?x02pJ^7ET@2r1&YF{Sh=2-TrT)HV$EBC|&t`k#=%53>BjOa= zSAdGa!u)gl5#s7idhIFrY`w7Jh|c|DbJGL&9Wq7<>#y`OF?!k!qs#QCpq3F?l8PVzvA^4X^s6~674J6 zDsQJxPa1B!rNkG$4J@_QK8@8FU0n9js`~Xfx^_8_VfH*`ieA!VnChbPeN0?Ohm!bG z#-K|%%$#5AqFvR=A2dJz>g`*_wZQt_#UdRug0+!y<=+W6uSlqJ@@fGG=hW4sjsSl( zhwqYoto;~tSB!BUK5+4@HR~V@1n{0!ZGf;5`e=~xi*>!isi0`$Zv;7xCo!0{mN)XI z3Y60R#h5sH;)P*(vmno!twGV-obeq&<=4QOu%szyhELRS;nhl|#KEBscq&e3s;%Q0 zk#A@Jaz}kr8?cE#HFNRwE&Qs)j;mUaJPh`Oui*f|ueL7pxcB@fgXO%qohsA&SRlpw zKw*9%Sw;(_(Gcz`{rnR=8FP_OBw6yxx?4;7j#-yBIcXv z2j}_01JQQ}E(0n^yQz5cub@3&n`qh|cw;U83Rr(2Tzf$vz?DE+ZpvwPD!<;ZNY4(v zpQET`!!o$KGHI~5xo{I^BQ#z$119&BPn?Ie1QjEbOd+-^A#Cw!)0gcg7xGbx)6%VW zgM;XW;`R5zq}IaA;DSHh9;? zpf}Zq2AD!&(|D(ZYxWKEzGjis&fEG+Kh5+P!>-{pi5{z}whb#(R1Md%QGF%Fm9bHw zlnocld#*SA*qN!kgNM(S0zF)JNspCmYg#-hG9R$K2|GrB2-q!WWQ_^tnoXSUtu~}iQyHX62qZ7SDkHTs* zZ+Oq(L4JDeZD6Z(@K#B{>P4^V0?f+o>{{u<_*x%lEiP4naN^-Y%0)^uU5wT~vi^m&7r2#UuF`aQ|FpCo{6;J4qa z33vtGSDYwao!#CfE_ho$bX!cmQkxl@4~lJHo<|vps!U-_)$hJ-C@sHELaRR7$heh1 zjFmX*<0&pLqPsedFla7ZfPh8pl4Lz|Yc0A0G>UcDNU;NKRcQnpc$7iy8M56l z>b9E@BYL!D+6R|>mbixNnaW7jm|(n6XXl|0Q z*~!8SD+BCr5#AocPoiqz3;mA7D-GAPdj1);>+?Z2gDH6SmeO;wr`M@&^C4F&<_NZi zPDPWJtEW-EB9h<6FRY>QJ%Nq2a7G1)4`IZ7XMg{;=Ed=z>$W}O*x1ntV6ThHvrZqy z%jJ`~N-7T~c@tmk*cnJgY{?EXxDywK-!bAdE<4BqzfG!Kdk~z0uvp;)A9V=SB!wuT z2|YPh>PIbG$rKwE!GS7Ww7ZBU3@TZsC7^^>cTe@Gu&o4G3%EaFM`#Poz>F=psn$K$_1fv(!eu_W2<;mfajSsi|Z9+(?7|} z1uymXO=gU8xXX=x{2xz+i3*24Y{%eD-QxX1Ubayw2VMn$86D@j%ZFNPz6HxAW% z<8#hYccq5N=8dPWot&ZM2udUiS3g>AI-41o{?)y6-GB%(I0R2lmcYh3i0MD|HWe-+ z1o%t0U@UH@V_O^rQW{gh5B`kMB@d26eW z=#ammOJ(rNH%>s!C22^!bvJ0i9(HX|xXS1~HH!B+nbb|-Cpg&xTqeHKsZ_kmXt%Rl zlO1Hyut{C1v;xXET1}gA+C6WF&j8H^(dYm)4>_@QU3SdwYyT+i7tt4*j zwP=8;ix{#pA=y#nlg~0Es%o+WON~3z*Ju`-q&riU$&~2jOxyAEJ5-f@Rk4e7)r^av z3zxU!@^^!55mma+8IH_8n_KE)0ibHHTEwma`|;I^&cf=R74ZF5edI+s<2MrW(58AG zob~Tx6VJC4*UPUPCCUzK1ukB|RiTsOWqSwSVa9`YNbeU*EXUgrU<%+D)kaf`x>Hxn zV{W+nh4=8zpIgAJ8sc4guSIQbhqxvRRUE8@F29j---HXeR7y;OMoy~w`KW3E6l*Zs zphm}`n z^}36^WD4j;bya^smr?ePaueloD87#!N#KEL@n4Ek;OF&;G8K*o-_0=ly}B1hjAW9K z46N1}1JQFNRAR&^g0udq%t%8!XXumQ8cqhMT@wjaMQ zC$@&0dYIb{2e`Wg9#%tc|Kfxcs&k@Yj>>j-LiY{e2KiQ;RLRmy>!%+~NUt{)HF>larI z(F?JYX3tQRZq5a+*00~danH1Vf!6E%Zn?wKFnzZFDF^E{_rXoc0s&&g>Al}TAg%np zhM}F;W9zmJ0#$n*9!BZ7*qy)WV&#%t%HBW5GoQ*_U#S!5p9Ef}5;tTyg4dG>3vpu*}pf8AGtUY($l>qsZJL&5) zpW)|2YttZD00=}nZiYd%a3weMs5Wk*8r@lpQgQx=eBJWH-8uxhr}L5^YI1)$`HPE> z1o`@IF|gaJM!KZ!OZJdm-4=p~LPLGc`wT$>M-wdG%WKuuQ7#RK1qvJkb<^D;T{4cf zYXf$lU?=4==HBLeZQ|wr44VaBM0YC6w zV;s7z-ph|K<3gzPzo;$5-AzwHs54k?@gUpEdJF^v)pJZIHL-!x^YTF2^Z4QeH}@fv zp#DpMB!gO2KO?K_4Es?N}sY&Uj8Dj-f4yUspu3LcYQ9x@i6%0 zIXVHcK%l=&x30sQ8mpoVeMjf4W9Ib+oOk}Td?r^YWuU6k>fHVs$AwZ{N=hBigb*&W zE$rdCL`|ls`j*$IShu6lK(B8(muO`EhMc46n8?cUsEeh@x;Ubr{>zt|cOQ`z65lOz zQN1NuFu)diLZk*wjJBFB^R_^C8Dss56l^DL#^f5D z$J9MY-;agh4tW88gwPdj+{b;)ID&;(rhR+>Z0k1vk)8P^ly1{_b?uvh>Xbe;t82nZ za0tDvCxycg6j#fa1_pKDfx9IIb7I#P&QL@h_HRuyLx_j?QDpp`w=fbooCRoKeIB)O zDi#+5C%PaI>prf6{GYA=;6FpBM@f|*I%@$75}(PXg8VG+)IE{9HXg^mcOYQaJ&!2o zcYfV^`2GI6sy^l2EDt}jd7n7C4siZsM3yQ^5J3=R6 zdajap>Y~5ZY^>U54(v8pD61r_goFGG*zSMrYbCVgMg_318oNvm&v$k^k9dPFx47p`~`4 zmlJeUed&&#%yB2p_-#5S%1j-os-!r*&bBzNUT&o1MJxu*KaDYO)5|U-9*W?e;E660nHjFu!s(% zsKl;@H>Bquyx{}EtWa8E%Rh&HEM--LP6A)*{nN-LT6^Z58Ou^lQ>Gnq_Wtxw|5@E~#{@1c{@V#(}xjG+tpxm%RG)Wy2s3<4~1oh&&K9-$S`Bp9qFfe@e!6b zbaKKptF$&CdtJTHbC4wIaFadxfnu$&(6o_*Q}aNPU5_Q5b508piFqo;&f$jF9|rjh zvva;cih;D_0{k;>LiF9b zJLZPDXJk5F(hV($Po5Y+!ZgX#0gUeO(YUS%ckwGkH*bFdm)}vd`rNY$+kvh>UP~TdHWY=2Q6@{2j zpE>1*u>)*o9PP`LyA+iael+fk-d`}c1t+>5m;k_ z*N|j!bK*!l#4@9|fetHU>!eBvCxbTsPaOI5$|CJay;zzTy{xb8G|6%cW*OB%%%=c@ zLy9}~0#UcD;s6BABvfQ6Vm2jM$rQN{%d^vBstZk{9=Js7Hx+LlLKN+H~lMl^rdce|& ziP7ENol~2YWe`(YT~0?U`u)on&Ke)|ZAuH-??0Ima{I2K`mrh} zCkP!6?+5+!Up!n6qF!DQP;KD=l4F51KjEX8k(+h!w)Y_JHMFul*yS(ir%i}MqKfw(LsLY_wW7lLooIA zQ%GDMnm*E0(|hwdl>>7<$Nu`T80ss5jvh2WuMZ0|^l3rvIR3TdpF741ZXOB*VPiKO zA8udm^(+iQ$9{e94)zZUIK@cc`6Y7-SIWq)ibXVeFfMrPQ=#6!@^H2pWaRr03yD4v z!EhiG@eAOgbzqk>Ys*%}NM6z6%$?w!*g&$U7Kr@l}FCsvQF> zZ#;{#DHjcZ!V3a{PLZmrsypmxKG&&&FYhnW$;Uq#6a#{ywRm!tH#VSPY27-V>bIN~0bqW*90&2EJC6w4w?1jL$nka%LW@$Je z1Z+DN7K)|Mr>C`VZU&?q4%TPnQ+Ry{Z%^-yW`rC zj&g6o&#=m~!?wM?4wh@m6i;^sj|RKN;7)Z;jsjprE!6CUUvm@gM$B9+l)hIBGXOYl z@e{En^-kJBeEbhqO3KTPdM7C3t!WGbsMQOmxj-ic2Gf@w@t+0{Sd*xg(y~Hys26&omFyTKtof0O75K|doT7%y zBP?|Tg4{be>@@+&VacE_%w}-@{?!ig;J28V-o`V}kmC6oEL_|(cB?Tc^jBgf`S}G$ zYUf9XkL_o-0T+(2#l@kZlS^xwLD`gRPH+v>9Cc2(2s@!e!>-<^*gvKm=*=`>l>Loc z=qXMz`Dx{QwMd!idHhFV3=Xmzk)asdHYFo7NA6p%*NZnHb$aTpX1Q9yt>}_sqmd* zws$K`M9`^>iZP8@AT{rEDQn|3QIXQ4lIxj-jKmDPrdAatZ>hE@yQA|A0nVTK01phr z_>RWSU5GdQ($|~Qc0;=SFs$*%jeO?{3YqGh_Vgt~Jt&F*` zq=Le?w#cY1Cp~IRH^&73St~3skkl~9U|cPPAcGUaEP5C;36(Zt2`_YPWFoj(i)tVqc0j)&?J%V z1lg}4asvo`McWjc#H!kFow(|vUCxv2o1GCF1Prw%yi4y4jXg>5MgoC#LHjU)%(paun~QqtA5s!DkPxsgu*=f{)Jou9j& zW!MZrj5#l-KV$wN|C4A)l{S|=LdbhN{+egB5?_Hed7=miXv}kQqt{^U7T!>ve7jbN&HBeLlzy4kPh z4VyB!3MY>>Xgi~Z;1b7$+gA=^Pj33=y(w^Cr^JbDW=n2s$n%`PUZp&J8Z%r%K;fH{ zbbUQAD9TsH@hlv?UiqyS{vzw8{3j1^iWayuF)8e)HPrPp>&%H4eINHsy^(v#R8f$u z#UYki%jSnb_~fd(#}kYBUS-+o4ky{fzHKFYb0xYZ)6@hLn!yHOXL+dtgVLr`>J1&p z;YD(2pLNHt_GzgSVWH$k({$3~wKZy3b4y#*332puMjTh^?UoIz>*CU)?|+|4%-&=ZD41==3uCflqvd+Z$z zS6MULH~+}`y7e5myv`0g1+RaDR?P5&&TIRzS+yD>SD#3~X6z$51*FyzE!)2@h)GBckv~bf_9bz_hXO~lm|!NHcn?!!10yC2>H?E- z8WItXr{eDzu4g&-8%pd5_hQ^jJ-r0=)z-epW=HD~b{Bw~`YC%`4|w-#50FTg2;&yD z$F}#~a+f8eF}+dqgl|1f&#OLMoe9c)4DKfoU>FidY5c69RBSwY@P0jEThu*%X_bZ2 zB!n?{*bjOU{l#Lo9Y#&@tQY@tzBB>DiMTwtI#LJnX-oXt`&-XIH=Xk~j<$|=f;ihx zx_v8ZHmirATDJ@9nbM$+4k^?A_#SAfLlvIaeW8Ei^AFiM3tGj?g|kc;U9ZEM4m%9y zO;2|=MUNMO4nSZzd>U~E6gNIl!>rk>2jWxmeTF|3ZiT?A_@Pp(42dW>Pa-*!(T<|b zXO8oC+aT1S2;*wns>Tx*uTyZFD_djG-gPf)hx_ZLj@y+BfwNKm6JgsX{@|BZ?Ate2 z((}UWgM7H6zpf81u9}cC|5y&&>_IW^(RuYc{>r#ptNj95#ossb?q*gNqqT}F4^O!b zU~WfibU?VWB=;B5I()t{0-d@BY%-}ER$M%|=~!0oXfruEHa1<9%FFe`j!^7uC(m=D z;TofuvaDn=+s?6*)zQ+9PsnP1DFYY7KE?a~DdFb8Xzj|d&KG8{pasay;|u-C{bsnF43-nBgoLzWR}^DsLh982U=7bu`mn9BGinN2Exm@$ zK1uNKl~)TAue5<|=N)DODQA%M+wM&oBkxsx%`!M zSAogZk*>A4om`=p|Ed!sEbG-6?#oFjB{ ziHshWn85ukUB}Va=^Lhrdv1UQ?Qpcd^#keRj|FVoTcWgk9uKHByHiKVNXwnjfbya| zCJkGQ%qds&1h8K^t{;^jOYE+7K`6r>&wj)_?W^6+vUa;BRJRe89lZkAnmAx!(jvIn z8qwvE&yijC^AUq}wBIQv8iNO{Y`=~|$BeBqN{v1~WZ2*d;TnQWEO`CczN1(*Cnkvn zq-vEA>tAKq@TS&^>>(@o+1aHguVc{8L&5P#TmB9EeGFRB*^n~6rVS6MMoA3yO!meE zH=W7z1C-=R=@8S7^b1`|gXY0heVIusw9`hp)4%B1TufR~(L7O=?Tsh-?a2mRRkHJ- z7)Hofn+1dGO?Magd?%r!>ETe5*CcQnhDVP5=3KKW@9p z5#ecr6vMz%DZy*=q|rDmByv}$?n15)fa3J}CTr650JnICfB6vxMn!<+q(SuVw8nz4p8Os)oHl zB7JFg_w&VXLf_DTTG5D2Y4nlo>|oqJTTQ8jr}=|GBvWUtR6Tush+Tyaii#kcue-AR zF&&@an|z2mu=;E%Qy=1X@nTM#o})g1(N?Ls-0q!Nip@i>+FG}r>BiLTY||N23ZqUe z+aWWemw<(5{E4;_Nav>5q_N_GR(8gzDA(mm{!F6Tqtw{5HE2LvFCT@XV0ap!8& z1(vHysBZb*%q;$QI~|yv+?ynu3O^IHh}WkWa*_45~r}T;W+Fe<}r+besik;*QLFKnO_W$B!1# zqv+If&jg{ey>B;TM>|#zMazoAzP_Q}KXl|cyxisYU0HYRmEbU%_kZY8;O-|Nu=*ah zD);g;dJ2)*vZ-$SNU?5rX5csS(_}%15&pWpxij(gd;$H=>bbb_M^gpZH}Cq?t}pwLYJ(}N6c2a8J*qrL2mSLYy7_cQXEC^QWGlq&CMy$k$(}zi zm(jPZlx8EKFOs)Ux3o2-YX_FqRTx0ecik=2GjpMfs5-&RPQyG z{dL9Gzkhs6`EKPmA#Dqa_%x~!cXU!b_fpk(vYr-9cR3HbCD6ZFA+M^u^g8wn(yXxG z4WJr6Ijc|1_Sov%ZH06wTAe0q&+N_C&+LMgvZQMYlV@`J)uYR~VrDIIX_YD~;rd8& z>hfKAM(7*;pxqvMPR?|Snv?{-sRC^v0WYufZ0Crio4ez}O)&P9n&0?jU;(Oo$sd)X zp+6?p3^K)zwahL#!|N1`jZIZlRC>tUu{*fBqt7BMlIlWex zIsGSk*;9U>RbM|924=_<#1R*)QjIKCjdb?lgmCN)G1r_k^mn8eQ)g19EA@@O*r3`~w1YKV>dmHqSp~X%s8wIALXFHl5rB?aahU zsVlO_#HbbkCZpfxzmUS;fgvd!LZ0Nh!gwuYYzyYUq(N zE&Jo6cDHwb)k8oB*`M{{&rwb)hsUP#^8fpAv80izZ(FIFyH@t!8;Xk}e+g1Z z{zEvU=d3`zkAujwBrnl!>78>kx8lY~wSCAEh>~I}Hj^JF1%Q#HGoK;ly$=V+n*Z(2 z$Yv7`&c%}Ax}s8$(L)VP7ncqbTz*|<^F;6|QgK`u{lQPhUg+W$m%#x#JdAx0|MTvD z!}xmwNNGaHy1Fh~xS-H9uAYL_R5UnI=cko*$Fg}uNPB7LG}00+q$OLYSx8IpPX5u7 ztje(I%jY{-_XUUMV)?v!j1cyQ0xPOJmsbtRZL){#_7nSf`K34b_$!BIr>9|tYBs#CHa|ovF|jI? zdOrNgPJLR4NxqltjiGxxRwUHg#t{ywQ~E7v=IHiU;`M*{4#HOHx0kZvJ%@8A?gzG1U|w!*3p=IZ%``3VmuPfAA-W z2nm8gtjjHOu!XHfTlX+kNQRipsY?!blQ^*~@qgvG|Lrh>kl?XsFdag+MZT7|ql9GK zm+D0Jw27rP{_!id~10GVEW&Nz{LL!_*ve|IFooZ+@c* z*<`qx*_8b|!kW__^YZh5&{C0p^M(Ki$HmpHW@T%upuhN`f~LT~zfIS?@dSxx;b}LL zv9eg-P|=a2#QlhnXX35sIe_!&`TdpOPPhg&XQ-;%e7^dYN9QiJGB|e32q0 z>FOi5BW7-HUW=uTnY}~R6RPDwXuSOus8K4b-%xE@Tc>BZPqd6&l!SozRY9?SA$qU+ z+5fgA^)PuIXgMN|LorzK@Ipf{f4xzSlV6Mq1Zk1FQFM1@l=g0EJql4luQ6tm(8Mj{ z|DdNYtEk9@wid=)p;_wa^h<;@p6lDI2X2DSp|VV-om;B&a)l;W%THqs@I(&1hje78 z%4uTGsweTQp9O3yryo$TPSQY>5FwwaOceBpf6)p0p4U8jJr`J$rm$vgvhF}%O_Y=N zetD(!v2(SAO71kij#wGEfs~l|Rp{WCi1;89&rEShjs!mzoSIfqUA26>8L#XUrbCtB z5^N9=v!1$A$(Bmhyj4)0THp#0yaC=dJQhZWI#- zAiWfO6o3+RM4BUhPNcHCVT4#|i#G%gG&qt@FUYiMDVmUnqnceh!UnNUal&g5mrp23 zU*|@Uhj(PLdQ6&Z>G}eWgw~bIj#sp@gw{QLUhll7{StxQQhd~z8!P*%&qp-C#{XC_ zGAEWUHRo_X(Rx-zxyDO|mgf3J2>WJgGXpll#d@kgkj*1EE9NrMJj}6f12MlK#io%5l zSY%e_#(x&%2d`f;tfOE3P-F~(T8$ykax(RYhYh#%vCY&q+Ggh`QUZdG@4vXJ@H}x& z;navctF5jsrp4wT^16CSG6~<_y-QojwQ1jFo(E6nUqsW{7j@B9PleP#AEh@0y*S_7 z0(O^J4VyBTogE!)QCbUYzY*|064J920eYME%K@}{1bvZrO9NkFSW;K7F|6u(r;jP8 zs-G&vk5W_TfHJPH^*gEjNN;mKJ6^e~E{003&;v{H%P+WD~=K$;j!N|uv z;90!WT93$6yQ1>5x%etpidT_LG#v4zetRDaF)~tq;R$<1+lE^E@$#+ctlrPOpBZVn zSV};R*M8R)R#q$K>f*@P!Je`HN)2$#hGw5_3DR+X)GzL%jrhL6ps zNe4Ud_{rRgykOL@`63m5J0YggxALohZ=^&274ByXZ1Pod4zXhO`F>DmG;8OIX-NTOF7|IJMmdh; zfFD#g0qVsvCVD;`n6a7rG2J<+ji$1rF8jM%VidTFrWaA9^avpr70v)qTv7Xg_Xsk8 z2Sg$H2F7OVjyhs&f+W~Uxu0lh`F%@Y;iyt@ENXh85n`|FK9p|o^(7^zlrQm+?zAj~ zyhMQj+~oXzMRz`>V6wv(v}()L3Tjo2 z9ZY?fWY_unaKe-s6X$3uM+Bm3+*VQNamNDc#5&p6!y}$tma{ zn%d_}W=U4KxZ&?@PGXdS>X65}*ma{NuRb?e4sa1=5$fodeb{f z*qpEKTx(DFLRwnoDX3OcX0I&RV9X9jW14W^}AQp8bLzBfhny zoyZ0#Q*i;H+jsK;dIfGYU(QLk+3NB({FSF}CbIklCu+sj1*Jztv&zamXBK^@FcbDt zqgbO#We_~F;OS1OmHI@3m5pzeXkvJ0RmxcY!Ej39)3x<)YO^oP{a658$V+a&t)GI= z(?@)0TH*GwO94$z?*aqfTTM%j*6opmGqvy^Ugv^*AL2p2ho<$XliAP|1Mt>Y+@q;P zRq;7s)U<6wvS({N&;-LEfhwSSUI}|((BuM7Tr0T;-A!M&kv_mA+OO{Bde{DWPPuK z;^0NR$rpu{Kg z!*{Vh@)FJFLHp(Mu%@JxK7rR#N=@Z>&+sbsXuEk80HNg`!^_m#Femmao(rwq)D zc1XuV2WsesJ=bj|ND!k#X*zULuBN7`&nA=(5euutUPQ{c-;GT}ADeq06=f))P7rK* zHaw51l)TY333LngN;(m5DvaXg!P51nNS$KR_0FQcutM&}k<@nB%in`URbx_FTU((q zgIZ<1&)7?uWPmZe%%s=rG>&&^aVu2C@%{i_a9@g8n9S~)aTfK*(IRVEvSx}|WtCCi z3cOzJRT*Hb>`m_IaJ;p73bfsuI4w$&mexcjjen4!vWDis!N@}-|YmZTT8aoak z<_ym#Rxp~-G}y7WX#$TKFBGWAId)itKD01ySFdctyGH_e z6qV)*?aVXNHXg7KC{}#~<%IifYVAyW`v)Iz$%930?cLZj>Yb6&GV#@9MFjtX>Q}i; zYQVgG`o;sawZij`4$g_ml*_~D@3E8bm4`#EtZ93R)nl=zAa2Hn3}TRTf4&ey@vsN$X2#!CstIP>{%+&tjCVxYDy}6nwC?UVLCP zZoE4^;9-SpzyG%PqVd;!K#j$yme=@Gd=THX(~wsv+1IH`rWhbFxtYxp%Q2^efEw>} zaeiCEw`iNnrxbE#y;W@#;=}%aV4iRVXH{P4ii9bu#z5jrUuiD#eiL@?S zmLk}(uf4@`4qenK4_bL;CbgfO*jj&J%&Ebl2*^{Rnqfbm+UiRLIdMh$J1*o%8X?4T zu*?iOkpHn`N93i0A*vkFpy@6NbrQC@u-04kVHr!xxdTVPtpcYBJF(Xm`%jAuxcy2` zg0!wTU0l>$xy6}Mesay%RPw#Ig9X>?@fldpwahas;hWJ%k}SRjDGF}`jYppd#jI&C z5ZHwrIUh@=(Ey9#VeM4XN9`g3Q$JugGEHGujXxWz-8ryVRBF5&NEijO4(IDUL!p|; zH?ccO3_P|DBTC)O9(IZ?YgM_TdewTk0`=I#g9)?*=`d2W$t`^)M@m}RwP%Hc#LV^^O+hp6@|CN7 zr{a~66P*EnkR$2~J_(Y-!AxP!K$h%w{52G{T2spM7sq71W$oqfN{we)A-LRdQV9o9 zM*=_l;$E}fi8njNm}S=tw=B`V12{^E5kWssTP46kHUXqhi!;c|?AM|l*TduTE!fJ- z?)kz3#r$?gFVynRi)CGd=5RI(&*3LM=?vvsBrxYw-qKOz!<~TV2?^n7o+YPG(B_S1 zZe@2P`_W+qQyO}n4Kr2x5LeOoYnT34viFzc#XLlf=B$Luj-Kg^C>g@2+e23$%RjPw z?zrd0pEHgpGI=GZ@xa-m`lzL9h2+~xf&>>9hhm8x!pnuIjtlq!LoVB#cj6haUwpO* z7qF1YUsWWt)@Bq=KbY7z%ay{b#%t*6PC)iR>!;Y+utf*gyg_nLtpquYi2uy>@pko2 zrNR=Jv*p$+UY5x}R)UW)TDA__B)Xz#VmXSzYd=EvU_R{F7(%b?{})H)FX!j%MTwzLo+0}lutuN? zDSDOd+W*JidxkZ&ZQ;V(f+&cn2&f3y0O=|v3Ic*6iXaGt7CO>Pq}PC`fP#QZ6Oi6X zLWe+r&;+D+0)!;eA%##AAe5WE&)MJE_niIj{`;Q&XFW+)=2)|gIp#a&dgmBeIMaA& z``rNb(_hlgjGz%Sr1^I~9%qOF{z}zXzpPGg0J<&51p3aX6{pSo_|jip+A#iZE_8uk zgzZeQKQ+udflrCK*UDrIb(r2jKZp_q4euY^Uet)V&piKK*b54BT=u+2@aW5ltd;U$ z8&{fmbEGx+V+iZT6V4Y`8>CQafiD&lj0yT#?tO9JJo=KvE>p51Omm)!#66Dx2|mIs zB|cU>Nw4rGuabP=^TnN#oa zQE(#a0rJsAtE30phNC6^phj>%FyeFv-W>8<7$lwrYg9a|hJgMI$h>{O2vz(-rrNv6 z+UU8(kQ3*9CN-oF~dKctMAP$eR;K~im`EanAi(^z-YJ6{D;bsWzfgK%`SDkvg5L#i%25%tnUe@(_{*F&iwoA8Ct0QIw9labX=>LuTs&jmC8f<{3 zl?^<2R;!3jxFaRo_ByrCkg4w_Vu)VLvuPpM6(i$rg8Pis22Vd@rO^o@_(o)JFM#i zJ99-8y{6#j(XsiRgBnll9y*Jy4Sa^jk#vR@6n3*-sQ@HR(xj9-Hn(+L8dS^TrQ#vY z^3LrAWRd7A1KAs#yM!Oseqwrxj#|G70ewc10Q~S=o;##g>801A=q9=0lnwWM(am0C ziV+}0F6InhHDRm@To}4N&dut%6b9rnzo@Pd_djA}?F-8*8vEZ+4$V&sEz=k0W-+j0tPPkyahk=5p~t1t#V}_0RmK z6_5dWD(0z% zqwVDNtilDM-iWhHR*mY4BIrc^xLcNG`!@c1F6`hXOf1@~)=i@#n-<#PFnrJ;7i3=% zF%xL}&^(up<-t3nf%Td|V3q%Nj&cl-zx273+y-VJC;YB-ltQHwMxG!#Np`Iq>j3d+ z6l@i<JfmL%=z*=u#zMcnf z*e7m#XeRLIqVi?a^h1la5^J4iZrGekwy!52kcae=qWQ5|pYl>FXL%0SimTa8C$ph}bQ^;YRgJUn6Sh0NAzCyN3#uNdNHfvEoipM!bwW$xr!FaLF>Zt);| zr-+8n!T9}c{DA+%t3`Vki9tYh8(z9m+wsyWTLBvSi%n*e0X zBT{8u3izE@DL?XQpnj(8%`-&Xwic<9Go!d6giuM*UGHqvEiE7=%1I8BR`f`XM%3<$ zbL3YVYOB*Eq<*!^%Ff9&8y!VBlv|WU^NXTg8y=4v$S&B1DU7DizOYY^s}YY|=znY? zH-iKCgpD`xe)cOYrMx8dT}qeXD%#xu#fKG@)cv;OZeAX-A+>nsAzxa?*Ycw-Vo#GW zGWJ2^2pQ8>vXXg>9Q&X!F(f^gMilHOW z0BXQ?t?4qqae+~ux%?+3u$;mO47wi>2E zIjOg`^ra79pc~-)MNt81RH*5*xz)+&q^j^jp7;$|`H=jNF!_TkKL>un6WQnsD>rb= zNLnkRmYAeqgi^4W^uiWn5|DhNqI#|*P`qD^QeepIS2e?n$~LGW<~q*}>Q9YvgwmsT z&vDH0PKkWAj7HYaV!8RAfY5dBR;Jbm~EMrOY!Q2oHUd3vy`TNIMwZ!f(qN*MnHL&fvwehnm5CW{ozM3+f zpsf_L8==Nc(;#f!le84X+jBX1-su~+&nz~NG=_O~5By7wZ`%_85FT_Nn8}}h!fC%x zT*N%FcpN3N?|zUhp_M@Bw&tnITdo$Z&@2^!#{|}$`2?MASA{@kicduN5H?ytz{_+Z z)AQG_3sh88I8`KZ2Ke~)NzYc~yct<%CXaU)-diItuiR0SQb^m>LVLmiqh6^B`q$a#OGB6zx^jU$Ri_%j!XY!^Yo6b4rVAm6zK8T95BIfs^Vwq(h!yZI#_i9csR z8{|`DZnpn$BQN1%u>MDf_}gRi7WvgVHA()`LxJW>-)jmg-c9V1>}#Xr1?>GNv&*K< zs-$I!o!R+Fvx&TnEZ*H-`a3ADyg&G*rVRbzZ+N z^`|p$RpveWxK<`2+~fTluPH>%>j2r(+Uhy?>x{sUJDiJF0qs1e=nKc+cz|CiVwVP^ za-(&dudO6oW$rI-f8m|Hw>A#Ezs+~pk?tjAymw_Yxg&R?l+szj$APi+*Z3q`*dk&I z)^vmdWmbBFl?8U*`#VvV!Z{4QRys2Tt#zwt@7y6T&GI~vj;O+SBPHolBhcuc}Q#-=#|6E6|!oXKLe z+gsadCJf4%Ck+NHk`>)L2BmIBPXK6p3kv+^7exm0JG!>q9KQD-!zyBfWyQL)(AM6X zPtYr>)Tq$bFXsGuFP`cSUtWqFIK!$`eVn-am8SeW9OBWZ>LC&t+z_0_i{I<_-3pw! zZkY}g@{u8Qg^KR(bbgDVB@iR`okqMyZT(7O)yIh0rfpr3r&8UzZ*qD*D)By1U-G)%D3&|9#mUg!p8B>%k!4IX0#E zv-R}m!>GPJz0BCCFCrSOqxMeW4+H`{_g1-V*z1=RcXyn=t%l3m&e+K0Q3ey$X!g(5 zOWV_deC8J=2NOHI3v*~^F7@%;`+PiT9KANc^qZ1wyHk2pd;)h?Uw(`y)jvLY25th0 zsSXg?B7Yg|*4Lr9 z#H6OHEhSYqGz$>ZUx?3xbHyJUsj5zXOE0K7>EM}R&Nf=*KcrZ^DIT!7bKun#86f*> zRf|pM*%#`H8Fc1eVF|UY5AQsrO%>!-Lh3KSQ*b24&NvI!X8N1LYM_y+opOQBC0*Gm zTdg07{!5($R8wNreW4dG)6RKC9TycAFby4+>Bm0aM>=FX*0>p&r$cox@6{{^PZ=Zf zP14Cd`r25H#5t(-&hG0&E|+JQb;39i9HDeO5wr>)Q69ri%&Kz2pCI3Qfll6b z8#P1j62C#{IwP;Fr@ogA>)Dod`CJe|x09S;I&D>QUV`z2itM^7`B#}+CP(5SK?nN7 z=jV|M8 z)%Kh)(ZPj!UseAnqx!np7%h2D{p#VUY2+Q4npO&O6n-nWBiu1#H#4Yq`yqK*-gD0a z^&qBLtTrZ0rtfszK~`yhbzA$Qyw6VYiSV#0JGva_oUO?92O6^+Qtz@u!$Xl7l$Oyt zM+#{$1e;Rj<`SZGS~O?^!Aphs-8R~?OSt!}xFY!s+<(R7JjOITGO+`wYP!8EwjQ_E zrfgxd11ja^7uvev+X^e<&K3c=efSdKyy4r3VJl8eljLFCB@ySNL^*e%BfNH5sn5u;|Ye4@ZaBt;fA$cPvpHsp=Aj zS4<0VouW%m%@o~lL=9$-zdg@8{x!d6{3;vUM3u)^D`u#ddm-@-Adaadl!=Q~t)5*3 zO!S}qkar!u^f{E@##*j!4l+Otg9KE1IW8PH3=$nDzoc%59&PNCPH@z)^pX6qjJMhwCxaQuW{|? zLMsj#7TIT9B=y&l-GErXjN#`Jw9A(1PxO5DzoL-ZxeJy&G19tqN|kq(ov&c*Xg1z> zW8k6Sho@V3?S}~^77Kz$W_~r z%?A;JOUgK2z5XQ0p-lZ0udc2~esY#=k(XlM#lcxRZF8eaMCP=*+o?MdXOi`t4+P`E zqS}v%ko~~5vZCF5&cw4N?^lJR!UP>QsBpQOJJu@~Ee;}z^X6S-Ym!Aw8+Ns61f=w@ zQ!jnLNh`|c{u;j!4>K=0hKT@{3qHAqd$*7z8*1C;psDh${e;>GRw?V(_5<>vML4yX zU3WH@M=m&9v-QqPmeh+nl!7?z%4ce{Vl;9|nc+36DVY|&?Dj1&0wMOe;*Lo-6D`oiHt|f$@WVp4~asr4a?Jw0o!- zMZVmLQ{bSs`7HI#i!!zh;3uwU$D39^V@BjUtT*@GuUHH793hTH5sQ4s3#WhG5_rt) z@anaR@|w|P85ruFXmhKKE`VelYT3)FnyMRr?lZeZLm=(m4V_3MxVMR$LV1TgHDF(7 zRiqX8U_DzYRlzjl`5t~VkFwJKbwzY4LM7kT%f85h*mF--7%OQ{L^l-Tib>6K*cyM+ zMSd>_X|X55AHT39UolWg>t#U!Z9aBm-2?GgLe`Ql4fmM^=Fs7-$!FLNwm09m=ii7+ zFn}GS%Q}EwCR_QZ6BZ-nkt4T@$G@G8Vn6NpxXc*ggist$&K-!(r47EftGJHR7`G#$ z2c|Mb0sKYz;D`5(9J)F+bUpQQ1cmZPu$Yp`F#Rp|)3u+$^gJCJz$}ureyfyXSlGgo zFwPwDXmf7Yimnwhw6$0J%G~m;Ab}#ruoc+ZuLvH>jjgI)R;OHYjC-RM1edW5Lc280Axm|81m zmd~KdK02rh<~YtqyG%9;n;V^bf3z61ds}f0opsGJL;pFaJPzE{CK|XN$x3T@zE%swJwx9 zBu=q@(@TcDZ5uQ!x~p4H-%uE3QWKGoHJM(wcT{JI(bRFZ{Nn8@p>L%Bw&mTEk-gRG z7ilPX$0JMi7ti$^bxKcw>VTNbin^Wt84uHt0dkPtuOi90+wV`4Ck-O6pb2!|0O_%fK&XSKg*ITf40O zZN)%WH#<#sv$j$A=HoBVghj-E>YKS=(8}ANh|KF4#Si99BK4~_wd|eMSx&L*&Lp4a zT+9c$8GUU3er#@`K+G=c{EhYz>jZ_SXkbH zuxh?d5$x8pW?u0P>a1|orguSc^|LKg>&simg~jd~C;8nM>3Z?99(#qYO0qPKbzgAL z;Tr%!dI)+a0yUOS*n>{^YIXPA1XL(eAqR*09Ia1AF=ItSGQ5ub-v{E}UO2}I{r>g} zr>%gne^6oo>uZ>1T`SO{^?gd26EE)))Y6WLv&2%jMt+e4$-V#ed{5Q3< z3=7rvcF}&pqg_w6Vq0wn~gzvp@c&6b@z5A+Ui?9C!5(EMQ@rBXNr!*Di6LV~Ai|z?&b~1tpU(o~U z#-@$XihMlPSs~1JE-i?dDC^JmrqFs$ls}lsR%DIFP`vpp%4jt&-QzgZr^>mLExsG%fzt5(1Y9d~m$n^@{ z`17+3+;MqN>VW2$jC{>Ums!gLwr;j*L_-@~X3!cI^;%J0Y(>sX=u)dVgYVE8&%%Ax zZtRR?hG;I2y_3oyJ69OX&#%&m2ZK=A0w z_Y@~sPruGj(+4cMZM^?#wyfx%>GX}Etd-EN^;Aa3i|G3~d`Z5-r;QmYp{)&Dzq)t8 zr-getzDRMbcyRRO)i=K#6;-o%<*7kVZ76ms*+0z8yyiNE>e;-|z6848Ti*jJ-xT}U zU4J)__h0`$B5)hG_S1{gD^~LgrsUlY?%K(tKEAncj=r*C`Fz_O}1=Lw(#swRsny391Ohdo7~hyhQ7a^HA6)!*rvLQ*<+y zuK=d{-z?3W0Ov$M{85~7sV{08vVPY<$X^TkSC#bNHuc;KVsqU1QCD^+Qp)-0IlMUQ zRN08ZTO~|s;L-PxZo6KPloe^+(=)LE){x(xpP z-`)jrUL^%U>jUros~7+1`2SqGg&vM00>=V5{`M{y_$%r?#F|4l;v}mdRJ1Gn#@|)% zP1DfPk8UrOm0eOBhR>Zlr~V--(53{{{PG;N;VuvBzuNF$1y|dda8JkWoVMhYr+M&~ z70>>A-2NE6KQAFbvDGKYwewW?jKT*^wLi!9&)bY5CodjpLA`Nc(Lero<&PX5XN1w- zuy**@0Q{xg?<#Wi2}5ZtlHYPF|Bc{>O-e^v6c6_dFaMq3kT>V9l32gxS*ZS(%zu4d z)p}FfucVal-PEMt@B1x!v-R5Q;`+^JSF6ES#{-Oms8AATYoISMgVigM*2PiHKHoZ}6ee@m@QcCn|MJ;{1 z+SbM-`rvJok zJb{t)sz{NQ?#opChLJ}Bt2WMEe;oWpRzMT2UkKGf)KS?0;7GKR-3mMIVmS4yv&rBaapoqNOYR-!SK|h@tyB z0}6=sQ2GK+^y&heGMnq|cLqs0&`HA@J_%oq5$vcv^CMLM5pKYjYST_{fv zb2o!|l)=8Zq8s$&dv$#7t!ok{E~Yp9wXxX?eU_@K@9iO$U)9}b%(qi1{@@#=0JL}$ z?GM;eAKkRN`k@$K0}p9dCQp?Cmz{>DIy5vi2z?FAMK!*vv$GtN6;5^Z08h`6?8ZDdLHdh#k(v7NEcZjF= zejim@ZVetoV6V{#txC)80&6Cp7WT&tRvp5bTW!9v5Gpb1JjnYg?%xX{aE ziwF>Y6b!HLmaNu95fy?{0;B55Ls%?yi>QvR4#4!%q@0ry_pbz$Q0&CVqH&CUlfpn9 z_|$jU;^dkawG~j?V?`W8<0;gn6vRqxNn})161L>VjT?GEQ)pS48z<+25+c2^b8EKZ ztfBg^l?DbCX(dY*Jek3+G|oQ8a$%Lhkxv0t*=+3I&n%|gml2cJVCM&lh>2+s(ec7! zVj~XYWw7Gnm#0p-b@g`Y&&P@=z>9#-+?wAmj_xeV;WzRrWv}Vgy^hX~W3?NJBU3{Q zsBT)I%VEQSoBP3HuaYFZNic9)a3_t@+S;mz3XZ9Ep1h3-!?CYI()Uv+RSCUV3m2kG zOl}{IHI>L+XX`iJwQ(ZFQ|49yyuwHB`gN64WnW4(h5+{n2}X`atW#z-Z=;j*f=mNO z3j1&`*-mQ}1iv=HpmPba*a;SPR&V8BZSpP>_41WBbopKT_3W2QxF=9NcjlAEV#5@% z{!_WdsF$>)k8abuue74aIB$x)`to@|u@x7vY*trvnLb6Iv2LkyaVZ+(zKJZUF(1x$ zVwaPazFSy2aFx@x-2ojY-S#+qc_I4+H#JIAqp$+3@v&@L4oPdn?{u-PhH*16cWXxA zmEVm>6NtMsB?5$?5W7ZsBs}TR#_b`j#bi~-K64DvZMjHJ4k@j8r}*cGrx4%Q>C}~p z`vGN+05Ku0)R)1*jf!%f4>fz?$N*Z1E4Fsg)$Cvee4tY(+$nLd-iux=B4Gyf(JEo3 zkg~QS`(s3;Za}={Fr=@U2?MVX8IxR zup8cgxTmzw&PcZ4zvDFD@C@m>v-=kF$`a~QR~!EReT~axnRO%x3~q8rADo;ler`}q zbeq>*w8tO<(B2UDxkofb)>Ek61?CBvocoO3Gq#vdOXi3BJf;OTS(PIf5X-1^pgF$a zaF_iMHZY*QkHzoBJ4xbGVuR_k0J;5cKgbS7YpcypExj(pk0?*MZf*epRBIjVb^DPq zi06&_qypA05)eO-bGS}BEFdJyA%b7{<=N7lSj&U&do*JoV}f4M#U+p9LVvTw*J+#M zD3!AmrGt%hPr{}VWH+T%?x3w~Vz!>QmB^E_Io-U!lKGA|pL}?*!yg1)Do6@<@fMR0 zILKOeFRu#5yY9c9sXW-+qOI)haR+b1zkan{sU=qp)b>%!f_D>3MzGjy8K)sz{y=AJ z`AfS#Q_sb$f`X^2s;adcDn>?S^4z(3IW>)bF|nP`K1zHl_Xx1ojg$vZR6Vw`sy{=* zXTw3VOg*)h_d(;uex%*`nR%y`2MV%^d6gr2ya!7eb^2?HbConxl)I^2zxmM8xQ1-p zx6c_diVreeKmcTTvbQ1>1}k6fOhtFoDBi)rgEFmFXtD0)RmEU~hhY%7X)D8;8mOzh zf6|e+nJ-m!nJ;C?oKM(&jGI!uyfW;{odYpTTRf^1aM+s6CsWCWOf3+TY!3As{E|uF zxq_aXtGwR&$dmpoF$jf&!E-xzJ%fv(V?_ST=vkzqf(uFawf1LOE&*XBsTT(Pm32i5 z&;^XiSJ=-FXAP7ua$P39ZPztOF+I86Tzwk;EUi%PH0!Ccxsl3bxv;6={F{#n`ZkF{ zwSzFSjc^72esKPpZ{FynOcs3<>$rR+D3|32p!V2#YQr;4Mb_U@kH!7t^_<$H#aRv- z{K1|Bp=RE0jsSM=FNe!zt**d>d3>YWwG8ZQ-*;#0KHf8MoA3fuq@0G9R}{Sw(kkNQ z=9Z_M)n$;E$v{Kp+K5f3aUy#4XsS5xB!^7g=3 zFDm%;Ywh5J@L9sr(nu8%QRy}-M;@U8TCj8rk><0a_?o*r zMYh-jAnN_aCFHZ|`@>nK{W>cv>rMQjPw>7DGH)ZIz|p(!or_$ zP30-=t+0-cjdi;=QAxPM-juOA7i93^7jN>^LXjZ3Zq~{=?t9$a109{Ord1ti{Qgpc z!a*BY&qVLn(HbiC1v(+=k`os;ie$Tip}asgf|eXPZz`oKW+zYjFG|bF6>%u-XN^^# zfdnpP&;elJ$Epo9{@@lSSW&_I2l)oBQM@ClZp7zXC^(4L;o5Vs~vUuf`yJ@~PyB`RMEt4yw^_ zK7>UNbuF!7aC8t%JjIUB%m|cLQZx5fRX+cq*Zin#2oiNK@lvG|#FEt=drRz0MLo*(1AC8&U;mOkS2nXIf5GYYS^tG&I}lB$n| zk=#f9UXJx5t`3GmluR9T@B=jw6|**`ky1KYrb~85(wL$RR;onBg@;1l=nOd1Ea6SUuBT{uGob}XDr_+m0$)$_%pYUPRYPV-k*e2D;ebaoswuWiRQM% zyWiU2{R6auA2qp3kY?~l&(^Ji9bA0kUpkHTJos3hXgYvlD-Bi56;PGfuJc_^W<*S` z3Z@iKJZuBqu>}mFnlpSFxIukKpU}?)O!)Xh%Sesnyv-Df7P6F5fxqH*Bn_NlLv#YN z>D#Q<&87=qzaE&d+&S!+TKD={n`&sW$bcDbMQP|=c#P@j%x0yX>|Ed_j6qp>KE+!K zJ2bgagom{Z(ATkob@%K1Hdel8bRyW)BUrcgWAaT_mqDs_30x~iJXaJwwI?QwR-QD2 z;w`7~D%e~X-UUW-%sVpy$LuM!K^xJ#ySwpesP<6XiHRhMt7VkZ*8y3A5T+o6WE2#z0h!jU&2fWbfuKr9DKj7hsf%sm3p>Sf(Q)h}6`8uBYa+MG54P zFkT**+(c0(2~p|lQYe1{f$-_^o~>fOjslKVM|nF}TDuzheuJ_wU`48YwNZRI;;uh- zlJV4PkugSqXKwr8gXMF)V)*>X#9{&wtW_hC;pXP%Xm9V{$id13n;8|!hWn2ny&}Jm z5O+aXUjC7c%$5hL8_>gmRaN-+v~8zDfS}+cump4GCp8nzMt39-Oo6^Hyz>GcTDw@W z&yngU$8amrv((!pV2h%BzF9+%6SX;(=>_ig>S_mn4Rauk+-$mon|QM}dQ*R)j*M*O z0>ch+{a%86d-bekm_ z#ixdb9a24_pu3{o&pl1wh`*kyRRr?8cE1jp4wZN5dKUTe@#7EB&F2x3uPxIM0i~%w zjqB7r3F@&t)~i2PoN0)JVoQXg3-*S(R`d|Hs!-x7iT9$%?72y~?~T}^ZrbElb9Ity z7p`f&mvYoY=}Rfag>_@+Uvu%f#X(z!X~ATpQNbdwR9BI)$^1kydBwIlP46&pq2Bo( z2PG;L@VMMnZKG9@@=cNJeC|ylhvD|EV#XP^SbG4Qw=Sw0HjX_RAgKqby8!a~t}uPD z_M?Br7Vp{vU(YBBZZds}8Gaq$xI!kpYVOs_??bLgsIl|A11e=?yjI$=u7NO-%%URO z-)AGmd@*EpQ+&{fye^zOL8 z!$G8C>ASz06kQC>7evC*Il00B07xikcLF#vX;=GsfgT$X6*Y=dkl)feTo*EMp!*!I zNn*jTG7|x$iq##Zy?F}uPT$cBtfR2YezZOpMxX(Nzlg|PD_K%SmniFXMxFA#KhYQJ zV%L51D!~*9pQ%!>vPL6x5Kl_)(Ho~y}dD^Nq@6B1d+u+XlEbfaJN?M~gc_8<1{?(WrJ!9f5sN=;xW(@t>~hTim( z$`3tR`7n^dkcfzmNMoameXrafFB&Ex%Jc+w0x;SowKE$fiKOq~OlW9{H)>OHyJGe; zuoF`i5=y3)U%T70*&lQWqOF;BZvV*z_%#&G>aAeG&P1XiMn%LBF5V$~R_N2HQR;h0 z3Hrkk9;y)<1Z}C?&jA@Z3>HJ3^&LM!sVV$aBLMD8*|Sku_JT6V)6w2zuHRAbK*L^p z?*cV7H2OU|;p8tJ*0Zc(PK!uJw$C5Lo+vH@O*`eO>hh6^{t_5vSSbyrqoG#-y>*)H z)R+%9VN~IEUO#p5=Rwfy%S0Zvfp(5SL(Hs7gBR1YU2^jSg9baIt{Y;M2~r1u4MtZL z7PAZ>xBJ-XpsDpn>x!Vir)LjSpnlmbXmI;3uEcttUd!qd>or^ctIzd> z*ynN{|GJ-u;!1fR=YZlA7$PMVC}`yKc*ER&>;*-$e!myNQw+XEA zIqIW74R-@U3RzcJ@m&nFzQ^!4j^aKB!qk5v&td{#lano|o%kuP50l;?nbls9kFDs} zdd%J6z%d>G1xc|9>_*e?Y==S8A^wl!<40Y;8$lmeohlO>4~oA-uOIcUHXnZ^CEvI* zSqog0G;wGD?hI3q&kLv{qnsIB8;3<9)-=+!kv&KI7E~za(56*UzGU)Uq|~CwTvD=* zt!)^Tr1|27=c9!2wGNR0kg>7MUAcv~22itVr_AZh=|rS0V>xZW+cTWNV~;qHz9qey zuU~%SENMs?GGY1-Hqgg+p~z0Up8J;hjIB7+`Sj3NK+XLMOY_HuAE3Jx6CTi%6D9)b zUXA-%53~&UJ!=SxDW$EpLt9}VWqS8_XOrY?avm@H@N?C;?ZQAMOz-p^>}FXeeGCDh z6bE!W%U+`HsQRbK0e(dhZMFUaBEe~v#n@n$E%aGGk}ff&UEQbOiN-0+R5#o1ke7G` z7?s^m&i!LURX?+7FH)IRm9)?-0u;Mho(Kk*@icbI-|5&(X-HgdcZz*G-Ui3|8v1bH zSL|@wT@r8MlWiiSFbt*|o-(Cbg>@c}Dg?_k@442)U0hb$(Pp@-J!vpZR44wh@er1o zY3VcT8j^uMiRo<&J;BOkyWtaVP*qNNN^vT4DR1mg_v)7*wBBejeOeogFTQ`wAH@Bt z?h9hYSpU+Td`LKDS3-ZSMteN*+qc_x-=**p4Gf7ZC+-Rgc1_sW<~i+8-raYnsx-Za zFvfU0^zfjAa)F`VQ*GQGyEdi_fzVa$v!yA{(}zrQ`~6beCM$u8%Q2l&y{SV@7cig?Hv<{@sP)8&aiMi#T^(y-y~VbX?c zptG9-0-@ejB1^d~ij*Huy|0uNb*3OF$c({Hf#${C3$1F#u?Zq6s$(i$JM8C za;7xK7~53wYKcFsF7gi8wxXv;xjDtJQ_C~P_*TZd5h(?fd;a<^v{koUp4dSoGdo*U zjYw%{=g0fjn+>FIkg_EGZh-*imJb8kp z3=|EMElt4Y=|N!AV5woO%qO2ftAGrfBgH;>xVGX;42zM~%;o#MDHNisJ6ufYMV4{d zwkt5f#wVUsl4#e zu%9aRCHTH~?R;5r}R~EI5uy#ofs>Q+5Lhe8+rG{P9p1v+6MmQb%WKPqZ zO&Y;{qoRNtW57$eBGO1aoh(-)qf3{CyTwP$#_|DH(t8h_hz)|m>Pdxz{w8R7Iw0lF zcsh4HvaRHjU*Je zL6#$8+C~o!1Y1zKFvY{(b3U;ySl{OnEF%Nsq;{6?jhY)6Tp+oOWxx)2)mev{mWT|tZp|4nb<94SgI}<%a(3b39i(ML~cWS{whbsfDhj5`Q|2w2?l69Y>pasjJ-SV zMjmE(t+;Cboinu-)>XSNitgOIz103HP;ci4(9ig(fi8$P`owY%ZarGtw&1a2+_TJ5GK!Y||B2BqAy z$BZROY@r^#6qBC*=GWh7yUMG>;LywmC!#2)Yf8b+f$Dg(0-xD6__GK-_rUicbDm*W zTA1{FUcbpUV-e$F;n-@;eWC!Tcv#b!n7h3ysv;V-ycd_;An7XxUQV8YU0yUccGfYJ z=5p~@u!XM`DL8!hBC>J;D<9hNE4>c)@2^PFJ?6YFqUo_{u^Y9eiIlX+=7 zJ(D%yYViJnPkP;*Yvl1IdHMl!XKI9#5?5HZEJXXaq8|%;8HRcx;O-?joz-wcv z0TMS6o!^~JO%5ztZ^TjD*u#%nuIJ6;rt3LaCcZW67dl}H8|&rR#|Ca|ZWSF-jD1}X zK;~zJTz|2=*g%!#QPT7~%G?84+jPo(Z1Fp;I@?tlAqM^#V`nt$XjO+7#MRa`#j};Z z{^FHotmAlhdqc$~Kk?%|MjW%qRUDM?MVfrz64){;h`rSn?U9MyC-AYIj;UMQb^dyq z$am!u-;7HA%E3z-ZFfw$?Qv*rMt{+ob5=AVFGvAKjt~7T+nz4&H0n`pVn_J^>QlK- zL^)Zeg}OlAStEC9x_i%(AVvmO&@PPOcM{6ypj#1NL?hKXzdZweP)SgsKfv(e2?`=~ zGq9bV@b7P{L*m6PI9+AWq+m(L8LuSkIvav!tBDck`S=!)D5FFjXqb_`)fxQ2k9PM8 z$MdX)q?u7#1+1$-pu+jchzf^?Z%0lA&*sVs&L|K+@0?0jLF838n_dB(v?s2}7bp5O zx3wtZ$<<}Q!6ygCFoK9opIaTcRZO|;FiUW=34{BjK+qFD*Jt~X8j`5C}xbVWd zGkSkHkZoNYr67~zZ)N)u!8SwghsO1$8H-x)t%#OH$l}T)1pnlL%e7J;oj+qt?4uhn!0fvJGNu=G2OGqZP!%YfQIuKY=zyd#q-PjJ=`rAH&q5OALAqcyJ zwPD6bd@6*od*1UyJ|u?XHh=?Lhj4N&)Z+a;o_Bwr-QUBPLmFx0V4@AyuYp~ifuFmw z+4^mN3rcLH({>PL<7;Tlm^a^Ktp}8~dXatYS6zwkq2l4V4gE3WjX3md1+7OZP0};1 za=%}&pllV*S2MAC$$M%us1cY43f-L>8F?E_JE6aUra)YUg2%A5nrV7U6+V$xW67QY zBMdn$1_UMtPgOWw!#iEY_ooN<{;I>VnpSLAm_ltPY}n}j0eLouvz#?YKR#0~Kb&~h z@AK(Lld1LC=|6ZaAqL!r&Q{R|hdD_++imR!0jd2Pc9-g!%kDIPJlmRI0_82~H!yKm&IH~Pm!+?!(4Q!tVhHsG9PPeL-P-aW z!Q3$5>=0c&?kv{)3XXwrt*mJ7@yF|s^jJ?`56$3D|V*cdS((_CS;-r+cw6R}J zaZpmqx0A*n6Da$#p`n^}MX2$bvj(GTHuwO1j`Lr687H?r?^jQsaQ^we&Gt9u-(PYW zp8CDEnx6tj@RY${7M~yJiiUvaogcmaaDhi2zP)V`8rttUEkFX@CwC|O5B;)0$7?Tv{Tk$tr0mK`I~$)nr_936ZV5yApf3bU{V$p37ow>= z41x+tM-27T!9n0t{Ht9@ajr;Ql21|yE&i0zpH!be2{ep$pS%@f!%nZCP78$`hfspd zS5E|e8lN=7SudW8}-LF z%6~sKBwm8SiWvfZBR~4@TfYy441;h3%`2SH{@?y#*t~y={%i35>85|{=RYdJm^6R% z#Xl*dK@ds42+EsP4lpfB0}x;Kvixx*U})I--;k zKVkSchL(XK0TQcES`;GN!k9BgJaU5bXo&WjYo^v>Rn_=yb3}1kq{2Rf)9X((i!`NBu82Vem$3Ojk zK17;H^zHw(wEuf?eiO`)e6Uj{{kMXT+;}+7eOt3R;(wO%-(~$u|IIQzI7lq&?*#wT z+`sndKco96>N$D!A7%dQeEDbY{>QfbznQAv(e(22@*8Cf)tross~7(Q-~T_5j`Ild zIZxHp@RgR8gLgjbob~Hx!f%YSpGi=8l>6c5)zDC;#zjyo;cu)k6l5{cidwr9bK=B< z%Y4^KtnW?xd8n!#$Au*%45!Z>4+97d?P&nXCuE^1 z_;1(y$3=yofQ5in`}X`D?@|xse)G3N`SC4nv4;eLWP230OWLFpC5AQ%VQ#jb^xxmS zKC)#&m;!47WugA5%lw~bRycoAUHt<^1xoqc+&T&*AN;AqsQLMVIbjTwSjYUtW~CU3 zWrifO*%KdcMMXuqv$2cK26ISJa9z|XMZCA3;ex;bur47rRe05ELHZ8gVLt1gE*F+J z?RYO9C81O;Abt4{bKquqU8{nN+8=K;ashvWAS{=9ul!4=YV zfkTI}$hmbTck0ola|GyHS$R7^$?}x3G}`c^vzjQ#+~Ake($YV;y6WLc^HG_8SY8e% z(eObf|L?kmX()DCZONJJq%tKSsd2|qo0=}RmdchNYsjQZc$4ZK{c)+2^r3d#&i%1z z9Eo1jHuP;wo=C)7H9@IGv!u%qTCvRLSyt@Zc#5<*B5sT=JnQR0pX-lHr8EXA>G(6X*H)`6*Mn z`|VVhDDz9^HX-?I^he{goJzC}cbi78Rp!vOb}V}D!1wC1GB^N~EpJ=@fuGX8-u6mB zgr60ye`DNrs(DHPV_c2-BywnjN2*;CUy-Ns5a2r(d`KQaXfemi078ul$15kCc3(${6HZ4s{^J)Hv|$XsT4UBbji}q zt;{B7=fyoly{zFi&-;G#hxr^|3?b?nkW-XDIc}Ho0m#8aA)$?)@P`#TI$lk2_Q=RG znjY?4_&-FrKW6qVOZFu{+!m zoB+9?Po2!QpF7cZ?BY4)y0&YIibUV^g@tz`MDo%SgqR%GS5nnC$TkFCJvMM?F&9_e zfbQGp(+)p9Hu1uHg)&i=UY)>@2TVX?zFTtul}#q7GQ{zh`cSPa!vsomkQKr6roO9cB_R@Bg8cy zH7zcR*#_pvJzf|iTqn*x?eu61>F@;-Om0$Ik%N{Wis_wT;;wr%`MD22Ea zHHiKzJ(tw{w(HRa3(L#ZL2%bGq>VE6scb%Uf2i)%uiZX`Z3Vm4Yh&xo^9 z!`U6LlaiK)8n<&P3bgFFw_2g)M8=Yan`A>{Cn?0$^9$&0ws=%G(`r;jJV}eH;fA)5 zt7MW#7Iicrs)s73lq^-r zPq7^9INl$<^Lmup)bbswhUm%?W-QRiOT!BZNG2Kay|3@?euP3(!>NG1ChG_1YqzE= z6}*|5Y|QdsaUopS1J3c}Dn{l7e3P(Ty5w70^egpWHjw&__6aA{78>%^ zaH`%N^Szj$epRMTOL&r*c41iM{FYpCF@rh=!@`rfzb&XSCz`R^;UK9qnm+Sym(_fR zw}V6EuALnrUPr(I&C(_OgEP{0BTPQq;h`Zi?7X~&&#sdxFUDmeP|dgGYsok&;4`uB z+DC{_00mkJk@xh;wr%@ji`2q@^3yRfX%tHfp>FH4R?VyB(yZK&DaKW@GyIH}1{=ov zY@%?tgg2@Rch?Tq=}lyiMx|3;r@N6)6jeQax{u|fTQ2Q09T;`r+`SutKB69uhkgoK*g|a@8gKVQ!hsSAXej1v zrM``;Wfn+qBg{_ez6q=mtzK_#2dm~^R(3SclS@--|0?|FVfC!mJ2#!lbkk|2pMk@T zyPwdHW#B?a8H}%ae$@N-w2b{$-%D!Ga?|ecz2Zix9;!N z)JzGHUp>g{9632T#;U&LaOD1K|Fr=tqzX;RW^G$X4Z*0#4d1H>%$9@H_Wi6T&-~*skz-2;!m;21)Z_DVDAB%?SANu^<6;8*=%FcX#*j14_vJrwV%+BDWQ7! zb$5bWnb0u-Qpi}I338FAmc{gh*c%_yVmv<;#lx>5h+Uj?7|KLggrWPc`T6<|3*Z>m zo%sEXuV4MBjX^>O7w1YFw@AJ_ULl@wYB&A>%f6T{U&5ze@V!l{GxJV5XH>P}X)!ub zXa>+60Z)qJq{YwMhi(*uUJLQbte;y7IgV#cGY9IlpESX^%K`oyqkcBkkKWqvcKP^*322YO00K}ON!mT`rNCcCLC6X#ais7YS8l1;lvY8dBaZ1^&3yI)1X6$HDx zyDMRhV^cgS>+9wLhmk5wC1#MR)Q9%#8CrtJWcQ_CbWBHZW)e)D?L9rwM0`j$_?btR znyT7<^8xk3`@v-%&f(SaLS~=UG_#x&1sRB~jR5%{y_c#zX71Wl-+!l;sA)Ky{|l6v zxZi8M_7a0ZQ1P0G&{rw-tru4h9pH`IHf9gnhb}cx)*;ME}GFo%TqnQUs!2okA+Wm;-2oS5axhZ7hr&Hhggu@u$)xeFdhmEs=4g%hqZT|>jU z6~Q7Eok+VMI@rCgo<-I8vCI8tMQ*oKir=byJ(u`B%vWcAp)$!*Vt9hi^y)3ru`Hb9 z^+9c#_2fHN250ncEifuO`!6V+?QKvC9V-DV4$sc$L2s5deNnL#9HCU+unO`^VuzX3 z#Y=xH%YvqRxEe~1*2Kul$)0X;x!vVgn(v{_zp8<#CPX1fA>MY%z2Kcfot}_DM{;?b zfY=TqUucT`-{ryr4wczi2#K&jFJfoY0o?AYK_0 zwC`~*HQpD&0vhWQc1kInV$j?&nd<9ER)fI+Rfbki9|wif2LGzH^&?|X@>SG6RiF6+ zqb!R_6wgMFfNLi!7uCYyG?;$7CP*m7J(M>%en`1d~l~-Kl4;@I` zLA+O6C5JVR@n&&kRIOyj%_O}@wOz5X=ddpc=yuah5%=0EhBkXzfTj4RH+)aQT)HZp zBr1jkdSAJ`qO45X4;_BIzTS+up|Nqr@%~%3XKjzj&+oJnHdm*{qh2wr*zehNOQ2#A z-F|rS8Xxi?D|$`(*vQ{T?dkmZ?n*wc@Q-x_5D17G zyeCV&f__0&de0f>*oIgkES42f5`u*6J8!Q9^7~Bn35RXJ+ef zr7Jkw?-gMfXrFqAT7#0@D>~L6^xqfh2PnRvS61PTi0a0sMWottF*wPqee(omv2P{n zj7nBk^pIVlTNx%n!t!8#nJIl~ft+^QQi@NN@K8W&<{1ON=u3kV8|LNE45 zC8B(g>`p@qc?rS%H@B{QH zE@1E=CV=Z`XlMdYzOyE9YdGKOu8Znn-_^ofB9QU@FeF$nClyBkp`(;6?5gT9}3 z%SBRl=pnmy_|BcVT~vt1b)4)arONv@J&U(u%)`R*wWKGxLYv^(-P z^C_+e4VEJ|tQQ`G=JKNuX_lr!bu?&5KXm+p09cq3S~kTZb{Qwm$7df zg&Hav)~qvkKT3&@if^Azjp#;dTJGU?3LBmBSy{QngcN9M22lITVpbOe!Qguq7AYD< z=*mIaR2=PY)Sp8o=^=0JSV)~!5YTr3obC1vcvzg-O>9I~l$%XD^m z5Z$C1mBh!h5oG#!J?GZiTr88X{@y0-EMkrVFIoZ533B7LO0T_Y(nLtQxBpJO-IM+i zyGJCf-()O?D_npI6I@HVoiQoH^8L8pPY!oR;1P_ttnhD&Lb_L@c|;fs)ShCTTuB;@ z)a-BhF#n|?e4{uV5doTO(0Vl1Igww-+(9oW*Z7Y;|IS=qD-Nbmu6+M)T%B7Qj~R-k z7w6ON{4yu^EPIQYU{?>@-$n8}HBnHnD6-GP4xgx!Iy}E~Xe?+cAsMVx=b@<~sM(+y z@&>VU<2hPt;OT1!5$|99q1XRJiSNW@w@T_gmm6!3nSGvU>+%nITjgb?_1G3oz(j0T zXrO1p#Gh34V*P>0UFx+v&UIFWRQ99F{aLO~2iWS<`9~Q1?|@>sy9d+zZaZAvlOn<> z#2P1sQ6@*lE-Ma{nTQC88n11C2!c`-x#QuSt-kfWmO|HZRochTOr)9IY<9rVHYW-l zvrzt3iF`cZ`1fotPZ<1^i@tt7XtM-@yL58jv0F9jamif2)71vewd+n0tuCRP())Uj zX!DDkA2_0Un;^zlkR6NFRp8!4M+Iv~a)dQ~&xdw33=Eiy2ro9l2V-;nD~rZ?PoSO+ zL`5=e=sb%WLI=9u6<@zg<4PSlsNR;zFxVA?(+gVW4H4EkNHBrpT(?TI& zd7M54oTg=m9J`3r?8Lqc#=$2a(h@~(SktINZZiFP|W94Nzd7|UE`?tGQL9B zWxWWt5H3rF3sr%>!S&cBR;<}jch=_`cfLWv4fM1Qc{E(Y0!8y_Ej)vOkXS?+upb`2t!)q#&6a0t>1l}RJ5p#K6~z5 zZMzmApa~5UffDN4bu?sXnBnx-p_X^vro0yXqr`Kuin}?H=eMywngz?C3jZ23dJ9Lo zNQzCf5Mj6JiDSJ9c73j+{sOg zZp1gZHK0R#5^W&rEcC&qm{r0!ZZ1MoqyFUW0D_<6+E_TNgMZ8Hm%Qtyx|_axidzi+ z;B}cGHCL}GoVj=pxh_F6)hm@TdE(|_jl%t~$9q^6^xat=I`V+G7zOQ9kK*vE@37SF zwS3fivmrd+)1%Lg{mwasZ)=mL@?4gcZ60yYthiR`IznQ{@Em2d>Cr{PI4y_2ceeS9 z;P@VUND{^fa$@5xsD$HO9&rx%oZo5H&=Qo$s@0TI7UYv8!~JcM{8ObRaBGf?Wv0@S z*;${>p0+t5#uoY)*X~S5E<>_WK<>ztL7;3rg)FKQ%4rf3yW;W&R3yYvFF?$5aI?$l zmvg`I7cv!;*OxwcZB^`R%D-dkT-}vF7~nZxXQyH>$Z)s2#oHh3#<>aG%ng5A5H6ts z9)r|bEY8Lcto$Gl{4J%){rwv6Rs9O!jKXd3VE57U3EU~8e8K3|!xQgcmGWrCM+6ca z>rp&ASzL;}ZE_eU&8Ub9u^OapL0-^`JgKNs<2>5?^E!{sMW;7nP;}W6+t18aDT7CcA7->O z(&k&m`&O1=T4 zbsZa}@FI{bZ5&n|Fm&60!o|il5p*29P{4bu$~4A;hoBw_(Lg{SCK4E#J>)#&j)(9A zhv&41RZhrd0(2XY#yj(5*I zeDY=gA4;5w;%4!$Vhv3TNlgtlLdn@dT0)-+C&9Yne&zUw?8VmEC6N8r5a_Uog58gZ zqs1>4>=8=9YKM$`a|&Nhmwu+`ib8Gq-lmOL5Ah?}=*FEZDi7#5Nq-zYP1vP}`LT=6 zkrq+3M00QG8N%a`Dr+7Kek%A#nda{>u)5iBKCSy>s|mL5oaF_Z$%LSAUSC)Jd^MWK zv$6ztTC`QYLQgjBBP@J)S$N=Qvlf%jrkPj>1)#pHH>fqotZp}}if>_qHl$X<1sT$1 zY5~;yU&uThlh`nmgucJmGuZPB9Ry)m)QSRJ15h5#KervTSe|d(i*v zQTWoMAbf@_!p+E=m>A6`@?dx|YRYT$%Lx_Od*M;3#<3+1p%k}xMM4gcR}b=tyOwHI zF%s-Nq05h&y;S7iInZzMNr+u8Lg7C*Y0C9nDwZ0;=gF|X3b_mugpzELRXpVu`v??~ z>6|(lz2Y-Pv44V9yRz)&ImQ0f7{4(S6(c`TTwr*J)54!M?JGV&oZQ?yS@&}`*8Ux+ z`(7^@!|CbZFK1!baG)O>RLSm*kn<)3jFBbAPsjHBh=%6?Gblj&x?ca zZ4Nh`NV~lqSL$Eea-MIEe&O^~Z`DbT&=tQszT4|TDyQng6cr#9J;hY?Ej*VsW>SR3 zp7Wi^mTcjmlwkJkWkQdM-1QGki?i7(sSbf!{H?bFrj(X$h&)6+R!3})A05kC%(&vJ zfSst~<=ui_-iQLt0zNOlXGNP8PEN5hLV!Jb%Og0PNDUJ505X^u_>iWGBQ_ekmC=kA zJ`M3Y3>Zb<*h3Mqr}~J5pkDVgIE(qI#~BN6`}n$For|@M%9nrPcPAG#54c1PzcJ9; zd+xd=?jS3|_eN~J0_VDME3#`(+T7i&aB+%^qN$SkW;#MhDBw1I-u>|RVi=UK_$#`* z7L}W6F_MqcCN5nKVSI=ezcPx@q%2arNBUZt`B=){wiF9{;EcY&&)5In-TQavE79GU z+2w&b`zH-GKCRORN0)nEO;LY+-sQ)M)uR1+b0s7}pT44Y6rh_X~ioD-0jed|}DT=j*RV zTMn-tb^Z0W>knej-Q+CcBy14fVxGpgw>z`ZErcol2z1lUe%+`4bdl8r^f11I7MH*Dtv9`iWJndgyR)B4Wz!S)c} z;{vx(Na6PwOcyw4QROxC$YJH*e>hw5ZXkdl<=`zLKa_31M=ifx22_eN?!F~IZ+13g zb{Y2&*V~z#|H%Xl>pwq(ZC5KE9UCXi=v?RDBmeF#Wp<;VZvG@+20vo9Hty-MSt6D< zM)01x;XJzI&Z`{en}?3}bffw<$9zX4A<0=hYQ<^Dj92&h&cMJbV_RZ=gkz4}CbHpR z)Pw--n)UeUv(lgC*0U8hxB5Xv4|Ec2>MRcjhgTbTXI|DEn>CUxE1_!2up+jf-*5bR zwrZF5SY}*N0D0~)K`&ndCD9XA82uq9FK;+)P$lBgLF{jXwoq)D#itJ- z53XlndpBrV@VXxG5i;h6mN{inR7ak(T-D9j+72U1l<7Ec5`DbY?+wqvYG!%NtFsw4 zaSskDcQ{|QFfe!yJys#ZQoMr^K7YK(Nc09J3K12xbqWTNa_5K>d%N311%o~2i)*ev z(ON>9EB5l&fU~01VkB)Z6Kt;sccfinmxC@}BQ` zSNlRVP$6BUhy3-0#B!Im-OLNke$`Z<_eX)|>hxgHaVarVtEuqiH`8zSv|{G*%sv#J zKG)#F%Nr#Ba_Gdpp%0fp8L}co3+lTDGaEUE?!yW-QbjUhd1=;TvJt;S3e$R z_v2-tAMdYf++cFDs!OUoWIE#AinPRl2W-BE$y|Y_asvtQrtY~{4d*w~C_^QW`o%Y4 z!9ldrc3*G-bDeQx2dBcTx5>d{@q)xm)|}vm$?UPdSYL6;vw)_;PSp3|T?74oo7hSs9Q^J4e1{{2z{Kn71;A&p2eE+@jnd>5QlJeI(6Om)D%1m(C?V3g}Mn*C;P6KC>5uh>oV7JI}NUj<)hQ zj>yfu^pqJDL7&`hjJ>SiKK+vg_}`&0z@QBzcnqkaAi3%1=e~gqqbwMgHE5n&33y~j;2`iHP4>$ZH(tA2!}{Mu zylXVL%T_O@wvcPF|M88FKive?SCzqX#M)VZ!+QXsA_ag9%Sp{ue+RmsgaWR_lX+-& zsef;qfAqK_&=E#Uut2}&fBvAqJgEg3k~m~ZUiN?9(l0#a00S>V(YVd}&&S%cZ*tdx z8H!Dd{u}D%z!xk)OcpUO{w;X_Obpmi*DiR7#{Rs)e}DP!gYJ&G|Nf%8J^A{7yDl*D z{yRp0&Q1T9$>>MjQ$z+4p8^~$skkZr4e$muzCFYX--at zF~2eRk@5V0H_06dr1Es1UFx^fFf`p9w`m6b-DG$2NGngb^DzZS`xBDdisJviX8v44 zPwv9!PZs$6|JLdL$viN9f1o>g{>=mpINk38a-_P+z@ulef#m$TGLUsD5z!})Zw?6k|lg9k7EwcGgL0^0gX9)+{O zPKR3Al>qDzE>S2UExh)tM3dW!hQ`W3qOmb%&dx?KtUOn#9vuFfr-qT~LayBoFvW!R}IwM8S zzI^i_B?;+J7xdhG6EF3^PUNrl|7*7u_?hRlFvC5efsmq!E~QkKl!%PW*m2(NyKC0T z$9EK9o?czs$uxKw|F0qa&v#E!WiJ9nOCvPdrRCY(qKm9|`Lr3v)_YpXDf|}i!IV_4 z)RI$g!ef6y+}}{^hyDO|n^~xBLB{HVlE+P&VCHWO-kQYWD}PO+f8DIZ#ob-x_O=B7 zgtyoGD-jo7rgGh+VE6yf4T>B$SrYr3mNa-=mN<3)@h^^&`}h6l$196`Ul7AXy@Q^q zP=XbJt#u+T97f(rmqKBhF&cn>!r^E2|Nd`Bw11G;`z`JSwSJ8k_iiye=d@cyr~b&3 zPtgdX2ExK(@IeLyuUss}e16K-GN2S94=Xct_RCu_PMlo5h6!Xyi6y5>MD+i0N=Ql0 zA79aXE}^Yrq$P;ZNAS*ClBrDSvSU>i_j~OWbZBRv_RdOwb9J81+GZ^SIa{2q1#Ga| zJLOf%1NbdIudg|_hK5G5wGbFkDwqhXj&t6yupvXQSrsaW2R})^{jGd@`ZJjlBrXor z95#GC^s{QsF@q-= zwkFV1iRVaw?!E({y}fqfSYG4GhY!m3CIVdGlasU&ePC8R|Vdy9A?5^XbvxsaZMXC4|Qp z+TaRJmCMZM+SYDv@cQSYMh~A*_ZSSI)iKw??J49}T}czAA{@M+AoCR|@pIUf7wcgw zVa*~3Y=`q7F9G$?Gvtb^_qtNCrqrpbwOTJj6Qhd4qmR6{ z#>KL>J@~-|& zYj3Cg8Q1(#LUPhlb>UXZo3|^&EUeyfeA*P!Cc}(`a)#}p|hJm3;6U^x+>5rlz(2Y{J%HEK~5=QB}}p%LB-so&YQY%J^j$OrKWWQ_Bw zg-$;m98{@YF&5cN!{Y|ey^s{~a9?g#1*!{X&CJeXKj~#pEUSSDJw0yE4Gb_3*`hX$ z{<(fk-?7iStxE$7bOMp+jmP7aVN|aW`1czkmoqitq=YPW@6OI*D$VSi$Ow?`Tq#rDdyer{^OF#K8Uxv}M*i7925b*Uj= zt|!=nR35%H)P3RFwUID3+8)bUlfXXSY8Dyu?j}VtCRk%j_yA0F!t>v*dSz`2|3A{! z-*#zh+%v+%oT-%k02E>9Pyj$#@P;k_d?J9mb(w4*KG3H-M>f%9_4(6AU}Gebmt;ND zVqU!z9ypUBGgbzz#x1<3S8-^ql6cs=DI!!vaS_Kh9)vLQx#Zsg&tZ)J2A@rpPnbi4*bOXqKdbX%AL}zq19|;N zlP2$j^9ovJM^hz-2W|M3(O0{}*j={)u&T0R(PbBB<|BR;d@$T}JWBpRe`DjYB@`9Q za)6Z2%;i|$*NG@xlwVB*7%$%L6wNA_fF*!-$uS5hgT25Pd&vsv|F5>t5C!jId2)icY- zm%C?x@PdCVOloVb)!?f~mfLBXWU9_}pwnwV{CUr#h z(NYd#ZDB4YIm4N|(YVv{5?GWg_*)l0X4O;V^XeC0V+f3A-rMu%X(Pop$t51nEo-?L z2hNG1Jj2wI(Tdzs9LfM6VC zXwJ+ZKWMa4>kZ4pTe8X^5Z$|TQ3&J1u?^t#@$W5ttz7@8x~QmWBf!uTnG8@=n8Jn- z74s)MRf}gb^v(S?%1THXNxofX$=>?T7&?O-+L%NJJeQl*`r(+$;bIZ)9u()kcO9!02vjk)`6khJQ5dX2t}O z0_LA5x!UsXOzMGt-GO9XLNqF?)C{Mn5Moe#&I^d}{WCbnoNlj3c7x~w`v*JI=%kNh zR`i5Nfj7h{MjRhV=5-OZL%z#gl3_x}p^qGg@mPOAz|cdo`ly!1X3)swGO>U(FHV&X z^75&%Srb_w?f0m;ZC0lYt$Mf@#I(&#=coi&a~_wKR(xngay4JJK(8@`mdtWLCA01$b?=J7-^SK_Bbad#iP9-CA?lpYPa) zMDV;uy~hQ%jmYP*M&d$KLjZ|1$)g_rK9>y!N1_e^WVsrUG7ybu2>aM^_=KuQe|~Z; z>bi!!9o8eY)D{koW3v(2FX2-7D<{xKVgzj5*v-MS9OZ?{rH*%?y%FcaB|F~Q-T%Kq z%%jI87=`!0{1ai0IskM6zig{Jz57I@<~0;y7LOji?tE)8DKin_qdljE`I;!{DkM}x z)I>{Gg>yWPiBmWr8x8$kM|o3C-qYL@yfWKM5WGK;ILwR?2%@)(*rr}=ftm+c4oT6=ejVfPOY^bE_i(t6WZfB z7TOa}K>uzvSc)yMoO!F6&sV;F?e1VXDt-NUFNLDv=}FNU>_erk<=yCsj{{^6pZVK5 z+S|QVnWqtdz z(;1cO&n%j*J34*(15yUN=e^irz7*1U{b%s2AaGmcGP#Z};=Ka^-h$p<9snSeM2we= zqVtWB0b-j_Y~^fOnmh^!p9;~p<>fQIu-Vh4iw#y55~5$xvC2`-*oPl!0uY;aJ#QLy z5kuagWp1TL(!}3p73;1RVp5@#MSVlHvt>aakZaf!P3zHcj_vZ`Y z927J(G^Wvf_?wPdP|Un~`ahBEOY23B_Cb2NYA)x6jC@qw%mL-*{|Aws{l)HB?Nr^jp_I^&%4w;qY(pe1I)d!&}SnR|Z z`E^!H%7QZHWV5kt1I!YtbkEGDW>Cq06aeZ%TsIydFRJ!Oh3xMp+|##AjF;`G>d&oK zcD5w|CXllk=XS+KHaSxrz<`{$jR!4ZE+{-oj*RrSCyzVZFE=_9UQ0;Bni zE(wvVC=|?>lNEiYu|W4NAUJGW!~Pt!3f3ogS_^nCvsI#kN%c3eZ~c>9fjvzeFIbOV zOM9Q2n;Rv6q5gSz|3y(A>=r^Kj+&fW1@-HvQ;TIzGd5^D|7Uab>0t3Zrr1+NQ$XwQ( zsrN`F?L83AwPZvHgwJ&TgPPvf$ZKy1VS0K~X8F5rCrgS77q_2PP(-6p7{GDY#yU6+ zkl$S8zJH2PJ?ES^bzLM2<$EV8A>rV%Yv3?|%Ayq>${xRxBsse&Yyk`m? zsIM!nbNU|M{3S#q!^}Ul<~w+`0k_;~dbYCbsH*?QHS^(|p7{+uy6rDC@i{R<>BDC5 zMjf}MThq7ycqpCNWm;WIIz4W5is>`92o6C<7&aR#rJD_o2B)iqFBG!!f3Um5R?S4d zvirHr@Fh-U45Nliv&V&puZ@Uw*@u@F)h{cNW&A zDGnlY%ErKIXzVcY)24sEv#Tp^Q90@^DPEW;6?7K~em+avE56@OueNJSt%1BeisExv zrZB|Sic3p}Qsje(2!Uv_o9I&D#`bu4rJmV=`D28D>;!M#L;yBJV^CTZ6&1Gk>Vsz< z1stM8k5^MvE~v?V4-O92Ne=x#k??Q-ClZb@_N}MDPjb(LUpGEAyWv23U8Zmma;Zo> z$QfA6AxZ*c#1G<1)!zQw*2T^)Il} zDJesx82_==MQ9F(=sAHnt5?TJ9dp@bzHwlpSB%0y?RyjY0hEq{hFlx}YP=vrqk!f! zkvlp%<|=={e5IhLTP#Jr$WG#G643jew3z)w19;9}O#kIOh~@jL*q~8qz4M>^cG~%y zA|;}e(^;%;E&DY2VQ~4~;Ex?fzn5%1U8Apgu@WRRMHz*oH&_KHO$QH*c4HXI0oer} zB2jOLN{Giyd#}DR4ic8-Qf_!8ML(3T?QhBDk%rtxsov3b_q%j_7vH{{HxUw4cdbjS zul)^)7tNWKjHb}e!~TunmY+8L_CEF-Y7r-|evmr3_)iv~xBhXk32y}4MfT+YYwp)` zOY{gyURhM|nm|;_9e}YyMI6_Hz9_cBk5|LH6ZaqZpV4;5bhfj<(0#ADbgt%Dzz?4< zjugHtzL7dA=X|^Rn(gJ#*(JdmuxJi#om2^-+FJ-O_wpzVfDE!l;t$()tL9 z`t>O)Wh00w6AUI6O=QI+oRIW^w}d<0$hN9QM%SQ4eXe@*moga8uYt{XVzA+)6TYO* z_bcIKybT>Fsls7=BZF9cd~3EB3y{C5wn}%P8f>PZ2c$O#_yrY~#5Axy{LbP9UQUt4i#9q?pTC$VU1rLp$}0m$kOi&t9ahB z`)1MXoCv9hvAV~ro#8jeY5{@HLJ87hXu!QxXwJq)KM{iVDyuIt4+)2qcc#B~C7(d~ zIuf(IGpI6qlq`P??U%K!Rfa#xwApb2wvD69S8d%hG7!p6k4ny-)v(rfB7{S0d}gHp ztQV>;KMn`^UI4T~opRDX+T)QE4643nIO&$7~ zO$&U*Gof`uD0Y5Qd(f8e`TB~$RED+s*{X~BoA-a!J^mG~r|tWy1SA02=l<#t%<-_o zn@4mL2zF7%Lh;2SFntoEYUGuDf152mcR=#14V;z<+FoCYxCl8(X_~I#GTv2VFm-Xd zyb)Lj0&kk|`R9Ufqi_O4?e@PZ?y}_*bVq5xu)@$!Bmr$H2Lh|2*rE|d@4?O0=Gubp z&$8{{WwH8fxzHyGJ3IAz=ufv|*3X^KuLXSrDuTG?^W_0xdEKpdz#{ahcPA<}SU)gNwE*Bovmo|0f zu5)iC;BLk1S#>d9B2v!hW1}7)Yo~c$=-A?fxGUdzp<1`DtGu(Mm-oSswj%RZF4Bgd z_XDtE)0`71zy=%m3e<#uA1>w1&ow@_P)6I{KtcmC(8rt2n%qB*Rxm7v3Gt_l9{vFA zB?cO;M+oHor2BVN8#^;KnmNl_VUpIvt!j_(b^A788w*B z5Q8$c+{M-TWS!AS1wNMI`aM>0OkRuWFgiwNzf$Xb$GiUh9Ut>OaI!x62-@vy%_7G)EN&JBRYKi^WoJm$~a*!>}E4 z2UP+_yH!jopMSh!1PaN?J!9pmU$d-k;T%A%!RlQ!|1EH_eJ?s_c=j6@l3xdiW$qHo zY&x@QrdGUhkpBBxM8&~8qmJrk5o(>oL*j>3Wxx9gEbjiXu=ZN7F?hu&{~-8S{;3wZ zWg_(95w=QaZ$5jx$~OWeko5ae$jJh(n7cEvglgyMPJ8$yFEhW)q%?a`56>ZvDto#u zR2@%RvrV>l*NdEakUL!U!PXKn&tA5Q*#XiP(@Aa6pV^5+HoNgyw5~^jx`v{cfdIEr z$T|oFcbiWSZ@>TnZuH}YMo+0%JZk)R2Gbu~PngIqWj6XqS6z%j?e{IGbfQ%Py1Z1z zhqQ`@w9LBzkW)-m1pv-f&fF3J(}J{t+EICpT8U*e0}EOMz6G-4evJ0Q-E5hW;UO{* zRU=*BJdFlv;W6^03V4MM$oHGJH~3_07}uSvw%#K(u-= zYqIg!K#zRXG0_qRAnk@;h4>p|aPuHQo+eXJ8nE*N1yj5*6ykOhS)|EX2!T=+V7!K~ zKrFNV=FxruR^*poPyg|Q|J4QQ%=-(+7yQ?U4J;>SCBFhQy}dV=#9z8IqEFL1@s$#F zgR~Qm&CZ5LK(D%O?(|DcINAqWr->;q$W?u8cc#_Pgv*sa>K5xmJKWHnSK3bmq{Pvd6E@OIwL!9{!XkGXX%?;vt`YF>b;bKq8StScYOH%u#dCx=27`kqqTuKQ0G z9)-F~29fx$2+wbtB_3sHEZ-LGXlw*#_Ew}}QAJ*he^x=o!1SLYpWL$#8(svqDDHq@ z$E#I=6wrKs3>RFCuN;!=$#yV>vlry^g-JcS+T;Y?8t;nPB^%47SuV>r;2osY%a=ay z=f@nuW0gfRy&-p|W%g!O;dSb!QYC9Wbe2twU1E{>CUJ17BGz;a(!a5RSloq7fAd3l z=H5kok8sz8suxwQ=ygS{ABCRP@?R*+%Qb`qiSM1a%Qxa$ZGc1bT`3%BL-4`kMvY{V zk8Yxpzctx&o!JC@f-ximIn7hU)N zA9P*zs@+d?o#@-YZyEbd;veX`b^YWny59Z*s8OhrV=PeGego`=l~P4)*CSurHrwH4 zj)NE3WOCSjpeS56NT767SJ#{^@|5H6IiD}zut7qdS=Z_&>o=G8y;P7Z%8t7VzMiRx zpg#A$EA-4Ff56AuD7dt3Kt%rS9A;?cI`~<^q^=0FP+A)L_PvDNjH#pJljZU1Zlkv) z**0NwE2x&6Am7cg1%X2kK0e-vQwXSy(*U=*vv#*6d5VqJInO7-6NMlrepo+mRrDR> zcjkg=aebaw9PN*E{TWG%3~w<*%;I@v6xDZwCdj8e`r`;Y-f+=OH2qD)CsKoE&Gi_W z4Bt%Cn1*o5FRP^RRp^`~Zv%Em`cChB(@ zW!aB>loaq~+CYz*o+~XWc+XwQ4t()2!A0)%<$KQLym(Kd&PmdJ1%u}X+3=FCHc|N^ zI%a#+rq*dK=Q%X6dR)c(9(|x)Q(R3oaUp~mzSFE#7j%HT3(wcA7;ZisA(1p4dVd!` z3Xs308!-wP++%7!;5^YOUI_mfzCm1ZtXIwROD_SuN)ocJUU5*}ON&lH?I?;&b|PzZ z!huo`z<~y>K^H1-upB1=4SuR5JKmXn@&al7ayJx+LCm-#WVJHKEQ=3#-^#AemVCV{ zg6$9)bd4I*#&*N@)~yfd1SF*Bh+HqAhk}EwrGAl>$eI$Km+CMIFA6q}v$sWi`8Eeu z7u(s>K1OK>eg$i}!Q(tHq~AGa-8s}P)_^DBa*M}GEEI<~#^QkljcZb?^H}`?FSWJM zVzIcu{V@J1N&swh6&9SGo3E*vZmB&}9s4Wp5t_uCi0bL5Z={KyEGm25-r%bBW90YU ztnf*HUh~cmj?O?Hw(h!t09at2N1uK+_bTt z_4vfeluQ8Mz578dx~RS3b)nffA11QeU{9V1129XEsrSpy*=kqxy#$1t^Mw-uK&mgw zAK2ZT6EgB`_8xSd=$gr*} zg=%-|2^U7V=V)HC8+6&!kqQo9u8AI6xH_;}d}P=&5^w|%)jb%Zk20$7zP^V$r@BL* z;3C7_FtfAkU5?x8fz9$lrfy;g39!&C@5IDlqY3EK`thDR<2^B5es%>DS}KJ?fX<6s zciZt(;gz`}fCJ}s4-T9gyIFc%b4PtAl)_zFtgbKX299x%^((9H-h-5WpI|SO@cW_QN3dglIm%iE#o{aC z$HKxuS}FC)+s&Gd+1tHvz|@1^A5e(MZfI2bF8m>4egk!jIi{}~P^bmiDge={IE_OO z%Apz1u7aN}H!jTJ8)f>z*`)q4u~k|oI-tXIe$Bz`_Lu%GxjtBQpa&N{N&ph@r84vA z2C_K=zo_wz^V19Pke&m;yhm4f=X^2{I+bQ47fNk(4Z^!&dU+EpItO@}u`_Y@9)Ute zYQw^N_GOk{4-6EMkkMm7wNX1kz21nlWSOoeS@|ps|4$>U%$i-kf`5aZ#|2=8>tWgv z3*lH$@)7sDpMOwQL!y6T#h+gCHp%`PUGMnxyk;@>LfVi76@%jGJ@R9GJl)i9%Evx( z?)2m9O9$)ce|b?xGig2KXupIAbNh{_^uzAA$MYiyrZ7h90^Lrp^exHNIb@6Xf3^4J z@ldwy-z}s_BvNE)K@o~jc4-kwVaQJQT`~3{Bw3=8eT|U8*bOtxSVGzNnX$|yS!c}1 zGM2Htm+t4epZmG<`~3cW-_Lvd>za>iJCEx;j`KW^^ZWfCHa_d&FCbUP`mY`P6AZC0 zXj-WL3R=nF4wvcH=0_g^z#q)*et|fwhvTPA^>LW7BHXk$ohH9P4gs`cJ$<1Dx=Rrm zQYEqM0fn&o4QCJgg|j#C^h8fi2^y-;WuL8m0a2MdOQrwMOZ@xD8&Uu21!R~RM78Hg z?dno=v?s%(J0T}?*2S34NM7@hxlu#tlk6ySXS*!=`fRN@dn)H2>R^9@P8-O+!z0K4m>{{?6K59#5+KkSZQ@#p^|8cWbL+b^J!p}O{HX7670GWOF2Uwo4h z`}U1nan%PUQPIxDvi`8TnAf5_cd#-}($arM?0*9lcL%F)HB9meC0c$fmsQ5yU75vS z?HQcU04G@hquo<~x?YdnK=to&?q5eizf|FKMX<;B_~(AQtP=pksVk=FKLohH+~V-A zvb#AVnCI6D@b9Z20{E?lVJ1Ln@Z5W!UYzN8q5?3R_=D9URsET(X9`Zs$iUG2Sm19w?e zp+Q@l&Ftq;3GFY4{C~mZmHnB3xjtqPXWQ8c85&Z@a=uXQW}-=yvt1Sv>ecQ)ycygh zPTETm{_=tIz_w#naeirca>_;#eAU1+!P)e^vi3WJ2QI;rQv%xKt66V+O#Zb0pCSAk zJyXZJUlt7?}=1Azv;}ab9?Ax}9ATb6f7f@FUX6-&aCcUi~5j%;{iT&sQG+ z@?&Fnv7DodPrCmy9{qbrYoNPxnFP=juDyVl26Y`SQwDDRp*B4H=p^$qrBc^DEO}vn zqhfUAet>6ohV}P<*B6KYEV4H!;ye*P$57$k=9LTlSyowDInqe)4nWX3Rd>xBq{K)k4X`U_%gdmG zL?ByXf4e3=Es1TeVu;Es=e6|#ke0$`C1pG5nr=KlR^&QYA&GGi6}Zt0$l>w~R{?3L zUH!o2iVG=Q+0OGGX2e6u@Zsh%--04ncxs{UuDq_g;E%`8o@Mz2qILCLS-9l@ zSpI#ZE7?6QCqJ@09>{{j2{3|71&|+eHhdJVnfAsqJUn8NH&7lB2iygk5#yMp^FG$^ zDtiK{u9&qTb*#+yAGK$H0jS+sdz$h2{nLdtInD86238X-(NBx#Opfv@J{tvU-a0pz zHIpexNv99uL7Z`~Uw4wTv^fDdjFMY%LTsACw{>4UYAdX0bI3X6x=IGEKQ5!e#Y7s=Hv{X1jJgUT^^r6TpXm$tiX)xTm*E4kZ2#yN>zxs z326v3I1)_nt~wvUW?!L)r-oF1MH9xI7rE`xgW_N?v-EUj5^UZSy>6yDa&!f}Y`o*h zJQRZun1QGlC*S}X5I$n-wAuI%Bn z(#Hy)E5_=>;tkc+BRYMY<8wYieq0npfHmtv^uAcyr?bQU~PB zaE!Nd4!N2dwnH=AiS|f88d$eL$vGavjOAvgrZk{av}i?>I}cdAAbk}69m?y00d}Ku z-%!z1rPZYFr~9)ZxwWdP(L zD=Sxbh0S&aak$fV^1l5vH92RnEdUHJtK=T^+`!^(rnU(Kq%Y-nn z6cr%b`}+Hwn-HL?XU%;*F}JtW#%laBq@<*9KxVrLif9otu6DBRHuK;VM{f^`J1u{@ z$$2JS!K>jI-wg|(?t)ltf6UOoHPfYvs1|AS!*$(&{*B4EteypGny{mtUB%~*7e=ZB zUIUP#K7=1){@Vvj&$(qEfJIe>$D5|ecvaQaSZ6bx*2=iy+NzZfBs}$2S1-jzIuYYv z>uGDB@hyfzkyMtQwQd)nL@s5!rIL0p#;&L~@?&=EgWFEAje3-N$-_QIB=f6m#qi7Z}fS@v* zOk1A@(Efljk=7;*>Grb>vVklvgu(DF(L5&*KTGY#}R zt0vcc2QIG4P~;6Bzo7)*fxrp*2qFr;Y;;aZ2{QyUwTL{~#nR!`^o3f2Ge@7^r2VWQ z7=l+;$Z}hAm4NO?!H%3^u_Ts~*%*9al{WjOG?wgj(^fz4^=XA+X;;JP0FiaqvgnHT zg2ey;nYhbX`7z1h`F-&q(zl=iKp)|X2}!2`MJEh=BnD7q!~7IZxhCDd{eAxQhZ4X^ z3l~iz=Vd)xsc9%8bUt8U-)TRZb(_HH2Cbi&V_UQdCFGRjT! zlLxDCULjYp&b9O-W3lN;9y!P*8wqjk!MGo{wd2~XB;wSq^OHXciu($KlG4??`y_v2 z$Eq4GA96Ywg1c&7|6KXhuwPam#fkVq6|%14Y~38|bCL z^l1c-oL?)5(3z@j;};DYSugN%9(xyFwT62n_R%q*$HgoSVVyxLDw~Rz9$C}Aoo7L) z9MN>~^W-b2>T8tu1LH0jN!V5t+>bJmp-(Z)^MD+t^$E25|5}>%39#xan|N?&vXCY# z#SuLkGGV^nJ+CKUQi|LocLMqRNjH@hSQ&Q731hTlSnSp8QPr1#JR`?Kk+5+@WLCd0 zsi2@3KAL()L{zkN%#Q^-+iy#12DN9MO__o$V=h8C`Dl7KCS4;G>taD8=dCH!p+24YaV&B)*RrK=v^tSFPaW7)Zlv{T8>F)=crHrR^cn%Ac?hJ62v2DJ^7g#3RNvi{s%i>qYs!(@QNakX z6A+*Y>g3u}OIZbv<&yQUxz6NiMiY=q8KiYu&nLg_MkPS77@9|tS~^FliyGpHKqhE< zMTXLbRis}cZlP|4eCl51IUo)@8_Xou`mP`}ldm=C6&u@da7^}=hpu$JHrL*z-pq$A|NBh31Kl@3?f4FAtJ4pJ@f+5hj*GT4~{WCD3H| zr93%O@eUQ@C04gePNB9Tq;lOaCz@454T5T6&e?ZfyAA629{(^0-3<1Z3;6ziYbsmI z#BQ;PfSc(;duv*PyL9yl9vmMT?~(D2{!j-)CA4qlFi+TOiV>;iM!AziGrOG6M$`xj zE9__@BbAZKCh}>scinGE@3rQo40bO+Q*R5H3Ch3OWCGOt>ER_~0d|=0VD}RYa;DvT)vXX?HEvt1-j(vLdt z)sPjCw;fBMp=c&~1SzwO&6X|L5%f&o^7s|;H6GuEo=5uo(dPIitu5o$m;f{$iLoP^ zner3~4_xKl-0pf$U{=7IT!K`V(+UmL~CxEW!ZZEiu z+E=L(MyqTEIglmAm4om)As1|~yVqrz*79Jr=+69$<<0IbkAKG6G#T=R`sE1|NjdZr z&O`4dXq}u1Bt7Tyf}w)MhoqaIMHyfS3aZNgT>(|juLd8TUS|m>CeP!y^o)LPVjnaq z7Ey){>N|Ira>KGHaXBYUX1rn05A9%$)~o8+gkzwo@ZA(w59a~j>Yh&Y0oJiKeM0r5 zaCS?S&!*sGzOkNy_2`=!r~C72zERq@!V2fwKt`obPp>^ZBHXg<#&hgY$ove+4>3C^ zvD_;W43HR1SX%g8@l%Z`jF}PTK&@M5&dM(mgEVRjar>Olqbk>KU~|N8bwsj17Xej< zEY}Baq?E%PdROJL&f18O@DgVZik74E6chLdDc8rvRV?SK+ zi#RXnORIc0Et>h5hWPO3@Ds*r+`85mHzP5|hD26wU>$a8b04s0%%@<%%R69st6d06uizx_?ON2sP-Irkb*I&LtwFEP&fXb?jHPdChSfp5PjMlhtONi~^t>k1Swf)u=o zoBiMk3&#SW8GZ4WO=pt9VNHrA6bA=~Y)~ik&0wV(ruxW<7Tl1toaj5gQm~``NKo;y zlw=DrOZc^D^G*pw||4rn;%b=lTE{MyzQ?Ggj691v(q#g&gf3no@{#mr|w zEEvJ;{!^2ax8X*hV#DGEU$dHLooPl;wSM2ldk^@lx97SW8!ceICK!H$TrMie6!xr@ z_Az{7jERe0!S`$)p+LrU>>1{1-BAreQa@!NBrN8(nf#?w#~SOw;>DigYY%3d$J(rW zpI^NZ-k<~~DX4l!A`uvEjR+=A@swaNy=RU(r{6d&6Tk-| zI9VlamGX98L21FrV(|e4 zBXaTSZO^3#tq>rntSoYNXj*pxZ~QMpl_TJ1YJ&% z1Xn}A8&&i2{+;nkGA%_~noS2WbOz%VDgjlF$7;=|E^<<(t|@pd)%j1PJDL_MG7QRO zB>xPk&1(~k5v`EXj~~gI^Al5!g1fwx7pAev)h03SrU1+@9{G%qntQ3ellxGMrDNk$ z#;%gPcaY!Xo|Nxt8I)4B3v7^*!#6KT$we^Jf}zJlZ=Jt;6h1xG% z^|!UP!=PF$yJQ5n4-#C@1k1W(OATw?(wB|^JHhH1SZBi;|9qwk-D${gE~6`Yro4=U z%M0*l>ras0`EznxLH0(T{-|B9`vf&eIIa<-m?mWr%}Gsig*hk>Di_0yCOUN2KiKqo zIS{ix;3^$4&KORb@weWg;i*kYK*Z+iB}pCz-!p zk!TaRB11u5xjn`>V|+yah{z8{nb-mUjTpY-Alc*CP zn>HV>0L)(X-{x3edTUdQ2yoi)Ko(#jmQ5nP(8)}Pjpf;Lvb=8peGuj10LckrYFOSD z>c*%v$gZn-IfT(64XJ|7RbBSIs$32jH@c?Zg`fBPFyO$Oj@*5nEg^OJP0=kq_D&TYJS;Nx1D zrM`uk{;Hvbe!_`y8W+81Gzd{3?>%ROy^x=7c!X{w|KE3bUb+bM=#m Zp=iZ z-LR`05zjF4t3N^wjnGzEof$XUYJ0G!;Y34Y?@uZ>hvhm}a`Gk}-n?eQkcWX$h~()U z`I_fON3x+|5n>8eunEjPqkwMuINz;=j6X>GZU;`V$e7BvsaIjejUjTD5;M!h(-0lp zyMDr-cHk@Br@lZygcQUDRa zDPxxiAmdq4WL)~$c{(}`P-bPjab&}SOM$&03H&ghtuUCH-^f6}t|AFZTk_@ain#@d zO%reT2xV-GZuW4G2qgTYh+AagDD^X;JI2+QwO<2<477?X*D z!?tFmmGjiI@^)Q(x(1G@w4xYjDu>e{4(xb9bz}RZp6uLt5C~)Jb%3kq?tZTYZJUYg z0GWwUY2SvWc{r!j?7L9d>{F)|coc_(mA2$|!1Zf7hE~@}evl?#KwmhEXsfrCpPygV zIAOIxVmff0C(qYDmrxwZ*;%gOw~FL^z!(hHWJ#VE1Qg*FR%o+zUifF?AD$F^I6^}Z zwq8KSxUIjlA3R6$a|GA$+|aSi;Dc2?&1Q7+FhCXb>BNmLPPYs<8e|*qc;D?B!Y+T! z(M!yjIP}vFs6)6lQ4((u~+ z$(&!^&rSmPr0lrp;Q%QWy&mY4;auJoQ-XQ2tu05)&qh>PSzq49F(#SW&aYp=EN=h} z;VzfWwNh!nq5C5%&G@Jzv>#d9OiF8Ru?4<8O|V1J`87JW#W1r8UOjNf3x=7)F%kf% z@Mjtd+UL`CmGXnmLtfZl8&qm~{Uea*o`V&KPG>Ns z3!VM~G9Dn!0Si^F#6Fj;RYZsdfEQ+TRBRWP7QpJ`a9FlOSz%^CZzHGir{eh@sY`Js z;-~Ikif!Ef5&da9O}2`g9;8R~^{v}@i5wzMMm8$0JS}*r#|Mu5P-2kbw#Gxgt2O9J zNL83_G>~F(ad7aATXc3V(pu?FumfD{6=WCKQibD7!^%6G+I!?{lH9Bo1SLbs=9Ra3b9G@w z^I~c`ONJ}GdHW^fJ9#WCy^M?#^I|q|a_%+w;Sq=t(k-~iW2>pQq}L**)uY=U^As)m_44wX%pOzjk^KzT~>;huWjghm;-X|7uOg!26YJ94rFeZT{ZVD zuS+wGhh`3ME4pv&s=3ENEgLm$n>3AAmhgvZh%(=a$`w!KRJ3D@9KZoQFW`D}k4BIw$aRUPl= z(bz|7O)Mb}!#U4E9Gcx-spH9yPI7S8grV;HVD*u}@-NOzhA;LGMWBaYs zleoC}hG}xbCNrxcEB(fxj9{c&X6}Aj_V@M!_*hOy=f@XX)g#YI`#B^zGWu6R8@d#Z z98EDCF0^_KD>A*(m0onp1>+)x8<&(4`=X;`@j4l4N4;ot#qmAUffYRvF+WC_4Wx2C zutm)XX%}3u$t1&h%+oWAm@A0p>d2lAD5xv1YP=>}S~Xr{d#8Fbu!2@b!}*D8RfbzK z#wx}iro9uKVEVOvbov}?v3(M+1K834kjn6>@sajjR>NG=<{=c^Fd@~SX~_M|M7zeA zdnayexZK|G|T3 zCfPetXUM@UQpiGZT()=;?4Ix0XC&-Bqpj~{5AIHYAykFa&n>Yf7J5edw%K=1bZ(=s9>DU>%5pvS>9kQNTAPA(N4WZ5&vPKPYA2mJ4?Q;lH099Ap zN|~$0tmtAo7Npc52id4A_#14L4el3TcP6?6$TyP$*UObWAO+2yKQl88#Ko4g?uR@G zEtp^SyVJU+EBizQd zm!}yI#-v@hM=BDChur%RGZTork81|%&a}N~Nbz;;7EsE=`n}};hykmsAd}r%k(j;} zWe5+^^zPO=^s)MwU!ig70JySunCgAuhxe+=oYAARMP2qQqK3MiO2T)-@5zQmsXZUb|5G8W)3!J14Qtj;o{;4KTH&vWfZK2Vq$dgD@6pFybVHDyp1I z7KEF2>%GTSgbO@PnKng^StS%uYIP$i%b zKTzwazJ39t6r<>SSl<6fwWDl8LITm{%HT&`o|abb#Pes8KZ(moDLksr;vQb8)t%&g z;mMf!ow?)q^1VFu*x})gnYJ)=9$4?Xp3iKAUx~hsagpB@)>l*9{<2K8#*re_K9KXL z6+I>6@!sc6zF!{$#Oj(UcPJ^v@Dce=$-Gkv`$;-rANaWSBUgosvkk;iIA@U?cA`gT zi)2!aI&D(KPfEG=G}zIl0CJLe#*gmH+UPnHIm7lr;FKJT)w5bK5m=dv=od9jw(E~w z%o=tb&YP1rX5r&nkr_363}}w2oS4A|J*?n0q?|AdoQPKCAutAoI3F&~n|iB;9l?yW zECz_MqM~Qa22=GrA8}myWZ>uK5?ahKF3e>TK9BI{0cRM?>WWC8eFGfu6T- z_c~^DWq;d@_%T^CXABXaIix)OVq4Lt@AJ&J>s-h6m%=f%rYzfGF}(0`YiqI80io)u zL&TxM%Imd?zDb!k!xyR;I$v{i*eL?aWo~Ehvr_3XJx3;5k%}@+nAwF&Nh%k+-&p&{ zr9l4l^Jyl5A(qB8>)tFM@~MdV?yx@ilf~D?!x&0winWBwXkdt-N7I7+ zBHR)T^KnQ3!G|NcOK z3H?l`YTFGh`Ve-#;X#5Rp(+))VG)-yh);!sWujdw?(ytTX*3 z#VZzJV|61IuV1HwE6U9z?(vHlZMm)KX}`0s@rg-U=!=qxrLq!(cirp1Q7azeJwgDn zMl}w?6+YPza?G)I+DN0^z$oQzES|jj$T06=|5)l7!Xi^gM1&N(w5E4IV^_!T;K874 zyA9wxw#lnF@DPKltn?k~RbdFQA4QLK$%?d>ry3K^9q(RTESoJTHo7YK-#C(Ah!4Q{ zfc4zIaq4c+@5I;K3i0X;wm~#}K}OZfd9O+t{lQ@PYXekOGrOBm{G&S9yFHj41_Rc$ z-n(Wy6sDp7Ag=yAn#os2zks~(R{*rvb|8l)W*|CKd*CaVE0xiqKyAGbm-iBu-xt&X zNWjZrSFeoh1)RTPMF%kIJ76}dzuRX&-67;Y3xYYJ$%*f`Zvbf4y#a*hxh0Uv%)ja@ z{>?n6NC1u{1j14d`TN(~{g|qN^1SO8l7sYrt32Q6_Rre4kNNPuTPnJL+|RrOkiKW8 zDs)hPV;Sr^!f62AdA7U&w-=uE|I&u@AEwQnf2(G1|0tl38{dQdj*4ybiZwlD_BR9m z>u1md`rs1EoeONIQ`F7xVq1Iv;*kI8Sjsksfxw@nc0mGgTS-qw$3IF{{O5#UN6Nwn zRIqR*w(!g6NgAPVD1URSKYqSBeL#$ae58XGQDXB6|6lHAO~`wz_Cu->rF(e&*dBdk z-+`pF3)e|Vot-5$(;qB{X%d!sB`5dl5r;pXTc|!wNke2zPEYP!vM>{V;m`0V;_FYJ z0I*6OtUy8UA~|O6#l=PG6IAP#2Nt5gO}UD6Pm-IAfYnh^dIOvduOtPE~9|;i>*#q5AJ% zx`%iGl?3um*Pm=ug!mKCRyI2C4A?EqBn5KTge1FPC(%Na1O{FC zEX)i&k4f(3_{#jJgLYi9`?t*S07mu!b&a7N|VN} zmXF@zyoXKr#NNM`yYs&}8FWXIo8ptcz3D7zy4Ac25qQph!sN1rS(f(wy~5k>iw8{l zq#KeDS{2Wlp*6X0Kd{aSn4zHr4Tr{rS*c*5&)s{4YgV9_?eAWSZ|$lnFA@I` zBnw~@%CZwL?P>Y3Bl1#L?p}FnYmu?N6_wOUa)1HJ#iS+oJ^Q1t$u}d(6u^>va?{lo z8G?(D9U&Vk=L<+3N;2^m0`G6JX5RsY<7@fTKIm66AwXNtNFtqVPRJTb#6c8rLjHRw zCIg=RksjJvIJ#6@^%2;S8Z`j}y{u0zM0`)v_nZiNP_S{W|A7cCSinR4#InwT@LvXGwm3?_f zXIGA)cPQH&!U3ySsj<#W9{|;bZ>y4$w0>-fR-m|O8^z_u=9#_Tb3dK-i8a;krGWG= z`hW~jS%(ucsqRciq9Tp$tPR(mUs3xc*4l=s&`ngcI(8%slAJ`LS$2}DlV*V|md1<3 z|DnI$`<9#3xg@U@D7bu2nB>Q{mS3jD5n%8Fa^$q+@jd(2SH@58v^XG8lEzxB2X^(s z0*xhxaclckiMWNW;H|#|^FP}K1Pvvsyw+)B?F`)}MNFWXs%0b*9kXBdorLX^J==m{ zQ-fxp7NWEP&5(nH)w_6SK)Y8aMFSWjf9=r!7Q%`T`!9X^LcZO-fQt5b7kGkz79Q~bp15wy%?a}UIhweZD?~cM#Ppch**I$wx z`R0Qk#1D6vGSkxO0<3MSnmgjDL+TQIdtZ`Ne^%13d8zg#eiUX3$h^=6gxXNyHdH-V z*yW`?X7|7rE$d+?>2f~rbT2dDd0)6wQf)v>nI!Wk6 z9C}HGsiGV{MI*@74jC4J+ES&?=@-l!O!< zp+ClKn0j7vugV%Y1?sE9)O)*~v|X}%$Hivn+!%NB=APm83v1Ahwarf3 zQf(NdR1tELO3yt(+m@B2NlK>lb8>%?*fZYGFa-4r`!315-Zc|Lb~hrGsSVm+qC5FrBhM+K?hKg$6iwl9W<#i!U&#NA_;s(I68WYHRxREFcbSbqmYM zxHXVL$VkMs1%NEZ_w0cl;w6NRZD+w3{tZwY-Q6qj-fSD9B>ekJd)q=M=sZ_s<5I2G zhDZL9%a_jsa2q&>$nZ_f+W^6K;NmJaeI;gr17r}NxZ^1I|Ln@|gf z)=_3oHk2e>Ovimq2%ywsj@o-35PX2grmCr9yR8GiDo-&DCJ^CY4*_jFvH4n}oY{to zNP={CEPE;L+05ma%AMIiFH|XVsZn(#M@YZ~MA2OFpcpCg$hPiyUcgrHf-5c?wOz&# zr6{sjNvs~if%%w-wqx=~R@oPLfI!CqIk+g9*@W7EsY`v&8QL4cpdA)Scnejvn(p>K P;P2k;2e)81&4d3Bd+KP1 diff --git a/public/images/example_usage_of_fetch_scores_files/example_usage_of_fetch_scores_23_0.png b/public/images/example_usage_of_fetch_scores_files/example_usage_of_fetch_scores_23_0.png deleted file mode 100644 index 8ded42d988b8cbba64a4e015c71bd22f1229b879..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 89209 zcmce8by$?!`u5C_k_I7-AdMg`A)tT~($d``rIbU1C@I~ow9;Jzj38Z#k`hBp4uJ?V`^E~TW_kFJwtfKUg5RVcM0)Y_9$x5q1AQ%Yn zj|>+Z{ATb|NHh3=I;lOp4=L`aUWP#EA#&399>WdS(r^+?;5mxHYT7{h|JCaOh>DpFzXZ2-dvR8&AAclf} zzVz39YEMZaXeII}3Wn{5j=8OXxo86{!;+B{ZRu`(tO<54zS@~uu5|x@=~oiVnccT{ zv$p_(_&m3DvNX(Z0KK?QR(d5=7UzDk-tcq%f9Vc+s|13osR;61*n)EjdkKWYN=8-{ z=^40#WwoxjA(y)x#s1|Q2x;vt(oqJ6b!qdEn1%juD7d7ElY#F19CK$netReLAB^#b zWsr7QXP2V{fhn4#*pjhHPbFuWl=p$be7w?3XVdyUHK$r0mHWqjdq0pdS z(kRc5sjoWJe(&USCNf_&E8BjuzTB*Xs4IytkMZkxom1X?cbvk5aB4P}m2c0@d-c2` z2Xhos6trufnP_t_fS(7e?er)lyb){PYn0iwiaGf#drJjy^rez`E#{Xpe8^VoZ3#R3 ze|NGEuvM9PorsPKq0dklHW+8UA1fVx&_>%oJTjAXwAwD^=ft30yl%`8WBjW5o z>~nrvBZijzmH<2cxy(rCiN2>|h#Z({4OAHVps^73koHpTW*^M3ceki!ikFs@Q(L9n zYJf{w{4jgk&8W^%rs;5zib4!tDw%hFcC5V7bZpONh^XbapBOzU!CF_s*qm((U6_lI zh!?OK?);MVkjbq5%{ID~SYdZ%DCa>KC3LkH=88 ziS}8Zy(>WcTlo2Xzvs8vd~RsyeP|(<%>Vw|2MvYor2%eoZbK5W&&p{cL*`=88@kCf zsG`U3qYL$FlpwWDAhf$*UU}!6FuHF-6?VUHv(_hr2oP`hDi4 zu-{y7_OWqJkl5lDyuTw){Vh^dPTDZs;r3bTZ+~S_fQn_GZ~C0a6zWuTzr@0Sj4eF@G1Mcss^If|(H+aSJ!%#q2VTJZ=;!iCSkM}m zSW8c!3NPX#Y_ra3saMQi6Qh;^KZ5+)a{=?#DYo5*n8xzI&54 z;^EoRY6+DguJML_n$Tj^r(KVQb{D5d7skR<}Sy6dhNDjRWtJv;Dg z2p`jLlfaMHYb<_zephbZb(Kx0+#CTj_Oghey^Hxdn1I?BBdIc+Ml_kAY^b!FENPZm zF}d?0otHT($7&#*nK58ct#IJev`OEZ9|q3+Xqj0wmw|{*lV=@;%~-ibt{7=j*T!T6 z)%D6`2~?V}Q?6fn9EVo&wi-lC@~X|fqBpnXoyl+MI!_8Lc1E?Ddzf)pw<|z;ag6H|PHlAO4(E-i?@6>`A5M@#+3_ z&XX^h*scW{1+Fyc`+QIMtoo^A45SyYikNt_7Rgi$7q{~d>lP3wo*gdHsjHoy9dF{J zt~0Hj9`8pOu0AcADKcoNew2FW%ab*a(}kXd1X2#o&ZFJcg>;XNV1a=C^t&7&03+pM zm?_@Myy1WHSyH$1i3#eO30pnVKCqJI-lhu zXD##i8J_O;D2<3BCWZLkST3oK1IqFq3>>0Z?xus5Pq^|U_@wOSra8}MT5=mEr#WJM zGVVNYF|WMB@mWZ(+V;UTvBU|wzHsl=rE8CJ;2Tm75Ey;;j zxdj)yJEz8?bdf$sgAZ}8lo>TkMf^4gpsLj&#<(hNlv9$)RZ~B65)64!c#>GRjlJ?6 zEU(_iki_(a&7!A?#Sh*JV;unt44Aj8+z(Tm%~edngDlo9rSskP-GV-Ygeay6c9k@r zJw+1t(V?5rE%=sV5XTRX-#@CRw8(>yi%n#icscgO-y+QSIa1 zblPm(r=-8*bB2H>^dxXoL8=9N%YFC1Jfst#GP-;E^XuXgggTX*>sbpmCkpF;kq;ML zq*aohL`Uzuw>Fk5O>TB<35Vvf=3!ONSargQs01JNrwTJt3EJL92RFBdLVTGes~^8t zv(!gSAYGtvRoEMw7Hzm(6q`D;Is>&6A-6ByYW-F;2KP-g19ZveTYi-1>F&rj2%rwi z`*0}408+BMIwHg^4q2J@J}%NJz?Xo03c67k+9rT%!yD%t5HnjOskq0jZ`Kw}LOoch+QiFlTW=UZ0Sv@P_3T1-LMz zRz^&UIM!T`$2WoK-I?Lc3k-CGViWo}z-1tj%JbtUnW3?EGsZ%9Tuiw|Pck|06JMWC zm-x-IE{d87OswJ{S*C~%f11?OYHh!f)m_s@E<=mFx=YuV*nSIZ$vRk`Qd)GS^;gQ; zOXlPgLj_t?D$tX#>pTocD-c3o97$$lGQ!)nHX~dZHt^1xWGq_WTjubht5%RJ^e`Xd zTB*fLgerd9Uye5#lo$Kk9%7$haEFKLaM}4?=Y2E)fpt2BBcX3@@@9Z6Dd=Nokv0c%M_K3E>}&kt&zW?*6AM(>kyjOz9(<6VMIr1e5up*Z~N!>;fCcQnNpiCWPXt|+zVo^Y$#m-{i!hBauG_&H`X1bRjISLo| zl@LVSTnK7D`i6}eeH8MF;1+MGFRS?`dKUTe^MNmUk_+M_s7_eJwt;_62KM%nj(hL5 z((BX78c2RaY{;VOpp8HQCqG)!0G{KN_B%fMkHAjvFwotxmZ=`rUOcB;ss zwkpXy*Y$C^1TKTwV~yJq4?RIp4VV|HdPiVSUMU#fhUkBdydl-AK)jkG*ZVQ;ps_`O z{yWXi{`K2oMi?{nKhvu(_Z^&^x}%plUaW*Wm5%W*7dK8iLD<2B`naPzuKfW+d`p@V{6cbf|n%Jd0vlwWhF z(vs4|TiU`w_;Mlf%6n_MrUP6Wl*P7Q9TrIXjlg&$lQj%&!-9FuVuKhMQ+O@9pMZpP z96zPIBRx#Ideh9N35l;VkSbh3aqVsRDoj?7;>mQhC6cy00K#sLhBRtQ<fxsyFYY!;bc9|rc!YWsRTqMKv>NT8(i&DMU_Oi zJYGB6KNkKp3|S1)D_nowl&_2Iftcr%aom{^y58Z&392?Oc9qGwtw%w^XN13OXoEZW zvFv1sga{t$9eECNG)%b3@@^tVcjWV*c4xli5Wh#!4i!iY<2Sn@nyn8+ zAS@6A+vyOQLpDiKW;8=ZaI}>#w%`=>iJAHhq(Xsa(If2smqJ2*a@;;cK+48u_J zrZ+a~!5$5jRoh4l6w%~VDqmHUK=>TW{g!yO;T@gfZPaV2{J!ozJt}J~41}w9$>mM> zd;btjA3{+tGXri)@qt%s{DycaV*dMG2#rj-m8uH5i#J6=v0Q^>#Una)N;b96d=naY zMc)br{;FK1U&2@g+HxO^qOen@J`I_2G=2&Y@_m)a)b|lmQbolxtYYevQ>*(Z^3#!- zt?oifmyC~j7Ee4kTKxQEhk1@{M-;&`f^OFsBnW~^w{u#%;=!XxA68SNLllGF7D=Gm zLZOn$aa~pXt<3UpsPVp*Dn!^7c?Ao)@ic16!9Pdf!*o5z${I?$nebt9r3HC1k5hN`RjI zNTtInNy}R?dUvb_%FJipX?(`cj5f_PS}VuTzejeRP^ZweEhMSj*a+38^r_R{ga?A7M;rBs?P8LQDweRW>COO6C-^am+ z^Y|3jwI`dJ`*`W;FSMTVA|Q7V^!K`i1S$NZNGT)JKw5Q=Ui)d$6Wx zzRRYx*wFS_{m!{r_VN1LFWs(Lz2Ak%3LR9;u5o$djEz61Oj0rzn|lgp^Q#)+KVY39dBPgstcb& zF>^foah|X!{$mSX8Wm^F<3~Py`>9I|OV?NRUkg&?t!yM%BJ>{Vn6IPX602bG)9YdS z-tQ{HsvWip=FD$7QiHr~9=HlTITGJDV2y29d{&){wdO&sT+-yIH%J7|rKrk2tTC8?y3Miz~bu=%%*`QOy2a$g7#> zJ7VQZ@8r+x&D=rB@Pkg>v-oQnOPI-(aDKCb=ZO#(F0=Qc8woS{=} z4sqab87IWp5RpJzCII(qO1#!Yh_BKfJ^(RUt&rB7mK;Gd^n?#=(R1J*NHbI0Jl+bk zI@l1k?F8>2>z|{ux9>ia}CrEjV zUN2C&pB@88vaI}t?_Kj{NZRN-@<=~h7D%U1Yaq@KV?Xj3nFrN2BgMI56e)}*o=6IL z)2&EQ#csWT5J-|s;;aVqut;7me*q=|TuJ8jKsxW+N!;euPz;bN=NMuFZ7Kx$?k|!| z5A9Co9Dx#O*mL%p#ONKok(UO=WzcK#)?YYLZRZ^dgyxzxwqvGE7&dW2ICzNBL&|BC zjO%5K&L*4MvTFi@11$lntaRZ;AC=d7!}`+Dju0LgH!5Y9g8e5U37m&T9|wW?mLVmy zsxU~j(577h&t@VKDQb*_s8{(aGw4ibwbhmRksq107J#L=_^{2#WGAEu>UuLb1Fo3Zn?kg99PM2NsM;D79XxUeWLm7 z)b01#?@zr?*yEjS_i$VC$*&>9mDdzA#3wyfZxja*o|Rs?Aqe|qf4)9m#V6W)T>a4> zC*}E;^_{iah_tCPvnB<*#Ev=Z`7QTG-zhH!#~KBe+0wsww`ZZOXn?gOPws3b@vaTi z(xGR+&yVIbsb)RcUQBUFE+Ikf*pHUc8i`4^avdLh8~^-Hs*jxHXn)heHDDTm8HXon z_;$@f=2+-iDoBt19cW8r#`{Q;)^F(i^$m8`y-C36uD3INtY zDeK?5jPjZdX6dc@7*$n8+2j(=x!D!NvH+l@Xa*TPfSGl>;dg`>jY% zYrN9>+TG7!WlRs&>ak8s{assg9bkRUS?;{7#-^Gn{gdaGUUjTYC|TF`LeJ#jTRz_e zD$P13?v5OoAPMeB-#|MFWA5sB^O1Ztb|b^0dzI0T^eaW#<39!}mHA8;g{oZnW=`cJ zCKtVjN^86LZQp z2d~F3iU?6F@oEs(g=XinPRB)^650ew)xr1Pfr8~O7A|7Lnrf{RbIO?1X&(+NX*j|b z1$WhMo4A{fTrF<;7_NjO)Z}>)!Gf;GL5x=7G4+BJ7A9B*fIG*v(Xv&+q864QG#dlI zt!~_14_CMS$rqCol~1quzK97D`(Y1%?hKHGmm0oEszTEZ8fBD=@^_U7%;hefQMl759gN@ob zB8>Oi1q}|<;uL(AZ-m>AIKPN)A{YUl7=wjRCi^v4(cyseir{-nLEFT`Jubo8WPa;t z+wn>{;5H;7IetIK2vB!#Fj!*7jcA&+vo_n1oRDjWmHkczipRUV~bb%{k9 zE0csCy%LNGE1~7SeGOK^C4q~mKLNkm_D2@<5LY4f4*W}TtM($4TO4WaSZ<)7I=$L? z2h$=2O)g^S9(vo%*d`#c+s~zNzcHp9&i~IiS=o`!->b3>k zhXuV7BHJH;CtVA}G`tIyL=DYh`DrDPV;XvSUxvH5-A4^A;P@pV3pf~rsn{>i;9Z9A zVnY11B0viRL-6JB9%yk1TtfHMujWZ2FMtJpn2PT$yXe}p4TA2u)tC-ZomplIKWaYpi5xfOMk;o@5tZ^ zl?0(GtMR);J#Lk0uNwGm{>lgbG`6^i|K2pt-|Dt|ewfB)8S z;Hja1X9WJHr)r|SSRYYL?e?Nq@P5Tp{Y5-o`FHU|@i&}K1s{>48z_^%+q_5cUmkmK zYvosLt;hI(Csq7CclwNvuxnxXc4XxKYC&vVsYL)WPCet9kJPyEn)`l#={0|(sw+iE z0O~Vo73-HfF37vhM?GXv13pIk{nB4W_{GBqu(dV>{g#yU@V>oQf2fpt=f*EmPN}!w zK8$Kd4AU@5j}(qiiqKm5#(wK?+cNGA#h`q}BBRB}7MJjLlUkgwc!(+m33i7#Zf1(X z+}JP=B89-M9gCrUjID0Tep+N4eSEq!^tbehJ_oN03I?&UH zkvDALejJwq!x665L<#H{ILc&gXn7PJ4}FA}6gx(V@z&n6NUB)b{BcYwa`*Vh>2`Ze zgsk6M5|h`5d9|h<*0Iw4XNbAi$B;gxUWLkYwv0UA>_^d$1!>2*rO3D=PxDNhjT%p$ zU15vjs4-Xc2-HV-$_dhn&}V6K#(S|uJnTv4a>IMCRTwLl%+zpGIaPWuU5qP6vp6zG zv?f5$y?KcdeHE^OnYkyYkASO2-;~SrN}eT46yezbU@1%RHI{I7K4=}?A6ft@*k%zv zA|j!eF+x0Aeb`}wBV)Hn0p+r6zvVe2wr$-QGPsvgSMJ#1{r=q9QLRsiX(FRqh6^biy}S`qLx4eIKQX1ryl)eEH_wrOI~HNqaE&5p$Z+Esjgq;Mubs zX8QFZp96;Q5E?t=(d76fQGTII-7|c7nCKM7Q-eX<_L1%BxE^or>Sx3Hj%}-P81T-Y zL9tzFTI>>!WyMeIQ~iwiA)9{c9TqL!)0rK$&kmzg&o@n^ForYZa!_c^{lLtetxg9gcn2?y0`Dy)S{o^p3^v8~b+R zysS^&veV2U6Q4iVKqLM8=$mox6nx@i&eIbH_ZOllu|j)}`PzH-vL3!n&DjYoz?vE~ z=|*$iM2paAm{30l9OGb}lhs(gOF_15)O}h|nI!=xF8fiETGP=A$MW}@lEX2Y7ZW!C zdmMAmA3JGmeX3CpRA3AMGmW_^8!4IYwWmXI=h<8H?%1vq1fXA;6^;P0+6};S&IZ@@ zXb!F7#IZ2GmOo`Cha;EZvchb}l2=jB0};bH@h_i8!OYB};EbBaE#1zEI;XzfSwx1{UebJTlDeSX_)Sn&UeIdypMJ|XsaHAj2=qFqy>|L*F1>Rs7XJ7h~}v;^^zaAsO#G8C5Q3K_ZMt9 z!2&USq)3m2&imlq31ElXM;sTrDf$2@&qX2bSzEW!=&_%?TCN+%t})*)y2;N|YWH2x zdJ0i@viIG=ac@nhD@CZ}=Z`N^>E1`nKjwHM0L!1OeL*y5D`yyvSJ_yd^*_CXv&aKz z$~ofp3re1ZL$jCqWumVVV6!4UHtITlT<~IYnbN_q5W>~BdIGJh9#NhAw_B-V*P(P` z1$|WI?n_W>3Gb%mxvikWA4A#?xDM0A}XxkWIw~l6M+<@|0 z<^?)g#&3#$xYedh7sD^Q z6z^+6u{*A}y-OFmkXN*-NC(;MH+yJ4zuAl__TUaNBF=BWy3vRYV@k))FkwiP*wCkW z<*@qA$ze(DrWT!Mvum?_RPW{~9`{!K?h|Pg;dX-eqdsh2uf7akul1_qA)ykX*t5{Z zZtm|G4MsU~@%rtJTk(}guH}UiwFAAzj%n@8>L)wHieLCzcsel$CaGPN86*si|UaYVn*prjl1s zy7?+MFj4{Uo1l=u)dkifW@jEVEw3$=eDi@$;*+llK;@ZCT3&58pPwqHyDd`4rHj=$ z|M+}wFjtYIHGq(hzTTpT3}fhd)rGnNV(R;L#Lz=AQs8VRkS<#>CBH`WU<}YkcI}U1 zn8PZc4s|0bA$UousW=eq%h;t*w4u+b3&tT3HN*jqTK4p4cL7Xj*e}1_W{K!9^F;s> zdGQEpJX!C;ce}x|k20nXJGR>H`|ycSdt23g4CE8rx%RlNY9uNBrP?;?7$yZ~d@|14 zpM%JW4@3)x>^{Hs`w6%fi0LC#8-4%|EnITSb4PJ*^>Ak?j0;U*Hp6spu{S9!+@dF5 zV8nB6lxGKqJZiY02uHov$~taZ4`%aP_FkV`2T~QqleZ@6K^esc4U})&LrD%W*DnMo zSy2AoXr|C$oYWn_0!Q19l~Wj8c>w}}mz(u6ADYk*iUy%{{c-9wxPNrdkbhMiKZ{bL zWHo{Pjj(|J+ZNuMt6DWLvlXKrtq`X#YDFx@(Ip^s_+G;0$!2RASE^%b!};&o6h4!=ll@IBe{104^Ts>mMY;V9M*#S1^4=LzTBQDDUPe! zEAT(oPHNMrZE@2fmanH_!ex&Tu$iGbMEak zb9r_8%I_Wpb;zxJKOdny6~%tHDZaVdD72t@NM2zJr(AAxCmm)TD^KLxXg+&B`7eAIM^Jv=ACAD zLw+7FbZB$)dDM$4PT#zAt*bfVEat4aH@S%HNW@1edt#E+8FxYhZKgBR~YF_!O{o&^cbNlH^SHXS(RmSVy(+~G7*rr_`e>)99 zQaOqptR}L|O>WD@X)S~~1oS-5IMygACk3tcU((IqrAue{o={>te9q8nBd{}V!6Eyx zP?+E#^IP50$)?3Z)8tk-ML0$!%%O?buJ!q0`OMOWiEu=9%mi5mQ@!V5c`UcllqCBZ zIcjfEf&0>MNG3l81rh)&6L0U9KVuEXLLUjnmSy&mCrLxN%X1;B1@AmbDU{9OUR34b zzV8eh-P@M=v*P3uEf+yqYCpC{2$MuI6MO|0Oc*bw+1t7CU6g-->nX zfeVDvmwfy_N5PFOe7kpd<%{2SWy+jQd(Y1=AiCGWTn<1Wttlx#@T zeaNlhLtTr3ri5@?w&B?Jp~%_p{E=v*W<$wjlP1>mSE0&EJB+|4imn7%;$a!-GH@o7${*)R)|h zf$C&7lzZwePx;XqZ{OLle%6WG3g=xLW~tL%fJ1)JpE!Ma%ep_|R#xw_iWZkaxciNO zfNdRq+r(F4#jZ5L^%)RX37>)x^Jb1T#P|zD>Yd{fQF0Tr$ArifPF2&7_Su>Wskh(# zEZGhying>V3?D$y<0xmunv|`zr1GmWP-yMYEQ>hQ7moYvR4`*2Qhi*zuVsg%vXygc zDy%gc3O@B7nh6C9ulYI3sRMsjw^^!9Eh)nfq>gefyHv$zToj zB8H|CP#9Q-1tgSAZIEnZs`5V8Dx&Ia3L7Qpli^$qKz|R1F@y$(l@tn^e!{KTAiW)2 z_3?~yxRH!i1!*q-5!@4UrykZ~ZfX`VFOYZV!Pubzh|SR7)r z!-9~O6c&`EM1^kK70lEdx-G>0aALRyf?adRkzNHQqa$2?oR5dr8hpd)nl9#++4BJ- zn9vfAp}M?Cn^lxe@znS$yXQ;X42Js{&0L$H20a|B#9QbR=F4qXlJ-jGwj7}3fH!ExIHU+8PHRl3#S=cROknjC58zaqC~QRmm~}tjCMWs zF8XI5KGqln-Og4W$GPlcPJN!`Ud+{~H3}mH4~yhtR~`2hS_n|SZql*%k-PCm7;{8? zBTKQ@2i#S6;tX*nf3k;%K73RF1@+*Y8yK!D+u<&+W3}i{u z|IVwXQVfL=ZT-ES0Sq2VA}%XG6bn?!DV@H4NTe|Q>2bk{XtTbSIpiL;%6v?wqv`9Y zPncvH991*4ZV2_Mx zs#6mtST;po8fcJr!AcJ&&Nf3|jn+{zbwYSz)y(|4V#Tr!sf3D^3EHp`qwgqCL4BV} z`2_o4_p%9Qw1kEvp1$Q?4Cl4zB`v+ASPIsQBr;p=lJceo9e=(9rm${{Of!%-ciEHx{X zQ$S@TyJxGaL8Q)H89C);)g3Zj)7_=MG>`f?+PrDC%8YWf3PXktc>XNV0=B=~AtpOp zAsvUe6vey#uu~#$AW4~wM$B8+U2(s;!l5_X(%dyr-~;<%g;lf&MjmKTTqM=D6bkvI zo2-dyvkErsG}6ZAO0uEd_#mM>8!&Lyg>yf%aI{gwd!n+vQ>VgM4!|pU)WS~V5Xbi( zbg>@}@fAkg_{{tKCZpM0bnhMhH1c@Sy^O!a)Isw?ZjwPc@oEc^Q|^b-`QO&~IkpLw zPR$?m?u~oSIW@D#KJ0crU|8|isCh{(_MCa|I4(l~v8;A8#$!X4F=;R-nn%$ny1mt^ ztJ=R~zVm&>VnlrIt|&q^gNdEzXie7(DorZkY45@} zVo9PA&MBfjo<<{2m$(cgLld}Dlu5nLwy7+e{Yv7`+4Ig$wdCh}Z@GlVMRPe>f_k=i zUGZ7Pi7G(FyhzC81UV1xT!7`#-%Sa*%i&;2($po*&=9!B`mYeWow-tzdX+~g@0Rz4kYiqW4Ew2T7 zAur7H%A|O^gNg!ppf#iKDW3b5m2QyJ(>w_v2TK;Hd`i@EM^A|7;dT-^3=nz(d9a_e zuVK!gfWXPKtbxCL@nhu${72q>i}9hfmtl8JU+Qi{zBS!7hHkgP+I53%27Sc zjJ}~Lzq39;bZwF9KqlqqJ(n?$pV|C$%RW0%iAbCBn|HH@w>oUO_bFJK?Z&d&iHnf< ze(3edJi1N?LB}!YC(Q&#XHMUQTuZ743Wnk`YV0HB3bMp$hHB@(s-ZS)qs86ugkNlB zc8w|-?dSO!REnx+M_cA};|o^HC*LW9PA)XmbjJ!b1C0=o^t_!%vl=!+b-&VCH9-!cnq*(SEC>NPGDPsAWsK&1HiOR1w*i$LY z-HKvcMX585!R2+XPs5n{iVfCo-7d96HDb*>d4>Qs$QEGi5?A0f#Oy?}K#%+ba7R)j z{mbc?hIyn_LbQG(>E25F%xICK{KhR@#NJP*dLh3NYnk=1hkzX#52fD=*Mv-O$&3{= z2W&r$rJUv>v~l0+Flybm^*Q0$b5Ne*qO5hH!8ELiCG^&ZIiQp4#{7}1x%D3-6j6kR zd_o?V;ggSr4$3YeKH4l=f{{xR0uX&zFS?$>FiJqsn4C)b&}MWEmr8Y#i?BgtE}}Ug zEv@W9;w^rFS-)Fee83GWq52RY&g>`Tygu>^tt0EI-od>>h2|keLm$;BBr4w zTq=Tg5Af{B=ist%1_Lpsp zNS`mXln~WF_ZAWg)DqpZD^sY@brI%aHLqSS|xyfMzI~&5zQ>bOaryH~|-r_&5PTs4f5`WSyUZjdDZw zBF?g4cNB$}{$REolh@JDVk~^W5dmxA+oYv=kY91U2jcjB?rGV94#P2}h%oGhwX2%q zvDp>)y3LPyTueijp-KrdKcPD)ta&mvHEC=@O7l<6jte2?J@JYc@G=kzgpXW?I0h2Y z%p?6UqJQaY?>?V>)tkt}ICZ8(BZ+d6mkXD|qSgdnUiwxrfDt`@dEj+1rXjg>70*q- zkpMWCGZVU={zKS}O9;VFPVa28F*a9{=(@o6p<;EiF^!YpvB>v|Q4FsiCGpC9&@7@n zoddWlzOM_wzqUjkzmYk9`%Cq%%2^BfQ6aM|?rj7kym z80AFM`fQhBDAX+*C{sq#3V^K#LD@~!-we=lZH3 zE^CRsH+N@Rp!pi}qucap99mpsVCz_=-FHm@oihQ1CkAW*sn5i?$Th;Oq@^X`shR?m z!hV^{s{IC9Br8ij>oPn|Z7}IME~5X(k8i9X>SLWPQ)O|c1o+0WQ)jC15e|*J@qVLV zkJl&bDIh&(da*IV>vQJGrdM6a_n_nYYvgK3A$2U?CaIEJ3l3Xm8i>$@P+H5iY^0!eUYwsV52?fLt6A=h1Ed!-TethgL>yE zAn0zhF$^G}c%;KeKNj`?W=pkRhSOXfd}o4- zAiA{t`8K9u;49}R*Dtgj_+6^eZye1%LvRUGG%W_w4W_*IC+`RqQ3^bb1%Q$)co*`` z@res?o~Nw124MC?!d|D~4qE05ZyzI@K;)8k7;IhCc;I=pLmehcHK%phz4yT`x z^o;%rFpS*jsw!UFI$2UkzSI>(%`WeSUdi>)LVAg-?~sDvif;^)+$Dc~W% zBx4LF8Gloe+a!J?&?_|5FOjQn6Nw09P%e_vIDuf$S#vR@tg)tW*r#e0$}ti=S}*H0 z5f8XcBsQe+Ttc{hGc#gG0X>W%c^jeQ6F_mjtn<9{D@>?Cm}DDs(J7%^bWrqxENE=D z#Gb%wKm@@Rcs(!=Xa%o>+4E!m!bTaU;fq~DS7(?*X-J)inBRzjmp@I~F9i}UP#|ed z8$VhhANw9 z$AxfXCR8vz7>J?aKw;C)p*l)Lj}A~=@l^tJhHP#r4fsg;22Be>Qbj&85d|ND?=eK8 zz@#fKMqj`19i7TT&({LK%!e=`Ny*EEePoqH5k9!}A_AnZ0*BHpfRk(VPR?CIY^+eN z{rD$!R{{VZdeLw&-|Jt@_nEc#h(NWYb~}L>z>J*FB3r@LB)to*z_9q#^JvT|dMu~I zXN^dzll|vXQBQknXrz{1d-hEN_Ty_J$)7c_UrfB57lNL|Un-veop}Fm!XINn(C&97 z&(K03s0*7N;k*c+0fxUJ>-qb7B6(0j^8FW88iuI#t7Pxa(#LN6_w__mS^{DeQ$>7# z$e;dM-#M`eJatk4>>Aiu>G|?rvJ=nT<}=59)7pr z^+Oaj*n#SYB0*u8KXb2hIcL%Yo56S+Uhb5I!B z|EOt0oyz}F(_Nx%XmS2S3-D(N6dJ1bo389P_d)W5&}C4(_Yt`crJRPieSgTMO<_8&g)e$K^611;G<3f%ts zLHqh`CR;+d5Vmwj* zO&9x{y?=vk+L*9gr-NMlC#@ZEY-zkU)^j2ULz7|DVvMeY8q^_wR|CI6^%{LgLbQAIrVE*fW(NgBZ4jgD00RqIV`PUC0ULk4^Tx0N2+cGo;+QVf;qMmPTC@GGPny| zX@mA#ILNy={HZkKg*j?EQ>1cJ=B_b4qNmfm#iYD2aBGY&JMQZecV`LJ3%P;!q4S@+ z_yEP(k72)n(|I3jGft#RUZDx0!(S;Ld{6i9X!7SBFtdR2Q4?P$-@4 zrh`Vy=0obqK+4m;<^TZ7lI=3^cV7zv%c4o#T?wpnjR zRy4(2<)KJmsas6f;H0lNRidvYjK21y(Wr5++icO$c_i(<#ZLU`VAj5~PK|fOG`>PC zs~KLAX_}H)3SN9V-#pxD+wMly6m+IGSIhcCzZM@x z@t0M4*Hy-H!<(~}FtEv#nVf zu$m3Nr8*2GOjvj%k?Y@U6pHohY{M*En9=QAS=Z8qO$UeWRYEs+Uhj0~?Xt^%cUbK1 zra8_z`}#V^^qrVm{VA@n`;mTOLi%n$KX1{{YWZ>JCE@3Lp8V)srF7{4LHB#@=k>aR zYr>q?>dZ0yCGl~uE{Uma&G9J7TYGR85l8yzkIpgebY?}&$L>WMOLl>g*bO~az^6XDe!Fee@4|pFu9s}1@6}TbS8b~#vA>n3C6)j1()SBVq4+AC= zL@S(Ec{GUVgxTWQNuq_GirvsKTDcV%k&0&$zv27^7coHI$9PKlIJ!D(sq@47agKK# zgIbv^E!(6!eBwNPI!-gUx`?eIB9;F<{TSvjATl7|g%HkO=%lmQlwes14s?{S(Op<5 z^80E&^`U4Zh^i$YWMl_i6Q@-du(Aws-k8v-wx4`jo)aN{l;4{wtge>(h|S1rH|{6c z@_Dj$vEN>2=t8O&3YNJw{MLigKw-vmagd1^*a*)13?p$ke%(*Z6ASyqm+HUzHbtaw%M0%v=F%4)U1f0qUJda5#g)#Rl@4Y3~@Yj+dW8 zxaB;Ipxp+ojXdbH-ly)? zLm%QUc3#cyx?}CMQ9Ca6-vX;$!ShJ~ojfskcB}L0+;x6^zV@Tz&E~KdKU2bZ9=+tan~!02^ThMvOi@X8VfcBV;{z^J5R*bU>XX zcWfTcI0%D6L5I$jG@R_ygTuwEVzg1Djg&o|SU%m6V?C#any`q6xs`=Ct|b)4neJP~ z@pr{Mz$j@ZB3|m{oc4OG7g9yZa2%0F^q74lq9M+2M2lJs&eOW8RNMPQO;6K7f}ZAK zU)b5HwqR-SoAjMP&$IP%Dy65s`(ak|K7>bYA~($8U$Y;v6CNwNSPc?|eYo)HK`eyX zLm`2rk&VVoc26tjnAdT3EchdARMp z*_nR`-gMI^^mKZsTEJqq#3uU(#@J28kn9oYCc=Jq;X5gn1+p;b%W3oGgc6^i0X zdj(!MXejU9LJ#AC3Fi?SDGEm$gA)oOz`K7&;~(UK<5;|DwmP`M^TYu>b1#!@V2wu9 zHTDYQgX>D}Kx#I>Ga!)wMsWH@f&(>krmMC1GnB9SK>DQQI6gOm{sKEO@;TLbI`n}F zd{#kA)9-q8I}O}rVNp(x1>3x?LojQ}*dKTL5<*tMkxkn`hM9Q&pq+$J<)Dit<2rhI zseoIx4s>xA;DiorbFD&cleYpu zTZNqsX}~4I{G7;R*6SwZFlAdzxIUz16bBS@T~--hmauDYPX;8;I~BMa&5=~}5p!R& z<;)fX+`!JXTGuy$wtR1Ep3k*!e^XcPx;W#&%^x}iADi%zZKdtlAoUJ7+eYC+W|{@$)4!C4 z6cJ_6g9JdB7gx&UxbgE4fJbA67Qtvp4-}$I7u1kg9_8yYQBl(5_G&M}I z(+PW#WVbr>Yf>}ymPT$WuFPZWnpGQ-J4bnEc(Hu7Dh@hRjj$J(|MJkWt0GREES8Vk zXu@F1mj7{lN$sA);1BL;fnYy(LWvi`D;RW!;M9eEvmG>X_7~JL?>={i&%kuylMO8g zBJ}yoBDbLqCgtikgU?X>%QoSSwD71IFIErcujikG`P3McT@TB31m5o~ljxMmC?^SD zpxJ46o@dTvzmp1-FEec;z)?&W8+#@VvaG{_3K^hAvqM}d4cB6 zi<3VtHz#L4Rn-5p5^po2Dg1w>ct+FD>|{227(lrfwQcaAdy8*r4r?kq_-c3Ma7j^uA&3s3N%Hg3N*)7Ca&eOmz zLi*Mpk1J&RdzUS~ZnQ>=xba%6yiX+Qi&5;ZqBfzwzJ7T1@c+>E)^SmGYu~q&2nYyB zmq?cg(ybr@Qqm0~DcvKD2ue#ygQWBzh|~asNSBCo4GmI5H@s`y@$P+Z_r0&@+1K-z zAB35+*16WPj^q3L9Sdi{m*)L3B(aPdUdPCU?|{R6_~K)Wb?wU&D`sWXfXl;!+?!00 zBkS2@>qoKOy!bJ(+%0}0Y-RlDX{&O_PSXmsbZ>Qhqu@;&h zC-zDd?RSjvxfhm6F#bve-y%4o z`IGG>3^-W!bv5X01>&z<@p$`i-@aq|i#creP4O|tGys*8Tp7CGL67%vf#g!GW{hyTnY8O!^c3=Cc9bvPcWo+*4 z^fMvkOot8Lr8ETd#}j)i~6PXcltn{hIe|_T$j2CPO;AfKf7Q+?z-yL^&{2una<4r#sZ~FM-2$IHS)HLXu zg(2QjN&thIU|GApc^!-nTOG`cSJ^O$Va@EYddG$471LR&Ut4gKopS$ey1-ic_p13~ z^%^yYTDR2-yU9g;YmaZyqKO3h`PggyYJI z@7`{<(0VXurArX1Zmt>GW@j2GG~=W3RvwdvoJ;o`6J`vPtV}Rl5&M(#H;aDS-aDPF zz5YSPlh#C7up2joRN`^_)5S*257eTg+-upQK?z6~8&|%HDuB#=Q+uou8mRj?j5cZh zIj}FF)G~LBahJ`fxQlO%jmYY`V*B_>87&v`_OsAx0l=5|?Zw|n14wTLnw@zos_pd>n@fJC`;({o$Q1EQ$y!HNP+PCZVAwo-a7V$50xMu#7T%o5%qQ3RR{8tX^#z&noU=iL)yYT z?HPqxBC&wV0<7tA35=wMbD5t@CnH<;K2(`RZ&4m>%{anICpCc(WQ9IU(S0EMVTI3e zu7cS>7_m=EL}?N) z_{^6DelwK>%i#MNh`drG3rduWeF8@~g4@P>YZPOj-5UnRUUN5Y7I;3Axk`+t3DnZS z?o|WM88B_4P)TadCUdn$51$ziQvZ^Rmx`}uv>fMtq;0CGdyyv8c*@)@rb;$QJLwS{ z-1boP%A0^GU|oZ@2&oN>5Tb&G-048HW5KQ%#NTGDw-taDewp9~b}m;Pu6#`3&!HD= z{4&9Lg(s?Yd}DOH^zCfx^#CGn!f3o zf{e41a#Omf_hF{;aJ5i!?^aMP-z%t@{!U&PhqKfA54qS^jowa2Kic`|Jf$v z@m}SYc^CgBHIE3%c5`GlK7`lXPQU7TJKE|>rOl9|FLn1y=0zP~9dkoT6r++ZGjzNk zs53vlP21j=NQ)h<@cnD3dCRw@t9GSacl!o&JYICZV@QWxgo@oDNh5jk=#ePWf%3u+ zPC2a>Ae7HqkllK<-t?N?q#^>J`FYTKkPuPFQg%EgUg`D>5NgzoWsxryb%@^P4BxLC z{f3)*i(w7N>4Bmo@IW0%)qdKNpOmWI+JnrVAyE~7+J-JKiG*V;MPBWSi3!GHYaaq` zY97RLHUb`x+oUM2sF=TvdHBhLNp6W~B(%cNjxU%t$JzIaMG3FmhQvt@7lqy<$xY8@m=!E+M`E5$Lx28LZq>Zi!}$R)*F?hJ4_-4w))56001(LTO~D zkJV8{HSI7()#TbU6Rw^$8wd}Wt>yyv_;lH1*`VZL!PwX}PGG4sV} zNtJ}xdW6qpULB33kGdrFUJ%Y2`f+9I)|SIGtp99l!Z9JSb-BwkgeY2*cpspaa=q`gCJ5!vU4rw}2Vm;?_(0sa zFnBc~`$8hKqGQXx%|v1M>#)E=lxAn%xzMgTy<*C)dE#bOmqOw;-a=~TzGkj9*7Umj zm$+H{r4t!;n*;K@1!T(cY%vk^QW?y>vq!JJK^h_7oIF*BAt)43i)5)1S!l6pAz>#j z@zgn*6yM&EtyqQn+=H!PkG4`hF_#BP1hb0#0MnA-DnWSI#`rlJ4_{4y0i1T}TE`a$ zo5oDUeX`;4A2_COrc$?Ov~liCm){D1vGR?f@`B>ZHHq@j;b^G~YXnidG~P@<@odva zZV@=)NI-<}$!m0&ieY<-fbBvHp%j1K&?xBy@KWNdh2*?4n!8ea#2mEsjcds&6u|B+ zc;;2xp&aJMPp%rlAkG-)WXQQBU=v6gS^k1@`0xQCWPJkZ*&an(KTGm3u&quI(F(Io zWM_-)B2Tz(qn_fp?2&YL2F^2{OIXxBox_@U+);r2E{U53Id=-{_G;WX98Elph?}{& z@e{%cXx!>Znt`LM=~jIwM&s@&H>`z=L{%7(58mr9;wrR+wKB`p#aB3wFs$->Wdxdh z!r6GAhkP`(lM*F3+x7SMtRXX6n4lfUU(2sgXt~o~gru0~W|gr2_??$`X$*BgWNB zHmfr9k0CSoJ@*-rDKpU(Sc|30VG1Fi*ezN%TfRH5i(@od2k4Zv*l)KU`dRE@!zi$A zJu*8oAAiqNV)2g7h;_!(=_Ggc8!-z`esmX3-WO_%X>2G(EGW;CMNEdj=F&`R%IXhh zvme)S7`b9(WAQs#Z3j8lEnekPQBh!q$~)+j_Pv>}EeOECMUYd?kjOA!;p@%fkAzcq zxla=KI#?hYX!oLD;Ohq-di)T5Yx^A+7T9y{AszzCer3ERTt#>-8d= zZAx7*`WQl6`-y|M4g;*R(La+)v(Qr;W&QB#&yaXI1(UJ)<+bvG5L9&s1b#fhfn{+l zt4N_k#p*&tIkt5E@h8;YG`R1Gi3mmj-IG=AZ~(7Q5(|8Dj+tve(f7x9R9EBkDgHch zJU+LJXAy7Ygbd?b1u{Zo3@bo0~&%8@#8;K==>Kqhu@zf2t9>b;%Co+bILzC zzx@6t{K0~|exQ&6D7bqk%?^>iMOlit5!Swh{*47dJ-yriwu<;a95epySznz6q}8bm zlVCJ39Fv<1-c2bC@IZYv%^V6z_?LqHAFPxA>6OHZa!=h?Ypr)e$PGp$8~OVGMQQ#IUfUlWApmu#M?Lz#y0`q@QtH2&SipT%022$w z-$hVGm3_wz^%A~6XGJ~g+C1|xwpKn;kR?2xkYF{wT;w%TXUUs$e zhbtK6A98SS1+|_g;zXe$T?I=v+cIGO9TY)3*e4;!7CVi){6b%RVdBGKSFL1^E0Kj}Yi#5DfbMHK~Fx;F9va%;^;(^(dL>H&bF zfyyAt6Zm}m=Ig7NGw0KBfHvW|tuz2Fa%>=irQ-qs<>d?*O$H8&RsdrZE&h-Ws+oWJ z=8+f58xit|s()C!(V?{aX@E0I2v_<%?O(qc9m;)7v!#S^H&i#k zAcoj?E<-@^e;(Ytx4@mDid1@C3GkYg0E9{(8tk*iG#2|QG6SvwmhU0Q^xLZ?hNMSx zM4_}J9pF=c>}D2_K~jTl@VBfmjSbMgqFQnY7Xv0*Phtavu)n(?cVi7PMq*^>Y51=&89Y!?F>jKm+q0bt^3029wCD7RzX5CfKQh!TLn zTJ3+jNA*v^(BGchKi^&Ogmc0efv4h)3ScA$gd;E@9Qn(z_{Zn=Pj~k@)^r-Mb=foz z8PPr~zX#Yo0$?=;v?A0ft;n0@2Ri6byzFs`Sh%f>IC&j0;ERXa-U9jRT8T3Zrux_P!26cF8zPOyh+{<7hAA4bOE zR1X-|p?RkNnj`HU5(g9|?fKs*%KzR(4m(f?f}jO{DnNJkh=5L<4H!h0U#AgP3nSzH zIWh{$j~$@0XAb-|mX?EYNn=5a3KLJCbWwM6VAnFT&tuXE>&cLqs4@kDm66;g2z&wvt4bOhz+__oS|-Z% zzr5gkv15+vK4RXJw0%|P`EUt)w8TMDJg5NzuLc%SDvAZA({9ji0%c#h1i7*WK5M?v z5i@We$D+&uepl`2#Kj26=eTzm8ff0&?bujdHg`ma#yuaW4@WWjtdGDujZ$O)WtD)N z3-B03{pv9{^7FMps_90+k>9G8kGaif{p}Xx1?a=U1lmdfbq9$JxDl`r!$zO60Im~^ zG;YLyFT%**R9*md!3cZ!`p?Uco@5AZ%_(Ysn;N&*0k>jre`mh-=2iTyf`D8_yraN? z_unILO{t^bHd0hzXJAMVb6VYuy|^4{oR&;})Za}!-EJ}md z3gfl`5PAIi6|j}!5z(Bre~TpZ+FKz~Tm?Nzvb+yBXMacm^glTSW;4hFOnkUjc0tn= zGhpm83Tn&-?LgoW3Jgk<*n9a}^~Qny^L2S(l}QP7-a-IOc!`NaYzjz=H$;pf6G<_v z(ul~2=i(u_!tcQ>h880s4h}ApMS~Is0B3Gh8N|LC+v_@@vLhaE8N30JxY?EE&`1Eo z=GKJd;KG2bO*@d&d~}!+1)^Nm2d_aZmoP593Ix!D-v}%}u}_M|_nDx#V_AT@lHq`$P)2MDT8oF zQ4jIz6GqBdIJLs8ooEEyHm*G8`eQ_7u9F}wSf3O|0pt!G9Thrs5xrIx&gcX+Davp1?=%yW}pOya}i zL;}#Yfs^HYaKv9&>wj`B1!j>6F*Nw3NR$@Ri}>$mk>=nz|C3(8 zw>IaVEhPFn6Y^)5d{hYT(J%i|oL?%y-}{d;icoPN=E2$TGyUFw^j82Hv0z;g5RLNP zjQd}FH~C_7vd|@e`IDmm)}Iu}2`fEZEb+HYFu+RmAOHNd#L zJ&X}@G|sHQC?{6}=Zw0$|LPSAHsd@rDc>hE!FCDUhD?oHd~kz0Hyez0nb!oqn|mM~ zRkcgjYM|%Z!s9_h)97?{-rpp=QV9C6z(05$n*HFjxP0=htX0>Yanhc#N-Qx|dP33s zN5Lr_=`6kl6r2QGtw%E>1xPJUuUmENM8_q)F0I3d5ja7(QtuD_IAQ?Jx_goQb# z=-}^>O;q*>Oos zCBPPGC^E>X)%DeS!hvtNWMX-BmgCgMj}Qu-h8lZ8tLqF4O|q_}XmW0Asc z_-T<^6BnAEQ~H6`2i~m%1%5WU@)mWr5InY`I!a)HdmprE^^6~Tt3`N6)6H!LopLmiQUz8k4x~{`W^**A ze4-JHPHTSTNd92)wg}Sl)VaoIUPX8c6H+h8_PS!D9n1G%0mo^zZ9@&7dfVB@jiQ== z^!4j#r}+aZ4j%|zK(*{PO-G^-$pO81@Y5h_5S{h_e>)Q!jOngc*V$Cn;@P$B?(($` z8~!pwiiEJGuLkz*H87LbFiKiiFM%(M)YZIR7jkL!E+jm;N_Lx|YGHC$PlLme>}E#{ z+G$iq>nOn%5ro?(kt5z4-`D%ceW>4Vxz!BL52yz5;!IaikpT8w*O0;N?Q^KRg{GgF zl-FKz(6bA2HJG)B+mVUDk4p$90WATd*BVr8^M@4M-j6-(<$yX&7XiI8s} z$N-bhu||sZH{$*W{(|&mkF?UPRWmwN>G~&tRTY3~2x&xIFu}s#k;p?21hcP>w&$OL zFopued&gj%GcVAqWC7Auo0p(}7CI1_w*4F`CX(=S(=5>ikza)L&mV=o%V64U2La0V z>W9p1u(SyKoe9%P`9%Oka27CWLd!LtTXeW&TyH>On+(-ZZsPtU!6gtUZjV`IK0Q6y zctgfbRbkm11~9K=S5+`6`>!RUqd?p`t>adkU>Exe8%U_pj#90 zTl@hvky>#L6$8x886YWjKbm0~LuRpZj6k@klv%6;rQ+5uGYmDTc3=Ri+m-KmcvM0T zc9MxTfZr9$49@`3;n(t~EpNeEP+cdF?FbplSEiny0O1@kaL1VcVAui<8{rACo>s8n zQ~pc=)wM_<@O=h?Jo!{X?yCeeZ$JSuS+Xp^bEeT(ZW;J9_Acli?<_`M0*5i_9J$E5 zpd6?+;th=9a+(LD;xKag(pXjLz5*K=2rHpZijbp28EbiMcf*Ip&;{sGHE_?~Mas3I z)-25;%}z%D+&DQz`q4D2u8%1;+1AX{vKAg~JD&9m(f+Rem`8+B4SU)L_wGfZA%sh2WOK`-=qax|TAJFBsjizpp0>pcj`|~* zPA&{yB+TR%`<>uQozv4V`S#PoXMhi^*qXAq? zJpwgpZ;PbHr@=kD$)7VmtxZ((n062`I*Gj9)fnmPe`X~|bhZ9mN zc(!ywK&)XRJoYOI8(B@<>uUhqeF%WFZA3GM>jh}(Lg~AR65O`Y`=13$cpuc1M&Ly} z8sbDVcwx;zD0Ojh>WES5VxJucsR!|~&)&eJBS17h0d}PCZNUpu+ZiJ?4QW|WYVtcT z_uMiDCZ6|bkho5YFq9eNLXx3B0GX98K-k>2khG9;G*oG&>KX;C@Kqu;>SJ$*D-{t^9KHa)5fN~os|1^ zR}aV5^GAdd3Ejhf0PxU`SP>S^W7H=|jZT;dqUXQvV2l-dHkaM`wsv;!24Z6-x1um! zHku9}z`-qW`jJ`aV6!nU@*PhS{vo~Om;H%L)7`-NBg+FX!+Q4-ZQs(XtVn&Wp6Ls! z5B#Sm=ZYjq#VU`>J)UpRk&|i~QP@>QmUQI;)WWQWFI9dTPE2}kPWuPAU{xk_AY<`Q zc|8VL#QkU*RlpwMOpNZH<#oG>Z{!PL&x-$<6QDE7@}AZ7_E0sPqu>f0a3?QOeE<+7!ld6Md`~_FlG&)! z78};`-7%~Q5O$u!4E8-LXZKiegvDHQJEuHa(6wg(QN zLZbA5LjD@V;*`LoK&-)>$gwh*A_R+lz6ct|y}kPsUZ+I43*HF)GsRXt{U{od>#}~^ zt>pJdxU@9UHsRX9lVPDhlV1H8-(WVuHXfS;Ju7enxOB3-UNA(jDjP<6c})T%MWr)1 z%XGu>QtH(XiB8mvC|(jnNdV?r*VBfuf*?UeZw4RtiMAI#eSb!Pt!L1Op3gk{g60_= zZ%q;(LP{y)n1tHfqKHT?#eD*@n(nkm4PM+o@3!cT46k-Xbfr&NhPj=Cj2iUuGOx7} z{BW_!0Sr2=SjvvkXfzM;WS1X41&*-uM$SEmDsl7eYou~QfR4P_YN3j&dI`s z`O%@!87M!RV^J;+^7N=*ZMVB~^w;lE?^Mr9Si{HZaY^4<296mlQ2{^K$10WA;Vh(fX!Zj#aGd~! z_bP5>#toujny z=E1mezJM005xCt1%@{~zxNR^ z-?MsDY36t}J$vhC>x$M#?c4w%%e@tOA}NM5v)20`m3VUOhIPKVAH&|`I*zWr#V;{W zaqT|VaJpD>7vmYs8STeFhBT;+y;?}Tuly0Ri*`ME-izZ!h^7K^;@i7|2`d)C4MIQZ z*%)g<58z9~=D_s8_KNW|^kwAW=f|$*0iOHiWN%2sSf;H7_zJR5ofB?btCzBc3DT0? zc??F2zcV8StU|K-RA(!hy{m$FXJNH_v|^D*6RJ%StmsDIx$}`R1-Pg@vYxu*Gtjmh zGd`%niL~@A_~M;JYTQr!nAj-4xNH1Lavi6Zq+TMY)DlRFsHfjN!m&gDgdPw$m?0CT zR+Oxc=Btlq*g~D0#Al&j^btK{Z3NnmYRtv&0CH+8thcB~7g8`&@;Ep)Kogs*>$wjk z9jC?bY3b(s;>jyi8PVN%Wv@<4?i5wf>1I->>mx8pT8XboIsX}FP zClqDn_eR$D4DY6TgIqn? zs2Kzw-hHZ7ZUd$iK8+Orl_&Is^pbMt#?4Kx=5a-xCd2m+M18jrPgmRE2s}v#hksF)mfc*|9?m(!oT|NXa;bB}J(CJ%Gn7A@X*S*^We6w}Z9F~IhUaP; zB~$L04IiK$>{==2I1Ie01j*qh9+>@&+waO^B4rSfB`yavAJBm82UlB~8rjuhK3FvM zsPBDyE<(9jFv2EiE3tkWWXB$9mVV`A+h3KhG?&xQQ4IdJo<7Gm96>r=;1_2xSmb-E z`hMnp!0q6%PtR8qkDeaLC8lZzOJw%k(C4pa)Gis1oXwHpv3fr6NqpM7nypJ~)1I#2 zxh*KuKO#q^_kIFb{?s^hH}zi94*3L*1T+``vXhH4loAs5lhrBXa8osjEe4qjtrfI% zhi$sN`r*pO<~bkA!9hxqUCtGq(O+YG)6KoMK&s=quzZ!4^s!AZDY7n{eb5k#%cAIW zKvoH5!fG8KvsM|m6Svz^-rrb&L5@KF(=w#YQum`#6f8&mEePl#oT(;{J-y3=%K@N`;Yr%@|-!m)_k>osre3sXe()m5L zy|2^2t{GI*Ht$n=I&B($-KreUZYXxP#xh1_6ZBg+MV=Wy{!v8LNOO75BXxwB^!}om z$dk>=k2P-RpI=zSOhT{rULR!;w%?J}mCU7Fg3bilbbn^h7&oW*mW`XwHDPJ2!PLv+ zz*YHKXIwQX<^5rN!YJ%gxNN2_{9f2_>D_om|RUX?7v z2l{Sj^!h+jvE;c_kl@8=uBdnH7`akQ1>;1xlWPoD<05cNGNt^d4cqIt8f}f)8Eq{w zOdd0>iDN}r#Bq=5oq+$oC#H)nsA~Lpj~_vL16cLs2TJR;a4p}k$NG|o^8+|O=ZlBS zp*NwN*flaF3QztrR)^cVFam+#Z3y;G9-%`=An&@be_L;mdxYKA2kVS^**u6#kDNSr4)RUaQj}_lC-P<|$=tV0t8f0_fS>JmmPp&cdsbzL zVmdU!RlFsC924IsB&#O!A!43e^VN~qyl!9nX9aUPw3(>eqMwIxY#p?3lQcVCL8@^) zsw)IpT-qY!0r0enweCMrKo8UzF0RnifDiFI*b?~^S8F5oxyjMXw4Vi!ko#VPEm=`Q zG9S(GV{GjfRM*>n7tR}-O3GaBuR`D2Ejb=6L-jn^ADXOoo5D1H>=OJ_2~m|#8#t0; z>;cT!#tX~#M=_1pQpR3j29Bt>m$tJY^+$U8fO5#A$W{V0lIdMl3qHKX2^)@EYLa{~ zT-`OUrK6m`-qofw?a+^o?9v~8lcH3ausU%05R@V`(&4tsJYwD?kPXcdFFSOod+)mV zOStWay5VOekWyPq6pAM{R7IBx@5Y7hmmEh&-xy8syi)(Xf=oxSbElPsTI}Hu^HRsr zL#oqkx&AK#B#`|Y+27X@WVnIZOb^v`Py+xuewTa?j`+pup}b-K!ubJ51`DP~GFU#p zdVXR4wmB54=a&lz3)fUi{j%U4!>`IT({-)jy42u*;d z>$TK3kprwy&V^qS-j3?Jrttf&YrpU)O4PCGe;pg`x5owmml0~9{E4*@u%uVZkWTxS zAb%?UD!2S6*koXbu9JpQ8HKRs6l&_J4P?rZf69A)fA_Gv6OCW&Ihq^cN2MyVv}m zS_YyVKKD^2xjyK>nHB!&&;M9S4h7F`sRestbHeI~QANSVUq!*Izby*hM_2^^ftUOT zx}zhAo;Q!e{=88KG!y8)X@$s(ZRS63o&j$#7MN!oqGf|UK`TrOe(M{c9{Cz*%JEU9 z5zqsNk>8^)P2>n9N@lmVqQQpP3?6`1pjoJ{b_qoH??GK6>F!f>U?mtbV&YHxtSy4q zcjNg$Mu*-Q7?Nth8dN8m`L`9#8<0{hi2vF4BTy)~0-P`(#@v2**KI}Z+BZ5$9|~Zh zh-I?~0eS9$ys`#~Z&3}lC?g{SL1c?f8P18SV- z$76xHqk*}F8pjQHP=bCk^38zg8f;qqyO{Htl}B^&@q{-kMUJdqV1wAzpu=Le?v*M~ zCx$AlCP;&SI##M~0hSO7O4HSzAFsmDYXK4Tr6Yzh5<8k+N)Fgneyel0^#Q5DS)XG> z5TVoQfjzM8=e=48EUKUYr0HGEnqlB?uf56ZPW6{oPMdP>ij%gHk8Z)=15)EtCX%ht;kg zlqJv3&hC0{8UnSQ#L7IXr&M7_I2kvtrxGYN4FEZm&%v10{mjn2Mc{&J1{xU&d+o7R zn0LMe+gz$^1a^Rk;q#{lomM>~2uOnAw&5k$75}9HuM})RRt)6)iOcj5PFaR3sTDZoC9oP)e?9M1ITY8;+1*ctmNHLZ|?eL9*~&LtE5RP zERsd?;hUV6EDs$I>BDI#jLrI{O!BGLVBnL8FD(su@Xl@8Cl+7S9D|>wv2m1tQgB-2 z4axzSntCbu(Rt3u^)P*p0@ zX|M=n`AmVc>-{!z9%GspI}12fHVJmR%+xvx_0IDlW82B8+N&pJP9SI?0%J9*V|_pY z5GkDtx~$p|+PLu?5+aC1Z0AQ6K#=AhtjJ;-N1MBp#OWh8z?5}}XA9@FeQps~1gegd z$b=E%-V6z9RIXf%vzs&AJRJ(Nlus!cNWd>Zm6m`X#IxZNy%pg7UNb`6xy)el_>)yX zUE{lskB(@nvRF6SK`ij>DvICZBmV#6s=s!kMTZI?NDmhhWPuIE7mzaVQRxCcFG2|> zHo%8PE?+5G$z8C#)7uMG(>yvoWwaeGp%8Yu#i3PnbFUVbA}`oQCFKVj+o%Q2tlmbJ zR#@~n_%6(FComeHyY5c|3uk3<1%nT?UA*K+F3iVkHAZHrR_gl97N ze7~DZHhJI(PJ)CKcHoF>X&TBR{DDP(|9!;1At$RBz*p7Ac3n}+TZR>$H$Xi9PY(MN zYub^v_F_itygz2wS`6m{s`Kl77WyU1u`>=AHLZ5Y|0PuY`%^-N!~Z52`yb;LEGT9e z>4iv#P5FO=?EGKE5PXc?gJ)~>2FNpIFlVy3z!l4TEL80|Cu{b zD7LVrC4(7j9bLG7ZaixP&?Q7tem+OX$F=y5dC&<{GBNRDsatpp{y33T@p5Hpt1%oF zW}obZC~b!~Dk1xIb+%a3A$hx5dcn8llZ7P-GGGB^QfDuXF07`)bV}7!BA)Bxb9!8a zs><=)J%85rCW>I_@m%ku-dkP^vq_jYVH2%*)Wz=b{Mo*N!!yyb`}dH;eFirjEqd{r zKz{4!3uVNmFL&QGj4Vr>w4x~tcWmdD#miUu{hhWtcdh!#*2R6rSCZ&RpWpUO*~>C3 z5r&Zicy2y-ohV~X@9Ok2=M5IEPuMqjSpo8OLO73P%U%R#fKSdgvK!F}KI zJ^89%9u6|2!I`wuAO1Cz3O(`+BWOdTYDI zqF(}SUcHJN=qh^j6n_4*Pbw?ma4Ng@EyD}qU1(y&Ih_hbm z0-g61e9Vsn$y`6oHZzVK7SoXy&yO@+elMDA_ZiwF9+OYPid&vKc(9h&UYBM@vW63F=j(EhuFfG9 zvL!%_7uvGCu$qw#2Mukv0Tpd}cC;=0VuwlngGwYIqGv(X;_GyS_rPa+1G{P1m?kR- zl|mV0LT=rEiOFIHiqTFR;{x$)Ptb#~2}7=!fh_|s*cN>S;Wdb~+JGQHCSBs&1wOUl zd*JRq+UP5$o+}>+-0o4kq=Ncc@cJ-Q(%0$i$oY+=OC;FFh@i+i z5b|f4HorUq{cN|#ZJ}7{4j{B$8LRv-ptQ%XSHVQab*;cW_?2tz1@OT)1q`0B|Alxg zt7;Sg%$@?<(bMz>w&w~&y3D$oO!~` zm7`_1=U$zlQ69V>;md3O&O@Co|6xGbbuqsRZG6;#6RF~}MZzUnjuC#ibysH#ykm{0 z?{VZDbb})={Jly#;>UZD=Lh(@zUECLaseZkT@RI}4~pA))7Fo;Ft%KOHR}l%8)qtSH@0g(1IoBb1?a--r32B4+I&+A`79}4r^z7HIjYeIc%QX>1=w0|7N~V! zq8Iy~9z2Yo;C%~F!FWy`g6+9hnUON17-46#2x_4|YvgjK|7}2L9s%MKiSp@tjfsAS zet}{c(7bFI0zvzU+M}cSXkOc4F4#^Nr?BTHjmOqBZLVrZBl?6(1Nyh@Rj>gWDAMBG zJp`;5R-_)CAgZ_J5fhwq+!ruqSI0{MwnAF9zENzi=vqQCu)SPxU@hs9mAphg8p2=p z>Z_mg_IAPX9V{E2QcRb8)lilka_N&gjA>#Kldlo|l5kG@*K@;CqD7%DPpJZh++WI4 z7*+C)^JJi17AL;k+dAecQQ5hoy%;F_k-Re7J=EpMr;||FU83eoDuV)_tPHX`wVa=VJ}F)wD1)S5d5AHJM?Ds7ImD2qGJBQ8sH;02U0BgU)bQB2<9uCPHf7i zk2zw{-JU+>x!aib_ykY*s$k)fV(UHtvEG1|b7(?=$|5so$GZc7LzMz$+^1_QS9wVe|tL*QKxTxDC{R;V1?Sy$*Og3f9TTIpf6RA=^Qhnw2x)C&ee~ zv2J~<4zfK5SwDssIQ)vHShHiX?r>wmstEDapra8GihM)kAn|~ul|@J+Y%2W% z7@@Ig7QCh0eSbgbx-ho3n}uQ1#Yu6kHfJQ<_93_T>2r+fAE6|sr$VJjm8Pwa^DD{k z!?)Bc`NJ%`1D>BZ60*u?C7Qqs^0(eU==4(TJ&> zV(;@L3JBeqZVcq~bVz0YzK;isYPyr&{@z_mPqQy$6X?p^BJDKoQEOh1{#^RSV9O*_ z@!Y!!_wsUR$!{o^ieoQ@*s19@QcjT8kS>u?OW$X=54%9hSG+8w#>Ab&pc7PE%Z|r3 zjK+JGUg&VZ0(;LI?3fo+FSF51l7CKKCT5oJ?%`DPrmskYjOIwF_`FC)c7Svo zdfI8q z64sA{^)V9MBlDsykX5=R&3c2w9&{KfP|JFW)`bF!1Kdo*uOk%`^zxZrN5t{lsB1{r zkCtZzwu7ca2x!wwPF=9>@s)FvPQTp%RJCQwZUD6Cr2lU$02)S*o8v00^hQxIO|iH% z1oZJ{7~vd@v+(*X-JqG$@{>8ix)6qk46)-|0#=?`zzf&1$91Wv`Qp5J&|`rj`GBjj z?s<0L8O|8y5*`_z-+N?Fa%hO_=DxlhYY28|Tz4unoX_;|^F{$lCT*x!I=%}09Bwu*6X>NA!@pW1H zVi_g&;}s!8dT)=x74t=^)1K1pSJ%RnM}CpogaI!H*+P8-Hwk*5@7Ga)$F zCgu5rUxN%5CnhDzolL8V6*WF2yJ1}g7yFVd0JGI6f#kfqFD}}Jdo4+kRDc7{xn^K7 zWosJeUQzF{ft%v81|FNWMM`;q`RF?^b-$0yZUm{Dy{#Gg9Y?+mp@kI9`T(7>hi&wu znATWy7$0uDrh&qnN~GSo*YJ^!lOPi2vEKO~FOth+>6mKK33kX}79NGb?x+R|ttVk2 z7NeDLJclr2ElylJfaA1Kk3or5ueo_#Dx6wxF~ctn%m}r7xnIJ{BDawP^Y7t&zS=2v zNles6v`rM{_ddWklPtGxJqu$xGDQ;Bc%0IE-?@$Z1oYjVO!|1MKIZCYU0yTO6|wys z{ydSp+SM)sPMb^a5#grfOTxU*%$8o4ezP4yUl-k-(NPA8C3#C~f}yK0?GOCRiadwK zazr!GI+g2nCZRrtEo+jYbFH}kO;kq3_j5n+3-K6JJv8ol$@8v{m)aQXGd~W=Gqa60 zYY|T>6+?X8ScX#1JkQ=XpB%xnL$PjD^P0^j-u0)&=$B`^(Rx7~rle!+y_*3-KuT#z z!ZoJJUhWIJdRexx1U9}&DVa)O?*oRNf*QrUi`}n5>!+*ko}`C1W>_jV1Zj<2z5ut1 z0BVL;Dc@4KUKRQ@Pnp)8hL4}AMhazdDYomH@=~bdfenU-IsN-{dIn_!VUAcIM zJm*kTMt5A;;aJbta%oDLZO+$1ujeDl+x=cUYy6Z+Ofb4gi@tYRskP9y8Ojms-T-JC zcn3b(#bu&0C-R+p!I%0J(&p=0&ASPu{J5tguNa(MVYRimtV@ zh2C0`rO^S5Y|x-~`Ama>KmcJs3|D-pnSYO*TmOe$2@|hHWVwVvd!Z=QKWWkB7hw^|02?SK*P(R4}1^ONfJM2iGy^)bcH6AQNszu;pAb|`a^`d#cU9|^QXhiP6Ym#F7H%T+F?hDyg# z_FnZd+7XzjihG@sC@k!9pm!rQYfS{oUiA&iOhR!Nq?5}?zyOKloSm#P057Cr z$*l4mIr(ZV^MjvEICo2xxj)e~QGnIr6T*i5OKI30P)sboN;AtZL) z`$RwcgR;%L$hh1uoC!*WTvr?4$#cY46n}*0pBcR4((57Uui#AxD2J8FpI|!NWKNan zENemUR#%Q>bC8w827e8{6UrPLS%^8^bh;^a&qDMzBEg@0G~r`ks!)GG(>g!*4X!$@ z#_#fi!(a!Lh;|4v<;ned{<;X#QuCC9<{)hRBQQl5TUI|uTPpWm+{yr{d&S_x7Z}qo zu_{b=UcH;WV>>Wse^lfRU$W`fAG`+3e%iu!JOF#}G*{{73{0$gt;FQ|nPTes3)-|g zAKDF;`e`2~E@TRa!X??A(ie{3l+G@e6$C!pU>Ot1PdA)uf1b2tOq5yfH$8h-g|;<% zUL9FDMqwLG17Dv)gGN2qJL86>2x7#x?Y5+!9xAtbG&f3JUsrs*nRvziv37u+9Vx3e z7e<|d3QhB*#KaMuF^~DeU$#sj#PzW@zL+^3Vy`tRC1^CMg3>xQrObJ`3hCHFW;owX zNV|;+ns>_i)H5OM38_GnUs8KXF14GauCV8uI@o=g%`1_%PD@_Mb43pq>%Z1n>zuRf=Xvh?y078B@9TH{E+~T5O7Az~ z!N1Z0$c+qwu*ojv=uM|XOVRBveV){Z-tms8=H;8uyS5~!XQza1NKk5+QIBb)Q>nDt zdb^!Ee313>F7$U}sMA^v%qrRIyLcc`xDvV^Yw+DPo3Och2C< z^W{*<`;2>5j`#}?vz^npt4x0U>=i!0zNEd3b`X-$W?=>5nZ$hD6)DMo(x3JevY1Gok%PnK^81$!rzDuve!37(2-}knV}4pdIxU=bf?#MZEL*59 zZaOiar&sJG>}TI>!d1{WsCPIadg~OUB>FC#|I@CgTz&?~#=^ zxxW+0rQDw0PswYn-GzFvN%@?lFGJ;dD;Dw+I6feSM z7o}>Vcp#iVJuDUhX?Y#e<6mlg=wYjSzDXg_y)J+_bAvuw4)^$xr(_ISUp5%8+#S9k zz{pXxPrxxOfw&ABd)ld=O{jvpSp*$Vh`Cy4Kc7#H9$|zo4|gr!V=1t}#c>(#t?n#O z_b{&laN%Z70bwE3_Tig*;1HV%H*^)~A7ykxA3pWZ4#gkE$v zG5hWktU_Y1Wa>G}KQ~dlE6%ttJJ7!=f)6@aM94gGfZLUKaN~0aZq=@{Kv`QL+_=4f zg}x)O5G}_FS3|k!82|~idz!?NNI^4@5}WQuhxQ1_(Z!4b;}GsS zBr+#U+}zIqk6_^Q?dQNgG(6t{>=IcK#mUEks%LPh{~&gr%4x+JI@GkJkU5SP_a3?r z*91?XY?i|MEv<>SKf!(y$sXpo4oSbAElz?3IP71~HxdJK`$Mqdm3yUEcv{jL?tfV9 zJk^pUZMg3I4?b>kV3?SO8!J@01}x@k!U~ymP^l}`r5O)9wueyp^NegB3TK9H$t}bE zWr|WX_Zr+W@oHy)_V{+9MYwT=FwyXgqH0L>x;^Ae1ok6E{y_;?-Ppb^Qe;3y)xgJu z{OKYeKFl4gzEh>THb@lm_)u+|VAIlNu~9htYO6#gH@%3bfT#PV-_E-A{_6SoYwn=^ zXU9tAbO50J$Y55P_!QEb@kQS))vJFFaD)KigQE@}FTDbwh$cWv+(RkDo)-+`ru z)3A&ez%M~ik}P|p9Gd-BI8TQ42a5S_tzCL}dSUD_P=k16Vczl@lw`l$$~Pz_L!c(> z$K4Fds(4w!XdWbM`tK?bz;z)THl!O-DtKDc>h|kNr_YfyTHTeGJpJE-E@dNv@l}1Noz@xYYUyx1){;S+3 zPe5G!LDh%QG9r)!NKH~hYSI8RGSAC`AILlVP19civf&7M#wj4rxb%th{@BT3&Ii^F zDbKs??`5kWRKz_FK#QDG`t`?8WZp!>oX@7~Qh;^jiWx08-UMiiwgt4@eN>Sz>W%h{ z6Z2p!fO-DoWb6(5219V z!~kV`_*Q*|NyGdR?4M}Qe~q%*92%p8590M8dj5n1rNrWa^f^jHaRUF|NTV{~og3gU z%s7tswfq;a2Qinl0U=52LrBt4K6zIrDHM2Y`+=9uuC`I9<07s!HD=ofXk1Oqd90bi zq}z6C0Q77OcDSTJS}N0mCV`ns0-AZ|wT|2B7==O=br}t$lT`$&yZ|h&(`Vp4jCnO> z=?;Z-Lu7^_YRHwNL1Td^2&xQ>w^SRYT(`cz>$gDy*HVk6m-R5l{twq&tb@xF>w&wi zrIS#urY4kx$hZ@P>zN-tBn8jk3e0;4)zaN<^U(NyZw#wEcAou132*Gm>py=*E^9su z1yuv-SpkrqVe%FY$U2xJe)IbO2nb8QmQ`<`x zJ(pqLn;s$Nx8<4GZvB^_1pI&;bZVeNcPGJpO7*tRCv6ef{F+GKAHwY1j25n*omat? z8k*YuAcZr99bLmPvYa`voH`zS#IT&oPW{7iZ|r`X6)dN*nKB0~XJp$-2P|jx0$|uB zvZVccSJ=LhB5H)-=qC;Ohn~tX@2w#q!2b9UJpbE_p^V0k&%7@I7Q_(Ic5X}t4hH)# zdbTI$1>G`b`zb(NAtTb~!Pg+jTM-^?+2o16sS*Q*i{@?7YaYLg1H1+A@Q}z2=>GzR z2gPq_8em<1-;D|IU}-dihLGjdgrO!*8-%=Piuf1N@96^c&CM$)T?4^@EiRsi^hfpdV} z?bwKTW9J?wC=HL(P=WA|woT-Nppe-eNAr{RG7nWDR+0r)0%asL2{O#T z={Y=%C>-eBFFi-r8OmkyWr6&`SDwUq+rheeO>|wKJmsUX|yL2G^U*x_w#0A~G0sHr+-Vkx` zCBri9;Gi;v&J{@FvQ9Mor(Xpg%=mM&h}t~{yLO=JHM_ZUx8yg${QA!1cIz*}>>Wp7 ztB?d+g{fEgf#;@&kcZj9Qoy82&w-_IW5#hrsJ6&{&tE2g03I%~C}Z4nt!;ICMYpOa z84+LN1K*tM{%mUj-^_uwBBa>g!~~Cl|Cjp*45+V4ld@?17L5lM$Lw(S{R=;7OEWsNg2;tYN6y zC}bKj?8VDaRRfOuNXKThWsAKOEL$!%<{sGBhK%^RjP*?lkjm4b1J^+nl0lC)OG;11 zfgW*NIr$^A%*{WT!)Uyeb7;$W6Bh*?IqeeM9WL|zSMscba^ zFhX$Lr=G9!{3c~kg~O+E@TyR(<g^BUc`&yeG* zn8Rf3_tyNyCIpp9)DS}}*hmU3@`_==$4BSYVr7K0Z<^iC&oYLb5xXl^-lWSDwLdLhtKpHc-{{kiAIP10?^qXoXL(n zuf&NYbu*Og+zz%=lMfywaHFv=e)(s z_#PWMV)E#5!jS{Zt4ksG)C_g5^b5Uy!fSK+l(_fF?E`#oclPI-i_gj8*5RpYNQf;JE{Sq_^7{+|ccr-{r-Mkz5I%~W&j`5|&8M#5X zr-fES(&bGy^Dn5;GqF5(t+XF8TYe?Ffc`33sbc(a$S>KI%Q8qA zl{W)kD7cJ4r^}tB#^q_}(tK?S4~JBgr}r&FOp}IGsd-O;7~bKV(svXkEB_5fn$-5hH7*BNBq?g7Mp2VXs}^(DV|Qi~05P>^$Z9s7N-_=x9nVu+NN z+KZiFcJ-aS-s`1}`;1xWH00~{TC+u2;PNQ$_KkGyzu>YjKn_U@U#h& zfVJYi;q8gh`gb$g8ZY-v_xkMbu{-=WFvQch;3m<(Auz)&KE{uP>j|crt77DUFik|R zbL4@u?yawZQ4j9`Guj0gNnDEBORWBNW_glX2~Qex39LM>6u*tz&Z#CY{prG|E_q;a z{Qdpy18SyyxJI}Ndi7G{JO@d6_9M(0zNQXVYy8K-!0WFSj$r$JpSNvB?{n-W8NXh( zUGd_Wln0?vFL&4P$gV!hDxG6=|>K5nf7LWom6l?XcGgu=ZN$zheov(WVu?grYQS3zUI zoBc%@>sve9n+U-b&@owODnZT8Kxip=s|bu16qB5V&a2O5{1}0oH2CfYuvcD z<9h!OSk>A_u!$OXq2WKV0PSn3SNE5#IQqBPx!?G?$j6W2^DMdfY%t}B@0SYNt3{de zr)w)x?uz1>{lC87jtBp3(H#2H;o5lV!ri-%JW6hUEU@kGT{Hbm;w@^aQlXHm>+b%s&NsQHL)#uOFw##d7cHa{69lU)uyEFWpbVJbN;In2woygOQ z%X5L%Y@}RpWy^!-bpQ^<5H*gueThdR(!)W?aZ%9%FxmwsoK5 zwo`Mrg~I(Tx{sCOjFR5>-OOY3=pKFZfk5z03<(5VN&oH|*6KcEo8wQQ{YtU!OuFO) z*MJD^)slN03%4=@(xsHlfwC6h5;wcjNjFyJ?6}w9mk={K&bUP**sKg7wge_oDvOfh_&Gss#$Vf%zLdsaT>5XaZ@dkYekHD7mI)m zw-4)aj;H`SsroyCv$Oda`Q0gWU+F210y;VzG!5s1YdXs$%9ax|J-NYf&t(b$q|svC z5vo|2d+gWU>0-U>pytXfiQi}Gy{O!QsaS+P?foJsk+_w^QWKM3sD824XtXZM|CI!w zD$B)&mAZ+rg=SZpk`ahiMW9~cjKbNo!Z`@s3xDT zmtqe4{7_sf>?>NvypYzc-Tbtb+##>hgtqyqPLXyPoncVrw?TVT7=0_7tLdJBwk+h_ zKiK1*-=>v%>FfX$U$pKEG8bP5^j{;kXbIXrQFZe;qs)=rQ}J(RJcjYUJ;yK;aKW7< zxU%v|BtyT3=|Gmtl{V9*LMJag<-@x7xzBdPZwXoCEAJ7D#XY2y@;pB)<91}fpOJMY zukzCaI4_Q}rizT(wCgK}nwQONpI4#}r_nkdaXsP{y}}E-UeMn3akKH0NWQ~)uH93d6EbrCQGT%B!Un) z&9;t3xb{GEoBQB3%%DUKO7z@0anT&YY6)GuGOzpq(D|YOu%(R&jx`U#A0+tYB1v|% zQcg*ik;8*=#X#L8Nd_?|wrnyf&!0D!?knQ71^_A>imLXcyL;GP;~ml}=Y5dA#vBkm z%lHEFWd9~h!o@<#(a1;T_OGb>GfB~!9IAKcexatIQz$)zer(qyZTj~=>?`FMMF_&Bx%=jV|7;>J!a-n0Q7+rIjg`|9-z@+46U7wRq+%+3@# zTr>Q#J}FJosUQCSKv(5r09eVhzu0TOSA-$VcKunL!(-* z%fw~S8YrGF0WejUpp&doCF>iW+6+spbger8zk39fY$r9wqt6hR0QNtD(BQ^X{n#SE z55ReS?NV#E9Bx^QYlU2cnHRqU_}(*I<@WuA{zFaSObBpP3=<9`oQHxWBK<_lIUWAyv95#~mtv+Jn*}ghsh06Y-XGJadChb6 z3R67@wQIaRy0y8h5q`LJ!ZzzvfA5E^1AQ~#6(VF<3;}qIcLGRTIXZGc$M0fe_;Grk zDg=e4YdTb8K0);g@0nU+?Q?oRR`Kau`Blt_{7X@%xGz-Sqm^zg+Xkv)6IF;P)0+sf+S5lncCaqf;AB6pOyt|F9%v*gg33Z<<7<%p8G&{~p%o!&)XTys3 z%%R#O<~mA)b{=asr7Qy!l z`3QI+8L5L)`Y0bgr}2$7Y~Bv|08+L8_5fK?NmUM16$V^I-#8NX%8V1enTrC-%6MZ<$n!gk z?bD~g+5^v&Tc1XI;%?RQr2&`wBDmm*7jq&t z?nHB3F1jss8VB^1=Y=eqZ@68JnW_UJ6<>a9=p;KX znjzjYG5-|oNOell}{ZHu^Z|404L6wM`*z(IQQdyE~FLdW-y$>%f>esfAJ z8Z5r%dW3Xs{>z7wAl*i8KzDUjP>QRWn7&y>Ds_~gQm5PXH2)CR9Hs9vKfrfL51-qn z>@1ui_Rz#AT{-69%cpE_N<>OOIBl72`OK5?4_7$s+_X74(!hgZpYBc*@mz@usoqq3 z)_Xvkb2VPy&TGAu@8^{M0a|{erh+Fj^mHcg6F*}8R`H|V6SaKt+7~xmTJXL@EEOIz zOx^M*Z8i#_t!;tR=0Q|9SM{lzt7zzbB)ha&OQBVs-M=G&`nb*`DtL3kfYp3p>|ueo z!nt;n+5_D&4ziggEoWa`rM{+L_8yz55O4BD&&mN)l1w6eX@QHU&|~+GQLQVjHUE@{ zN>t-2G`vK%&j5^jUoAiIMSo84HvY8zkQ-624N2O!Wed26t!`U zVUV$3a$S=nt=xF37#z~jOF1lilvEbx+%^ujQD-rujo+dDc+z0{gk8nPsxv_6rB3$i50iY?dd-JhthCmVn5UW|(6_-akGP2cmb+2-Dv zb#X-i=Lxy$;_yHq*_#Yn4OSdTM18Z`Z#ySle=`G3?fv;3J8V9YeKR zyK+Lg9Sb^7Ln*!pKyCe#=-l#_2-Br8bj0m|8@|Ps#EJy1x26|4EU1sq1@`I=sa5uB>no4Y{TO+|pf-lSDBkO* zx@e)AMOk~zu!u_|#)=Jl`MdKcA)kJMCmTQN&x#E8aRNc#VixY|&fPoaJ5oCW741pI z{9jQt33k0#OpwXAS5J~FJbiSPU3gyCk1=}wI1Lxb!g6xJ3AaXPBQs6Eyuk086kQbP zlv8RS2IuUNpX2PR=i^Bz@++2`~Q?^xfII^F94gQsHG9hc$tjTGC;`$Cv8p zHv?$fN7w4lNfmJ(2xGt8IPs?N%I$-rVkcBtX1gKamTxeeGPzA+O5q4jh7HI$j#)2} zgt6DVDM}8q7TN=9C__C>PBMlwGq7Xi>0Oh9FrV#u{<2A%T-@WinV-sjWn`#Ye8`-~ z05{rvQ+&INX+hUbzg4Hsj+WiIxKJA}A~ZI-t#vP$_Opb?VmcI_X-sq^=ALGHa**c8 z*(2q7ME-e0h?{~zV7jgXntbwj7)hY!l+ME& zj-`>`M}=4EzA3Qb9_=H>@E95JED>n%pn4NE@s)B=v_*{3!RAZAO|`I4-eFF3=~vew zF=7lO1;$SH#I1{Ub|)?bvl3(xaiS9=yG+6^==|{)xSm6OS6997x)8Ko)Fwmik1#%T zscwca#y>wG6w&0Lf1}+09T+n`jh&1A^CLtA8RdEUfO)$4Zhe9vb%>>2l zR8nF02C&K_TJp0u1J~2p_x@lR+3=YlNo?BGsB5v2UM!KqMNtAW)X@FJ)lO)j`RdxI zbe!;|{`C`7*be=;?3T@F($_`t~yb#Q#bf2B6#(`J0B@|?|rnxwWmC`sVENkv{ytoP9D@8)K7l|Mvx3^&j zaQoAd&uHLJ*3F`ilA)TiL$$`XTMt?_-Gd*?S*D*R79hqv32eNiaF^)$F_3m+%N0K9 zi}5dJy$_M0ep?l+iI}xz>KS4TvML2&0m%-H4VyngV6}9~?IQP)-sHGgm&;K2jbLrx z)QRXPkEpP6XC)Z#2lOJ7_NWyK=>Ne?g$+}ud#O;TTxVyIa_1-|Gl4atvUh~kLntE7 za7r-U3+NT&IWEkFR=MsbO|qc-+Y*7w@*VO(%YSH?@h&Vl154=(OSwTO!Qf93p{f}7 zQohbEsJL4lF##dX@Kv63&lAHg*Udyl#d%U;f8yiyZB7LeDZDubN+LAz#gbyh))NgOcn#7IHx=@j! zveMf>6>H5-4-Lcf1?KI}56>;qU1)@yRypt8S<9)k>Ebi4I;wSeXL_OAXB z+eN|+((CwX>sc2f>5Jm*mYIyi7`hHsc^EG;fMHDgZ8vc;VvMGS)pS2M+K_G$eOgW1Mx)*lOVS)^!;398vawULwm$^XvF75NPS1K;1x~ z1IHv7p%v+`b+Y?SIahfQ34uV7#RXgb?EHRqlwpPNf1o}uz<;>b80b9(A0PqCG53Ih z0y;q=$_YN;4@GI-jQ(wj42c&Kz<0T# zx8mPUfMk!rs)!R=zBtLmjQAKLVhp(+Ne&no;vR=FMt}H)>v)a-(KpK1Aq6MizgP4!ruB!K7&}}8L&pWf{^+3 zeN%sUr+|Q7#65yF{t^oR4Z3Vw@E;PL?To{hz%?D_J$D50vH!_8i7^Sw^_3u+co2;( z$!w~Z^u^y?GWZlEnhawO{UI(0tAmKbrU&=F;r@0Mo()69Dwk1xnu)oT)lC?t%wsgb zqlvebpS9fwVjb;5#UXA~cmJNk+SU~afdZgF0X)|$rxGb5ehY4#=%Ei?Cb6qLzXc>v z*p(3^;JpBa-O+A52LA387`1DtlGjz~i+i6TL+MtO=w{-2!uoplVNG7wXH*LzZZw}{ zPhm@M=*5A;3V^~^dk_8WIH2%baHGN^1AwFmvMTUeS!F+CP}sqdxF0})kQAW1%l+-( ze>hK2AA_^6u7S$Nf;><)w>&{*=?yk!G!VaFMFf!>qU-p!(jRJ(4=T$b%Q(FA6F+TY zampY3ofwRF@|8>P*#7ie_46B9IM*g+cLyZ!4lM)TLIPE3r-`3FGn?;+1lggy6Q9pO z&{Be+#e>pKTq5YA=AQ#s_S>o~`DQQ_<`O^fM>dMcCI&!K$^36pc#?@lnZbI z5VcRBnv^AkDgXY@=tX!h241(kXt}_Ki@TU1C@WcR+0e(1SNT@Xrg_h|aFEMu>DrBv zwXn$Y8(y7r{b$`s?NKrp(Y23^Gu^xB=XK*u=A1c<3mkYU@5&20?zk29u~tWQCR#IK|U_sT6ftFj%fA%bunKF5WgDpF^t2c~nm7MZFF^6&w~E4k(E{qQ;RL-N1=AxMQM zvY5sHEbJxhItgKrO)yBeepnOfy@faqLxi$J++1bzwXU3`PW8VhWMnJ%cZLw07f_zS zLg7f^2_l0&-K6)C@Z_cQ*CIoH_%~z=`m?$K@p5j5_wUW|QeCb*9x4_zfJ1^El7`XH z-bopHBUya^kP-=3T{mgpzy&YTBlF|Vd@hhb0~1E}2wX!iWQqgh-V=E2wSnG`TVE>f zG-#9SfJvXd401ncC68?U>MdS%)%;*!cdT1!Z2WeyoTI>Fdmn5>lC;50!uihrmzYhP z8wORL1|v{xr!~AOov>|`QMIS`NfCQaq+=)~FXgND<(ojqj&P>%pH)yr-4@K`o4rAL z(DL9g6gMaW!T9NEph?r9u@^k%5(9eq1gn=3pX53yL5wjp^PCyvMtkv#6bF~v#r4r5?0(VEMyLhg0;faW zfu>|UFcEIAwDJsu<s zeDm`JJP{Xf!p1Bp$jc=S+=DrJ`yU<#QEbF!r0R|FZs_U5?2Px6Q?EQEl0hj0C5c7- zebOQrhJrD4@{og`n=H_9F{E$?Qp;^{t!e?K|4*h@rhAkD^TMYX$@TBh~XKx-5G)K=k|bt}HbH<4PCxq_2a~kRQ#Fs@_~(a4#)DLW7wl z(L!ale+Pj&HouJi7qfd1PMFEMDb;ZrUX&PBxtdv$Zt|J+sdO-XSd?q_)+1F zAS`ZEc8PBKuK-Sk&A)AfxrUrc{u!(Ov4a5D=p`TsuCcmn{<44Ko5O5*2DQG`&~)me z@TE0DAsz`u1MM6wE>NH7Yfx&@IO@4N&$s`;5vo)7#xjxp*Sku#8^|&AQlH?VtAAL` z-unIWd3!PDu}>X2`8T~(s4ZyaNcN_@!+R|9I&m0#z-k%PHVfVPdWFlV;`ZCrKFBIV zi(A>6?Ug|Vd5RRmj-OYPp{hljv;g>L*q{hQSLU^OVdX!u0O}1z<_4BjSixgo7ZjPV zKu2gv8(3zx>Rv;j8q)E}Fq?{A9NAi|nZP z(YldmuCWbZe4C> z8;z`pYCp!gVSDRS+ zmWGpdSDj3ocP1WttW;sb{?uVJOsSldd^~pO;|L~4CQ+B|D`&vDo<9?2>iQM_YHkqC@Sjx)akA zFOUa1x4dYK9vdPhx9DaH9$TIySA2K*b-Gs5N2jk}-Wi^5dBz>sjxH~omGG5QHL0Ld z#IM+0SA8_;t1wKrns{n$CRB1;!OEi+rSDm^P$3%gfriDFY@NwjEYsVUsOL(`u)#p(*qTFT-!xb!xz5V3Jb~~cZWVFxs zT+HO(ygHHJ&ppY%%_k<58S}X6h}>Y-H)4i1YFN!=?j+?Tv}Cb;zuU#2BlZe)^lf&m z6%u5q$G5Mt4L_!@2rRfC`39(j#-Tr8ED*`4P_ij71Jm$Rq>(zLQY`^#0@yj4I6?EE zLrl^}P{PL10vQzV#TJen##RWKTzrOQQQEmWq;D-I+T+F>C}g6bR8Rr1E*StV=&ISS z9gYBSOEcDEX$;&uY$=7rZsYDs0#DZB=0dG9#E3CqEs9wk_ELlGTWbA7CZC_`2=j9~ z@Tui&L-ZJj40j|{dny6Rnk4{ii|l&&g(vcqE>=LdLML-H$0ZK}VYulo@p2m9>TfIM> zS#;-{92ex6PA;SbGe!bts|Coe$HHZHA~xr%)R3m3QzNytX2-mJG_zE-dmoBPFMra^ zQQ7!8#kv98mRCr_dt-@>mpXazNXx}VU~p?GG;bP106E!S%hTE(IR69bjw3aTK=v(x zvK8^XcIGp*WbqwhE*9B+mCxETL~5y#ct*%#{j&a#CRO>~7|9<}La*oPyG-ZL_dAWf zusxS|$$6X$4$@v%n6me);p-U;Pc7#bM?Ma4cZ>CGO(4hcD`C;6We(f2e5)N{X6oD& zG&uF++qSp-zi=E}M zg*M#`&0emLi|8x|OD_G>;aaZ-I;jPQq8+HQqu#YeDv;qUuGv~_GMy6fHGR819Xy(6 zQ6I1@V5+EaT+0>GZlA!51JE!|>UkcHQVF!RuD?MxjjWL3P zZw?dhAAv64KU^X;iGsU^+!erfKLskkW*}-$htpD#$C8z>2$3U{DHDCAPThchiMjz| zurDshDjd``GKZ#}J$jr+bD?5dGnJv9vX|gvE%a|)2bfOufeSgfxuL4^Yw_n50fLu0 zQDpXx4B5)_>J?m6is9vgUbtmjK+#s@H10<+adZQ%cyvvs>Juystg`qA97IfL;((23Cgvp(*XF;2CbniK-s6o!JyMBWH}EI37vrR zjqbyrcMIGW;|f&pncF5#>#siBb=fx37EO-%p?YhgbJ~)QH(CCqXiGGTNmom{+=%^h z-Qe1;(T=3+CP)d87a%MV4wPNNI88E+fJ(wDnC6?5aBj^X>yg>Cfcw}{kvxd*Hj znY(z|h?~XmZmq9AP-gm+oyw*bsdw^l!ZE(EGVP>DBZ|x?XBw4mbCPFrRyVj(i4SlC}KxBu(M%pEl*JyVnOuv2t`O z0@I{LTM}!R-?R{QQD^|IcY=%qM_SFgI@!4Q^+m}jog=4Y_?SA^S-MV$cwgs4I~3IW zITr}0!+BsqJSA9Hz(lQj7uG&f+|`y{h$Vu#LwfsX_rV2bqAAvJ$-|M$*)g!5wn%{Yv-dII7C>RM-=2EA4BqzD&i%f_QGgfLA*1Ez zg%-x@0nn~ENGVkIf;iXFe7srO$VJX`_j!o;^9jtDh*PC3TcfxYd!T5$qq zLO(d#FP8vB0x#F0hEo4M7hqbZEeWvI1Q-D#iTih4EWyc5yWa?-tdPcDyBo|vY*qnq zSEYi~H-_XS&-`47%U+t))?k-9B&K_zGqR2V369-O)BZU2bys>Ufj|wfE63v)&Db6C zOHc?Az^t0S8|i3{mDH zQ%Mktdqv-+k@GX2Q)XdDbc=d?C_W=yq2t=38Rns=DOZ$Kn)jzyMNu>2s;Y^#RCzcR zv@W6l_q-h~)VSFCWaHtf3%6?8^~`&d_y&m_r?pz5PvmvquGlJC?>xBTV4xcX%`uhc zNJJOjZ{W6d+2vObEn02dDTXyB4bM z82b_TYdh|0W;RAIA5e8HzmVMRIKdw9r2NKEv*`HOaUP-D15WFvGszl@g|8M@+A_wX zS8F4Z%Lac8`ID#Ngn#hOc^`rsUtBa?6P9t+N$usu8o3GXA8*JdS7WOvqZ)6q%h`=Y`vX>?A!O0bkF_bWoF|;| zxH={D0on(;_ocph21sFnnMr-LM}3my$)N?Fd}yj(kA* z`qPYzH}~Sk6JMLOJS5+pv-3_vbG1AXPrPPSZqR|MVY_wlOLo|3$i!aKMXTsiPv606cm9iyu>@pM=-Hb)A3)k&I@AtzRgaa7xI z_qbC^32|c>c>wLEbCr93%H^nIKE=B@()FpVkqo8rdX4WdRYh5LEYRk!J(nv>Y$ZfK ztvQ|?A*pNI?D4ZIZv*~r<#H&85oaqd)v`yTBIKFMYv zDb!-=JX&+K1ZYiY9w^VUAK}NJ&w^z%qY#+Dm0XGSCJR^r28ghO$B)dD56@9?X~5WEfqSYc56|Yn&$8^iaIf9!n!Ph_N_Z<-q7|qmZWbr)Tb2v zaNmN{jc_OYa^1Jk+xC)CNfPd=fgvNR`1*t+5@z}6y0f;QI7@ribuxhBqYExM6l#OY zeYf{>C7%AQv5-`?Kx3hHB&zB-TSRzn@6xHRFC}O$uEpy*Q)}Wj5_ zSPW}cXIsn@ho}nU#Wp|EC(<|dP+cRdGA~8(JbW|l%2@!&5ny@mKco5#&#xGF`r#=F zU!92N>8UIy<(}9BSL!3BhpHEcW>vc;5=o2Bb6O0LOE5UtAH`x#wypICi7>Gd6W>2i zJrK=pU7p$H6bz9r5A!k%>M&ww@~IY2^=vZeRH%DSm*E-S>B{S>=A(i4tk29lhAev7 zyLVxZD*L`3+_WuZ62=kSKiDubbZ{7VOx$%k{jILMXUks^#1{c`R z-U%wFZ>eU!rCt!e2896Xj6)Z7Z0@tO{)pDB3-QGh5(<#qqV5V6KXE*jL4XclL?H57 zyRfH$e#krRjDOv+%O)2T42TO2d7VY3e!l;i5Ox-TG{<^ol)7z>kG+}N4dbq_88)Bn zXqC^UX)1YJvO6qN7eX%Am80TyM7jJ$y0**_d;a4zyWW~zIak~{B7(cV&_C=R>`98T zcz9f?T%aaaN?uhdwQ3j8e28&3&WqL$Mq|1VzDw) zBMbNGhGtrl<<+h#83^a72*36oH(kjuCaAU)H6;Fl4*%;O5n`DcB8i ztBLL~Xmgqi@DuS)1hu#LTc{sx?>k4&xyBIb$HGM|iCz8T9KO*546&(=SH5yvSU0*} zesKEBz++tES<`@l)sWDSxFdpLHH3_=p@Fod2Pv8gRn%9nNEi>6&5gdp?n+Ihy*Ol0 zc0DXfg4LCbCYDz{jD6a8lzrWF;nupMdT?lS5@g}j6Onz-!I2!xp`~PE4zie#FZ!=!DC9y@*!N=sMDL2GYoQ~@9?TG%$KHHC({*qv`N3*v?Z;p8Eoy@Y{hGuV41YFjNLZ3& z7NurNN&ZHZIO^uYM@{b6!}QUQT9=5O6*5*ETk?06jkL>d9HASo%yD5T$Bjr~*BN!< z678yG6hAMli5|;3{H`-#HOY%oDf56PS7>*wJ;(Nej+oLJx0bkK+VSRNlTUm_`dH2$ zKyt7S2H~c{w6i=8LzShJH}M5W=tZsta!XKSj~a~ltR}XW9QqObR;y3`WM8@G;+W$2 zRXNUc^*-u^rjVX6V6cDtcmp{4_WJR1JPzR5aRl=A-Q5 zk7;(N@9lmj-pylJ^rTMQ)>5tfw~M@Tx+DUIoFRTAIlj>>9!f7w))ZTwirjl+7kYgn zuJ+agmupXGg9>{Z6w`Q938D=mI-6s#4~2(mal%Ar{UfOR%O0V4YEAp9SnOYs~ zRoY4oW$3vET<~0pUR#@|i*D=$XE-<6M*i^M9Q&HVQ{=QPLMOB}m_VsP%@Zjr7k=|} zG-{f|Z+=tsb&|t7ojUrCRh~g20ekg@b;7Q6Gj+v8p_lfXOW7{T1qu&Mq68#*WA-<7 zDr~CnGEVhobQEipU02m!oegX&^5{H9x7Op-zqmU{9D9FI<3jqV`-&IK0@l1@FA z5Rt9e*TX@bkCKTU>j?ENzdV}|HGM8+o#-;Zv#^vt@+dFB{X6$L#oS@ur z1a_ov8V(VJx3?>-jc35+d9_i<$RPZCyQ61j3)~qB)3h*WPlNTfp0V5!2|DlfI;^6r zu`@t4zmIuMoDky}WE*B5u z;CGVk;=M0qP9a3;&2nYXE(N!&#J@5Ki6H52iK!<6tE%7M`5KZ9_gQ;#NNM1QNvr!D zl>z5@Z6RGAv4{nW?E;4r$01MB%ZFh!t@ck>Hw|s>&d@}nZpJZU49%+~i45FwsH(Co z8H!I&${hfIbcr!RR9J%o&-qU}brRkPL@qBW9k+}{_eBsXFt0$Ky-`{d1K;yx&&px| zG-W=@3tpn6ss>kaQbyG)@RI1~Np48?*i(nb3&4E%E0EDTF2eU1Aec9nzi<&_tX&LF zYT#|_reAB4p*p{poQL#NK#y}4+{=aoT+I;BRUUH%EC5y^0UW@|7oM|`0llmjRNix< zh5eWN_=qv`x8vj0@wS9Bg@$CPaNK#}G+aioZg-biIUpxckT3L1$;^Vh$zKl-S(zS~ zquFDaBi|#Cim`;fJm5zBABKd7$}Y6mYx};gPGGxieKj2U0x(QWekkoB=o+ zy{K^>eE-SvXV``P$@c+=T3Xg801q92hZtYj*j}#7C4JR&iwi9k(ETYiK=-&__zBA|eeN-$!g+$<18ArOMhgq9nMH+7DzLG;QkQ!;FDne*VA}op zL4Yp3ff~b}Rw8>rDeM3Ztpw!WZ>xdYNS!n0`**|J6A!4(M;X8=4W@GvW6Gl&bU+6T zKnFm?8fo0@$(O+*lMBy83!|Z%}|Plc9hV z%qk@l19~W3hVsnBEnikKp+{_UIgft@FiN<1P#Zgofs-&+*_oH-e?3-Eo8%n}D+BtS9U4Kp@F1;;=G&VUAh{(lGk-+%tG3K(Pk@&{pJ%z>LH0S#k&ehy~AOI7us2q)4bm9^(d3y# z1oSo(nI4DH8Y3R(iR%bhyqA?Yz>lWWXKEbDP^;}OfN|=U`xp&OU{X@K7u~ zWK7ttml&YSYD8fSnteC35Ypvx6^xazUi(zc!52NgE#;yDa+xvhFCYbt;RlVWY_430 zMJzcHvE(k-5z#;SEP$hZZ*iu-=9i6kb-G*ix(*U$HpUJQ$LkWEPS(@^v zOFA|B|JE0)UMH zr-z;r(`@{6 zmaS|d>yWHvO_i|m=ece`|VmeB*pDhkq+7(aUL6|2XX(VAg4nR*aU~sB&(ql>l7O^IQV5HDL zS=@%OpHoo;oFEbk&zIML!*j@I9g|yu*)Xua4uWJ)~8Z1eOdr(AaL)TSD%C6im&}TuWc%v zf(zto)>uR+XA1$q=a2gCkFX8V1t7wjb_p&iNNcxsP~XQj6Cl@V!u=f z-T%@YBA?7NLG4kgdA|$R->`QI0#k?k)ppuzamKpB@y=L90BqLL2HjEH0Bli81apH< zAPMupcT{M?A3i<)aWene!=DCoBfx>D=S$*Im|w8dfSV zq){wi7><6Z;LK2m898y}rXuo}wv18m+OUplCkO9TZ~e~C18Gz6jjC#4j9ec8)#^-i zQ#BQ)etZyf_hZr(0!(4oQ}(7kJmLuzdecE|;^qKyv!6#GcYc85)TbA#4>mpf&p6SK zsR>wD+<5PhaE@UW-rXD`CdwcqfPA?mP4v0u?l{K^pLu8a!S^w1^hQX+f6c+s>~iUJ zfHP8ojkO}RnKQ$mN+iG!%@W?5PB*3eT8Ou(MbY|T5kU5uXDupk?p#MW$)^=SX&yaa z%y!Q-Y-Vhh?;bG;y+!SkV(!c^)+&bb=?%~Ne}94Z``#5MzXfEZd||in`b-387jRi` zk5@Q!GkZCTsb-bE6^(PHn|TdvR?Jlq=x%nezbR7(?%hXR6qxz!I zEpZf0_+`mc%PIjQ8l>XUwT=J$7ATVvk*4EO_z(@W^D?zMy`UigB{sLHED!F1(e(rJVmu4jW@F{87yno%< zo>n2~$HshN1(nx3d{-nRk9|+-F<1u1@y%CpBx34xx{5QV{@Xjt1ZfY#H+IT0%W`{d zkSg8*4=VM>A0Hn?ddsUx)vd8H&F3N1Qr8|4Ua~KI`gjK16{kl)>U-?hijuPuakzpFm1RGVn>)Gfg>eB}&W3qnMb z{w1IV;DrquNw8W?r`W0%&5$bc5d&H@6_AbyfQMBwTu55N2z83m?pEuBeM{h@+pJPu zV22`#s4s6-IS;Dd5L5j9%Ntf%MHLYmPW8~HHT?o7oG$o@kASjT+|Grl@ll|eQ5&BO z_3KNVmJg`G@d=`qClM7X*kzpF{oeGu69Kc(t8gvyz!dum*l*ZLp0S04s-tx_O;Q6y zh5Vp;H6qwViZWNA$&>B$7pzD$M7?viZUjHK`F z!0kBzowyGAw}RDma2wKr%g6^B$4Ba@MsCQX!rorxytdLo0V}ndQI??td+4XY$w&uQ zhR=au!^cLMEprmYpl@60+g8E(D^ZitWBJH&XZ%s4N0F`P-TU+4C*LT)^j3(e<#y@E z>)#d&BDNa>zCZn4=l3N?;oiQGG;lIE0$ry7+ z6PoUzARgRj;sJ>UP5|RYc@2*KGO8N- zj_x@aKfzu`JN9QjYso+m^UW`t3xjGtOCwz1)MOl`nF&wc>_`l|EDu7cM#eeHE4LJm zJ}_IS5s=1NT+OMDZP6*hdE%Z(6}IH#S*HK zB3lOe#(9K1`2okTHEzH7s6IU89edHfBy^xM1;Hwi*6z2MYU&24k%8w+0y1WbrsA&U zIrRkI(5xVZgh;MmBCz!^UThsgd;(z06N#k)?(yWeaim^!rr#{>D9o^ea$9Y=un|Nq zJSHtumy!n@533y%das)xt9G zV%qmo+Ka!^jUc^?2CMxpxb(&gA}xKK0ZYfE4$KHLqRE|M0~#%zmQ3{`svqd?Hok8u zL)8C>rc;Zgi3a_`lc}%FM~!%27nOad$<$zzZB|9i=uo7U$@whh$4037kr7HA7%rwj z_qc~N0f)@B@NBfUO5eauJ^Knhewqp`9$T@!SXh$yutm|A8Oac9FpUDZQxy*-t|p2? z@>mlv+D3p*YBfCo$Nf{c4z{GUvr%G%M;<}p8NX*4^guZCH;>OsNwda2D!k^@RXKx#_v4ri!hT6s*oi+m_YqPgs?+BOQLDw)~5@N|;!+>D&>5#bv6Y?APW+QpY@$i~7JzYLiYDOKJ^wK_B(shZR`;TK7<};-W;P5a6e}=|3IaApqamvdI=Wn9`wFPyAkgx!qO zWyspugMMc`6DcJrFDfy|$f7V#;Vg{iIgK4OWFFX;woz!)Zki zK_?;$(u^~i@}m>>G6^pPa^{}dfRUSetA=lyb($&WZLLxQI6kdX{3{3LC0pb(1_GAu6%z>Y2?aQpnS~G_#!Kg(3 zby!O)thdk(AAISyv9V}}m+)CKgYpK%vF6rwMlehWcUhaoOC&|AzJ1)6GMW`FmC3) z-_f@Bxjkd=+gWUk30CzKEgVJ%>z{|P>`n!&CP5jJmSK>3cM}|^3e`<8Qoo@@9Ws>0 zns$))T9%~>Q0TjZ@NjM*TkVo38+#arE4{N@6?GFyivpLuijhi98P&)~jQa?OAs?+h zk{cN+ueJ8B*4v5cdz`mD3I_C>Z3uV!r;XSyEgcNZB8Po zWy&z{_R#Jmj2vQp(7Wi5)L54+_y4LxYAS-$P|k?^x`O) zoYwcGf$W|35yLH1+63<^np^b`-9;S66!dAsj|D2wGq* zNRzxUB9I_veJToU7}`SDd>zM*U(N#mIQoP}y!j#dNLc<6bv)>vfc|~tnKB3N_gGWg z0cB=^q>I#NmsIgMiN-)bhA*!vFZ48L?W1qv|HB6>x>PauVv&q4$ zEX=qydMKxx%%V4VDLJvER-KKHy?GGo6jR+Mvbg0Jvu^$@cz$_UFRZr_%Gj=$EzmL* zt~En2esu%GY|SN^Bo5j&zN_>%^EFkghY0~^9rBR`3DSRXH$2cBFTAzAOsB+o-HmZV zPQD&wdL{waLX?hlVC3B=WEw?II7LUsccqAz5E8k)Ob}&d1L-v1O5y$>LzzcT@N6;% z%K+h4Hb%if(D}}I?Bh<{brc*Y6NYaxRICi~rDw^%Z~pqC$q{mKL|w*$nzd)fOS4>P z>63i`V_VD~z(ph7hrk~=usXOnP^Y$d<@dU>GtS3X1@6gE8rGZ>aZ4Q5(+D_VS=lDc@P z7@Z<$TfQ2gQrqPz{U$HmBQb`2bRt1ryNT4b9J-t8s0;cO9`9-P9eyMq?Z5G{;gcYD zIOe`J_XtaLPm@OU!T2Yc*L5Jq^CDw3(6;MS(KrF#GgsB= zuPWEQc9?ye5k9>DZF<#QAMzIyL0L7hvSX+o^v6MK8Xq0~%Hm{P`!f|1#BCI112$bF zoen9sO7VDZjod%4gUZG$Hy@!}WV?r+l>jTE{T<+zlB4jQX*&S238}WEqbIP=z}vfG zMhjcJv;92DpoQ8asMpg+stY7#NYS%+ z=mgsn=1SXXx&O%%448vrR%Y1y;R9#u%YMU>6643cV56!FQ+bczdMegL*GRR4(9p(V zG?bc2ecNAI=bD7cm?=ffrK}+90o?9tT$Ju#SukAcCX+_U8IcB$C1Ycx;r#$2G@;8cO~XnRwllTRGoh8oM?J zVbmN%YmXCNAWdQhdmm&WXdXVZ=z3-HlBrOzu;rY&9teR&F@~*{wxKd=Yl=TU+*@?j zV8&t2qx$7HdPKz)2=#t@e@K@~K$rIzXUuhhY4>Jb3kE~A=SLG)D&q*-!WlTlV3hNZTy!qv z5Qw9%8-{)e&@$-!$M-@Y!Rw!6#C3Sztb^IiZne~;a5B3+o)Oz$C>@xYdN_M{KN?RtMUigqR6X|r3c--yk)cRRP@>G_gOaMnEoqTF+p z{p|(_Aqp)Y{ zLg75?Fn`1&_pLy(6r)TP2nj7I$;U3>4plI}xuF;?OCb-}RWz^pT` zEhA;9loE^~EC$p=iV>m$OQnD1dB?GUFjxb^`#&2bIENedBqX8zz!Y zeXgI1S}$A3=;hqp`FRD9h_x4MSQ}AwvDi(p$O_4=|5FCtStAkM2)QW*(H-eBLDXLR*KEdf<|HZz$b0uo9p~Ki5*M! zGKXm=xG3qS%j{HJujR`b0A9CAKl)mR4884+TPX5NZ$qDoq&j9dy5Uj$it|GU))gz@;Yc z7*^Cs|B*_xz?JtL1Sy|L_k)2RB9>KWqNZUXa(=*DUGauTjl<^ueFg(hQ_v>hi}=sp zf3#Z<>J%ipDAv*4(wAPWE%D1&KO}%NmtX&Osj}ogG>MTG@-;j^(OI;KFe_b{ay8PZ`PgL|DxQPd!CKLK1t>* z1;gfA5zhst%_Y@e2ucPp6z7wY@pmz;-8Hb7EPuc;ROX`iH5knu8qF2S79h5nMjB^V zD_pHoe#G4P=1WM556t3fd=8LqE&?JYnQe*b zIS$HAzAKD3aOp8r;}US`J&;T9c&sl4Ey6G1*mJ1BFgF~4sMoXR;r&D8Jke!kzP)yb`3pz>7DH|fd2T|uq&|m0*mzDYwzmnXXzHkCZ{bSgNC5rW z!^sKmxsN%})=J-+)_X+AfBnPai~_lCN%xZH6;Q&eQj#bmdm;6TJ zuQ3PHQKLRX1zqUllahBm+0ira<$PBX0k$hh$?@Yt%ax9(P-tS`0_YlcT4IXli0Q^W3QxPY5}=xjTl^dWvM{SFemizA&(`f z+zMmc{Q(^4JsZxW4N2pznu2OCQXFkR_G(f^tFP@`8qCqqAp+2&^!48DRw=Dyku*Bt zh{zWDS{}{ViGwSg5#rN7bzA3ip#BYJ8EwvDU}Hgyavj9~QJIlaxaIlRjHz#_fQtd4 zD_K++c*4hPpkahZ6afeY8?>P>y7;3r=<;TAexbf}n`Na*2FVr(( z8@^w1oIB#Ue9jz??VGKg&pa0}Mh`$MG_MBn0yUZ%=S%OVw2M%>Hjs4BsXtV|5p*Y= z>NZj0GDEBnVt=)Io6{253p69LH~zZcCs=~}Gq{b4H&!Cwq%axbA1*Oq|J3JfqhTT+ zC*Hfiq9dhs0EWR*AJ=+w6VM>R5~h|u#^N-Xo|5A~tm#BqCI@cxl}cA(_HQxI8GHnC z8pfdDYd56ZBrwabf>zr!YBHEwJfW5=;A9(A|NjLpFkr|AKamDrT>_K#%&NA0tU89~ z2JeSvf-Jl&$Rz@pBcUC1VvuF;0m3nL)hfO=Eo@#3ez7N$ULGyG)~>ar26~1qBn=JFtO5z$<`9= z53EU1;5Ykq!wd($fIt&4Vr=U18W1{ZH?i&Q{{Sq=!4$DyM<9ESg)mupPSBM*!zRg2 z4UeMhPtY~5cJydpx(9^1avL*iZ$eLL3zR}Ir~S`Y%&FuSh5GD@exNJS{xon^8tNhs zLs!-W8i;QX+GT8zu59zuDbbFh9=lj&n4wIpX3w5$cGz4RMU`wr0O^6#P5ZrOyb`0h zy(CrXdr-4jBFfU)?M<#G!zW;Q4vLr=Xi&|tegE@Gl?(vp|Gxl3N!!gZ=&=g2sTQqJa5bQHFRAi)LtyIc0VOwSDgT0!#6|d^cjN}m} zzhdmv?GM)t?-_Hwmxtv1r{g(4-&h_ROM+bd!Oyc^1o=*gLMtXuMjuz2NRePBBkGrr zM6qmVKcafV)4G)xy8CV$sPO9l{BTd77a--2{H^f^Dd9t$xJZS5b+4aUN(b;CdF2#r zZvx$=gIz0joYg5zPSh{H>%R+JfRD)WBxrR^aL0H*bv}?TS$8Z$NIjw`8haN6 zeF)U69-m0#6jiYxFaZB6QU&Xe$O%+3X?{)I_&yoWFX23Z-#IXgk!Gy%S-y`HCK*Y; z0Ly#2;m5#!iWllNr*)xX78~RhC)LWB<4PZpI^ucq;7hH)v-HpgaO`cShP^7g(#`to zspc=P7EH2WX`Dc;3kKrx0ISfdriajTa(_FL9x(AuYV#CI@kmMidh{tCc^LnC`T*Rd z5fhO)@PAJP=>7Wg{be?66}$3LYB zu256kAT@QnQMv%_7LlT!N2a<2rYaZDO0+nCp{D&0rWNSP3|Nh7-}Q7> zuo%N`acG|OUMkxknAQ4z9FpA+m{&g0Pn^7`yadnajzaPh5Y?F!n~|z!T(@P-)@EZE zFIPA{CS=z|MJ6jTs~Y?>i%MK(>*c9kY%SF24hC!AWeN9Z=T0hdespVL zY(Q#?zF1Mf6LPSm6oeFdOPC~!cfi0?VXl{7PsAu6)e+aR=h_a64S=3GKy9+#!E-lX z`dcX@hm~0mj!46p6+y}z1ZuF5<|i>?aLKhL;5jhn9pJ@+77q`mFQ>lP#2qVQcT5cr zv<_mF(@bAW4$glFs0Hn2LU}455h%Rv_W=r9+icT3@Co-I0^iTTYVrih0UQxPvo?|l zaED|Nz{pp5O103BZbvbc_7@dQ%)aO^j)#~G*XtUlh_9B0~|*YpfBUV-AA}N1|3++ zKuC7%O4M#>11R?Y#fCN7Ao0d6)hGhSIuT(g;w&(>0IaT&2tZg?PCte7A58OW&%VPQ zU?B6B>LcI|9zLoU6c5WUV+6pq-H8_`v&xkDlH|nSbBwhvFmMkxnRfL8Ien2d4GiaD z7Y#zgN!o}Bq@9tdsOi$1vJD>@4GyPDXbVf4? zyRW~rJm#VojCNNc2B+wTz+*PWkX5_@?=`A&HAf^o*W*HIj$MkhDBAl{kBt!~dzBLR zmEJlWFasUXlTCYv{!Ht*?6mnWr&4Dfr58YQ8qf7oC9+>=&g31{b;ghbZY&NJ2nk`P`Lui@ zQ+!5#BLK#KV02qqO8J3{9^7GxbK%jF4M)#C&NrCPCy3s%4%?}C21UY9zM+}}<$f{D zK6R}PDCw7)A|=wfs!+$>#*WV} zs>y_;1Wb!aMu!xTG0eQxEnhT5eqzWII_c*?40QG=?Akqy3GjPz_QB(plOYP`ew592 zG?X_Lzm8B2?w1kTccB+Sk8_OSs`$Yu{ZJJPNRK9D?{h$ndcCInJPxCaf^{iLR~Lu0 zVRDcMwlvptUhIfqmP^s_+@mMwbV%AUj3z*UnjprzbfGMS0)XfxVt*?POAl40kO+iO zX-&~z@(VMZ=Ss8|s$kDolBZBoG{`&{hxjr_#|8dcdK8*-_%lLK zaJ+o=ktltDOw~|p5+vp8b#fi?8vx8I>bQiYQ^klT{3P#_$e8=mc(p#T?l>2N6&GnI zs%oBRga!+Ca|m|a)o0DK(6=Fqo(R8B1snt#1OBnamC6CBWi*>@NF#IQV^2Zs3SFO8 zOp~~Id0UUVOtdiSS71%cT!Cb)ff{BRLYY;J$_+)C7oo9Y8m>hR1M|ukkjs3cQ zJa-tbJ~EW_TjeV#5P>I>Nr3OD=o=Q3qy|!aX?3!!2yLhou^8)<#B z4HK;$V1;B7PKL@hoCd>5;A`r?;rv`8U6R`4(BX`fGpKBSlDO6l=2V!tdfx|p#cGY1 z@RTeiZ-Hvd$#l0gr2j-X`)gen6<5;B06_30wWCqEEJLjFnMfM5%$0!Deo67nJ+tztBZ1jZ+zD+XGxz1SRi)eQ32XG zk{j(BeF8l%8!dQGOSX73op53DTT5k-Dnt>~53=PZ!@8hK-{S^2{xgCATqeV_)`{oV z=s6>JMiX&4p#DKccCjh74O*Y&_IeAg_9IxPzSuqh`CA;oup|&TMI7bZ7Jr~!xKz#P zB&gclZGz~qE~Ck;M+x;c6W4~VyFN`3&;;P^1%C6l`w($Xj1WbO@@BGbWlcqA~uc=74qkaT8AzFMYpqDpL16Sj43ibzbHQ!XB{2rDBiZyVk(LKMv-2 zIsib+lgvCVdZz2*I|75k*SK|isFk{xNNl1OC_mb(g%SR|6|=H4*ID+r0hW2QQ2x`} zI_!@(2JG>fufgU@Bt?}CxuOizc>JT@>bH|z5f{R`Fc~G>8e@>9!gKubeKc>f6awC9 zo`3(l06}*^T=#VIC}P@x*qzWYa3lhhsoivQ=MgB4cAK;~ttnNLf!!%lO}WRbJ)4{M zs<*(7^BW*ibAb5Yy&5Ft*b@g0OBZmP?>~lFUNJ!s70{_YWuXTWuqZS`FKXTdkjdKjIj z>T7Sa%b9}JTsFWDj6o^tk&z2vi=lI=Jtu{t@j$6lHQ0Atnm*ogF;^HVLZ_lizdykA z052bBeiLL$mr71RTbTwJdDgR6wfBg8XmAb8cMRU!j7UmB#3Nwm7{n_9PNB@{l^s9< zl=mah0X`6Dk!>b=a7_S`$58VIEJ>R}?mf=5S{M|_JbbNaL>&d|c#On@u`h4;_dpr8 zMf4cizqMawbIFpH(E4V^ll#)|oj zFhKkM@q#(2eRn@0W+jMv2$9&zZ!c8{UG*jrDHoe@9xDuNGFT40UlOk;J!+(I1Ox_i z?W*MpewBb0=n{Cbn`paJv$3zn!gg?9n84=KCN1V3A7vdatPt8sruC02ieN}^T$YB0 z{MrY)7HV(@4Dbhuma)t-B13?+ge?*(6`Ppb;oce`VtBk8b>j-=n&UBjikUf?jc?Fj zEY{@Db*KC>R#arcxWpd5;(jxnE&h)T5`PjQA@^u(f^6y`2G7XAaj1+z%wTtS+rwqJ zIOF<5pa(!YM5@ijT4JU{zavKpw0+u;0qvoPVbr{mp?Jf>Q+|J}uwA%C#isI>NNgn1 z$8j$Oy??X#w(yDSW#G!4eN@@*phb9yDXLoK5lRqJpT-{jxl*?}bdt5c=;HsBfs~ZI z0nI;N$T*^G5=IWtFwnK^i5CPhw5nnaonAcpE7tGFTnhE5W4xA#@5;m_>{8ijXFNd_ zAAbnIycz+n0RN#YD-*K*AO$cExA;TYMEVKZG}g-lg@c%}FeL?VB*f3$0%e{gWLr;- z*3X*&ViPzI-#N!m`GD5eMi3WAk_#?+vhVQmIOw$34<%y{?K9W+IRCNmNPZx`;-FuA8W{l*OoNs% zQQ|2{<*n?Q^j`-GKoec;eBG=dH)aYt*h0?q!EU=`<)Mb`k-8X~0QsT!Gnuc*sg*Pw zhoKbne*@UHY-pRE{FAXF1%Nt)RN2lKHPnFewJ$T+?P zGI%kTbiHjB)tPxA`OAOuVEyj%BTi>grZ|$Kdg$>KXpzFG+@X{458%AMzy-745!%TE zIAVVAaKojyPY1)j!+m_b0=|OM%Fy47@kKh9+Ma7=5VefOBR$cGch2lditgh5odu>P z1W}Nb8qP<&=VM`>9arWsF+W)bJmUYk`6dvmC?B;_AGpC=n* zY(vn(zC_3+oku+Cxu9u$Leq^qGW$$H^5pxo3h<@@|4acgqB~jC@w6a;~|%{jZV`Q4WG>!tJUiOTNgc%I4Adizon`jDlIjd7xw^l^Kk@ zis7j@03DSRZ$+vAv1lDMN)Of-_pBPW5!yknXaQ>Ni#Ltn#))td8O$l-L)%Kcc12l&`hb$HLb}B-O_cwJ}RNy`Q7n zysh_Fr-Y+5J57=hdyH7&} z_pWyUbN3J;_u>}UFIFo>pmS6Xi6T8J4^fMTtq$Sg=E_>$(X$;0tMK#U)eS;XBS2L= z(E;rldU(U#%<-V!D@5Jhzwl>_QYZ+74T6kep(fDJ-D*3wXKf3SCi|cLBcYIABT-!{ zaX01)Yw#Kw@4l$mQ?ge*hiqjSdaN}htf8)>FCBEy8~0`+5z-7$Is&CS6}YzQ>_oBn zK&PUK;M~s-&!0ghzY35YY=)Q8S?FGI{Y zaD}cD^&oi`@|tZEIxexO##3LXWz~LBQ3P0W4b%lK3f2!_$`23j-)g46Y@ZUbcH?83 z(<4aT7qr4smd+!eS;;nk7R8Js4GPJ8q?$cxw#I$66o^ovRvvhVT0+4Jb)YVZI=%o# ziG08|A6Tk(1Vk*S%H_@D#id~~l1f-*uRNlA0$3c`H0v&CSM&S#g3JZ*tY5kmf2M5K zL50nh~S7b($ACD_*P)Dw0{% z?>Cg~Z~FldFh(;%2pjj4Li=2!u^*xxD8gh>}dmRB;Bl#1Kmcg|jsDP7S zz{49%KlM)9<+VBl%nKlg@BHhhyOPhn`8k$TiNLoX6uhZj@<*(Ig}S1-Q*jKcI}-GV z#^pkxC$d091>(>rInQgdhWkzTP1l}V3olvrpF?^E!u3ylZ-33X=M*uOwZO94k{uFES!_^z?DWSBdn1t|Cv-g6q~mb9}2~x z_h=U5Ev4Z0jx=q9hF2SU1D<`+EC;~b2y6e=vFt8HQ`QIMo5#VH7a843qm-rlGg6|g z1y?g1El0x_RHIFyIr-dUngBi%ho!{_oX)?^R-;Keb|k=`inbNo_Y2GgwZYTPfkga0 zJe8q*-emFy=WlkbgC9lN-W#;>k{u!!42BOpGf>X9HlymGIw)kk*W{?+e|+Ha4%+BdALYQUnTT@HKA2v3q-*sy zM}z)5J}Fo^2ZLSX?>aN6kH#sJaHgYl9)`F>-5(BFFUgDZ`BCZ~u7Z)O>bDb$Z6gZx ziRFx?J&&uN)?9qGe;=F7fP?)MX!u=CsvpVucRx;^wE{A+kbnt7C9}PO7XHCd*(?4Q? zjp5PVbIu5t`uzEGzvWXqs`!s6AMtX&YZa^Uw{|zO!~*<5$c!kGYNyAa%JInr6ExFkAd<5F@P1ivf|^ddJLU zO(1`^`Te3>bsR?Ts-JFw)mN=(AM@H6%`Ye!tQv8InFqv-Co3>&Id0@Wf6b$Ij`_Pc zkR_GS2#qend8G8NE~=RR`K~(p#HDE|=!x#RU3-kjng%uPek&2XSI;+IxAu~{?q!T6 zOUutbtsbufYy2PU2QR||BbTF+c?-bnO^hqSngxc^JU-DVZ3Qj8V6yyD`Bqe?6jil7 z1E}#;2KJ?(kc_-4(T_e32l>n>$HNj*Qsy}@8Y#f9cg9kUBs=}Nd>`(?IDxmOoz9DE z%|3+&SgnJUs44Zdqd%jRgE1rLrj>R+>5l<)4*PhsD@`=yj%d=F+JbegSpKE)s%P74 zyYD%FkMNy+@#*mcd)E84ccn*uJgnTpExdd7pgY;k$qzE+(kWjU5*yV!D0j1&Dtqg` z`1J!t%Annv2&n}iWzV<-yay`y)I$%A_>g!|q3FZ416RO`-$EEMa=db-e9C{G-8VTA zXGz(e?&8ZgM&s9A?y_06bK7VWRW&zVH8}RPE-CBR2Z0s&5;y5A$kz;bRAvr?(yswN zj|#cCb4Es1pEoIgzxZ72eZFL*^%U~m7r^CoTe_=JQxL=Zf`ZZ`ryswgiH}8#j8wv} za3bE?!eb74`JXWKhD_hpJWRn^23;<$J&ic#&#SnZ?2v+}()ZmF{lPTs&JYAn@i*dr zb=&N6TVCkt=^4uU{mW^ze$><(UP`ik|87J1<+`GgO~X{W%_#RC)#(D5ysGU*C! zTIhJ9d>n^R!rr%FICP>FGp={p>9nX9PCFs^0sUnc7)wI*c;WlmEsAEK+O4fEmCb?U zMj4>B;}G`97ZoPyr*$qOjwx|V9re-QlQQY zNdWfp3~)+wb91ro0;cUXXY*iW90?G^Z#spu*YdD3H-FXC>9ka(o6oZA_M9_1daBwi z`tjE561=UYgIm~eu(e#pWv3!HcYvOrWbG_Dje!aA`TRR6$)=>fTFWa6 z^QnB`m?~|Q!g)_X){yo1dN`z14BshM z)59+_h>)LXWn8YZQlhbI=N^JMa^(~=ilAhoTik8x@9ph<4VvYh?dji&zqu_>lx@@} zlF_d1;M$j!Y&~c4-1<$GtY!IAs8^|n87)-t`>91nX989m=3`%utcYxbt5@%Mmia&( zpszAZC#+Q;+EbzkQ>+*~`2h)1$$Z}mA$4-d)DSjVQ0;uVd+X~nQK5BxB5_!$TlcNK z<<2r&3Ez`)lWz;#@yo-!*XSKN#9Z4yw)!BR*BVv5Kdxv}bUjXa9<5x8f{=4XR@U`e zHKY>vylQw3Vx5_jZMNsH|Krxd_}43iorX0FZaJ!}!`8l^K)^^V5xsUTo+zCv>+!BA ztxjxl)F~^;+E87Ef)WZ7QkBTKjyotTk9(4pcOWEs%3_xIiS_mJ2}|vt+XhQ;)EGbi zi+Cc@168GJ=cM8`e(vhgt}_7;7^lZ_xPPNDemfQQ#%Gfc_HgW$UXwrMVWC11RLD{) zJcLM1zI}S5nVj+-l);13zju98%y%Ki%imhrS+pbzLsLN{O3PffP<=Q-KjP!Kt^cKE z!vl;6z0w{m7fA5!!VeEgJFrc5Hm}(J_L=2O$n#(d$ZLYOuf$vny}x?xJ(%%rsJNkQqps>iH0~A(YLG!_RT9(F*=}VBYbum)7u@<1 zW3vD{9nbMyP>&kBUiCR~kQz>kGCY=FOnCCQ;d^6POan=7wf=pd;MhCI@mW_^j%B@W zXlEj(9*ay=c;$G9t$6WxiDj^}ED@Qlmtpe5@+nn;TJT^n<9%wvq zNCpK}mGWMAm=_~;-(v6v<-})OW0#UMTpqRQ*+TjkGf%ZXS_WeUAT{pI;H+%p0Z4if zG|(4^Wlr!wXn}uEf%3w`SEae9%!0){AX<0Y36pqNqn3LtOUI!%7_BrIoWFYhnZ;aH zh9&k4@`C?-ovsSV5&oIhFT<77>Ed{grbd+|S&uim`U;+Y05Xzshu26TkzmhG+CX)u zh!2BAZ=#{Z6pEd>s{7+i_=A6c40g>1PVcRAm((eOx}n70v%y?oSzWwzDGDa4S?K*z zM9gyl84*%aQc8^-h(6#4QeEp7A>Ab(C?ac=ENidiUAc1QD`;F^nE2BD{XUp2h@GEH z1S+|RBqsQo1j+;kaczD5VIX9W1Idt5)YbPDy8c0j?iE0kB&DQoIEM)p8$SeH^3NHD zTluhwCubz(OuCFAh+DdTm`n>lyF1MF_i>Tt;Bkw4vO8w@}0Z}aNj-9#aa~2!Ag|w;&8hdf6@U} z?>}!L8;d9JYd4*j)2>eP}XuK+XHG0OqYKF!txGj zW9};c6x`AqU4dHRy8~awd;w?V3)6>rx*KbB`HQRL)QD{WQgl%Y3~E5 z6TqEh5QG9Nefr3tUa{JyL`&bQ-u>gBa+GV90?sh}dC6FN(D30RZMLN zB-T;pwUwy`OUQr%^lsRD*tai7$}WnJ&H|!EwPINFU>uK#fU6K<$yVGswAeU>M+FP!NCDXdr2_4SR7R-M)w#)0al z9XA$oD^%bW0HziXAPBnV!Z0R&4R~<_k4!$ zB2akEzR}E#NNBlx^7EXC|rUVtR5(&Y_5pMXGJ_;SB%_YY{?YrdbTDex2>-EIQb`~{eH zOs+1USzW#LI{>Nz9mth~P?#O@yz9LG?*&;GS0-8R&ZjbRV^c|g?!i0c9(<Zt>Y>cioRevzyWfXqk8i<1Il-mCO{zyAk z;S5fru7y%?ei(U9*L;pxnqNSSld8YTOG!y>>4nv_1O8aEdgp=r3vC!Os9vd^=Rg?K zF>uhhFYQqbL`|4kME2j5h&=+2b)?2f7?pic=ITP6WdWE(q!ojijgzhRy%$$MuKIG1Q$+y_ zT2~hj3)q-+SoYlc^BR>!;2~Tr(4EADoaQBb9BtS4`zM7&sovHA(v#;+Rp#Br}BRAewwbz5dq+E32|GZ}W(0{H1_}xsK zgXXB;?R^nQ%OUftE}vr#sZN?e+y#(Ev{(AlP={L{yS$&L`Bi}-x3T1pK+4x{Ec+0A zp?ikKUu7`;_^C>E+>qk`lndBPly#=<30zRwb@I)Z+1+xqye#T(1V%)v%Ll%aML(BJ zwpvzRG67)83|Pk@P+v{#l)!8)=7n6gM}L9|6#pvkU)@bv4mX2+Z1jFmHst|(k?>sT z>nfJwPfE4pg1kjJ!a4xC>hJB`$Sg0czjQ`PzuAdkL!U+?KF z4uS{NiNLKjvK-SabMETQo&A0QA1)X3aYva&PP6T0M=mMe5kmN}+&nw@`$JdiOT)#> z#r0)%afrE&uBpR(!F*3zF7zE4O~SRV0j!ztATJbxrFv~ZK`s@+@*3x_ktLBYDdu+q8zEx=ZAb)#$} z={;FWHXv1{&!$s5{kQU{f@f6rEzbw7`o|5%4HQ|=)=#roPF50Qq@tS}*_VDE(G9=4 zxn!Qg4(>ng#Z&;Dz5xpTIm`ju%Bf%0vjx;$?84i>MOk0X#>+qXQyK4r{N#!}N3^Pd zt;#b#t@1jX+?WjZ%FkY4^2T=RUO7kUGdzckr}ELGN1p;X|5?x7z4+2l{!D_IVKAc% z(7ONv=K!)-8=>^?8-O_tb>JZ<3l;o9)PHUh2mlse)?fW(bT(B&1yrT4!3{=rhJ&RLTuSxR6oqwmPU4X2Ae%5xwgjzg=*tq!S$z8cumS$!P zeUYZH1TiacJ&Ip1Js;%E5n~a}5tg=a1X9qY8Q6dSB5VIH7$6b=E&UE?n#mg_2)E8x zXaVXym=QrvwhJ)v*_#*EFji3{5a>>xAXuHd%4bo(=WhsR0jk0~oSyhux}`mmnPY!B27uG+mliOi_G? zoq;||*M@WC`rt8NSq=c~d5}x|BmUF|cybn0i?@=8LjR_j0{Bn5XSJyRew%a_JbAA7 zZ%3odhJen4_5)0R(r_sJr?Xo}?J55JKj*YbxW-Zc?;k#VSU)cE^6xuUPJ@CunO5!& zH}Vrg4FLu+NS<(mBB!gPV_={3#6x5#46eJ5jt(6U?ZtoHzQ;&}n#;R_d<-Re7qLIu zGYL981hNLeBM z<6JFY%Y4~(vtdh_&0S4U!zu8nWoD@;tY_t|)+{!n*pc z=l4C|@8^8q57)E1Bfk^e95=CA02L`D%=+ig(T<@9`&O++2*tpH6hhdCXO26hV5R`% zX~&myMAhUXuI+lALS>j<;c)@tXPL#F?3`e|CQw=&>cq?(v}%A?;rSS7lKNdO*p|T`qXHB;j7>I_}TdPV^Ee4tO$fi#0*4d#=zd8 zj_|9irI6R#ty-elmisr2vV$R*sZ74Zsq*H|A2L)?PAJ1%a0T(}(iSY{17Nm%e+LQy zRM5l*wA8gwiew>{VV|x^)Fsg8Phyii%R`4E_{uk8A=^qAHi1gL*F30sI1Jv5Zn@@K zh7c+rL|`9zY~5<-voy*6e&dUs#1K2#Uzk;c5%a%UrSJh3T)ls^KIClyM}Ga`tl0q# zGuiwT6{dw%bX~4i>bg?)GGIdRobX84(PX{A!k3H-!gsPUcxMf3hw{^#btR!`@W%xZ z(ayz^+YeuCqWPl4LuX!P>*;gbDC^@@(d7-VIf}#x zUc3wD@YQ@%*1=#qdEu_9QpJy1K8tF3chq5V8)>U;03182QLHlOrB2XF{w6%|9M z(((k-&u&??7VkqSgRuOIgn5Ejoa67@jLqrC$smf-{69^axApT*IyOOdqB-0fn|qPh zJjouEfZM}#-#!L`a7Q*KQI-BYH|g>s%iA7i=;_eER@XJ8=#T|wDcqn5b8Aq@trf-J zgW{EX^HYc5voQUKs6vS0NG^IR(Dy)7069h1Ou4ZMkBR^4oTm1>*^BKb8mtRdHwFZcIeZvA#j{lge=$T;^!`|*5?*@96s*eV!-$KIG+(Q^BOp9KHCtE z!n*iD4te+KYmo2fkLVgr&{+ZsNiE7o;qE#QWZ<3ifyw>Gk&};0yxa^L*ASx9-D5M+ zoy3oQ(Ctv}_ngQEPjO$(Gb)7=&BIf{2kxE^QJE^gqxI0SV&js1`=x8n0*@3Ek(}ld z=WK{AqcN3>B)Z)S1XXHFZ9$!G2IEZ%S3{M5ri7B90*Ug4M~5K15C-Mk9v1}CQ{rA?pDyV~Uoz=V^SW-YJ z&o(OQ=vstA9If86mSY2(P~@kL9!QmOHr75Gu@E`aS{Pn~_FE_{z{XeN%Hw(UK&f8EUTy$?qcwiJC@9vzO=HYu+0 zMZ4SwJV(2eN!QajUX3L|e*!v=SkcEHVdNz$?fZ?ta7JBEsnj=Vx}HlrfL(?;x+53^ zm2-GHrje(9>-D#Y$?C0+ Date: Mon, 14 Oct 2024 13:22:16 +0530 Subject: [PATCH 06/11] Add files via upload --- .../example_fetch_scores_langfuse.png | Bin 0 -> 77242 bytes .../example_usage_of_fetch_scores_23_0.png | Bin 0 -> 89209 bytes 2 files changed, 0 insertions(+), 0 deletions(-) create mode 100644 public/images/cookbook/example_usage_of_fetch_scores_files/example_fetch_scores_langfuse.png create mode 100644 public/images/cookbook/example_usage_of_fetch_scores_files/example_usage_of_fetch_scores_23_0.png diff --git a/public/images/cookbook/example_usage_of_fetch_scores_files/example_fetch_scores_langfuse.png b/public/images/cookbook/example_usage_of_fetch_scores_files/example_fetch_scores_langfuse.png new file mode 100644 index 0000000000000000000000000000000000000000..16bed1cc7dfbea80efd17ddef6b399a8b40beaee GIT binary patch literal 77242 zcmce;Wmwc*_ckmjqNIRyNr`lKS%9?C4I|wkG1P#xND7ieNlSM#lyvvd%}_)45btTLyC?JZm8z@$&fH_qm~o%m+renK>B1QZ<@KW{ zt%}BKKFsNgl@r1f+WF3;Il?iUPI(#Ll*y+8SuWMuh1ynyZz>DxeY-57K-vdgRAp~Y zLABng;Cm=hk=Rj@dq?gUvT`YFNoPW}wP)aR65YU{aZ7A8{Lham4LVWvKU;Nr+fo|L zA#|?!^J8MwSqg1zDk`R=yk&AnRB)|zV`e!JQ-@Qb|kNo`LfBvLXNPC!j z-%wMukSKO1+$cy^v-7(sNH+tovyu`;NJ{GNo}<}>VMyp4 z0p$!`U(&1x5T82xdjdUcKQA}kKWM{KFp2sjO=1ys+GUZ?vC#7ESd21MJ!_7n!h^hWND*pAQcZ;8hIi*h$sOOKPUP*U) zuakj<|HRW@-?SIPP(``LzMAF??T}Mzkt6zTUTO1;!HvMCvYO)Hw>zB}+57~P;+`!x z*2+fKi%y2ehywNP{^s7#omshKYgeHi9nYDqw#?1VTU%OiIBbM~sI@#Vn z_1g7|gppC}!P!aOEUBu*U5@08LhB2&^fn}s8g0+}C5ef&F`s;&s$}CMp;yK1nXx2a zJq`s8OZ5}85CSjpl$u)M(UFm!;6rAebK(tH+i|9Yf6xO%65>KFY0TO!rvHw{-`-=7 zZPs3V*v4te(Q%($mf5&cyU|DKa{_V3P{wA;`WFaWebcjRO?IP?t?^NU9sIt7E%Wmo z@AXuqr4&)naZHxCmgRen-@f*}k|OxF#eCNaQi;v#i)3w_%n$1q{iuGQ&C5jDGk)ha?`E3#`1#7&opB`@7`4802juQA4)-)IeYhde3)B(;8O zi?4nk$2R@q{bsByCoJEW-N6{*T1}J&c1p4ANe=E?wxBl|HpZz!?t>Ilz%9Y}l=h-) z>39Bicnk9)i{lt0pdHkACsQvJNyX(Cn`b6wdT{MHS3B`)JqIhip zr#s3giQlDS8#QANQk^}<0D2KQf|BB)ISJvjj z3E&#LUMcap8n9SUxC5&|YLYL3s%q+EM1$Y!;ICL_n+nwqGYXSW_IT3D3{HuOpT-?* zX3zOQyl^;au*lg4M;rX=C`1Hf;C{T>$sE1)qUVVytjFbI=TDkaVbnbp&r7?@Gc}

A)yDo{6TT=S|)xdi)f9Iq5%Pv}|>bXiB10zHWf~OqXlk zHa2?qslBTDt57;CH3rIT1^`rZ0U#Zqcgv3qp}v&ZcdhZKl~+#xc~AW-BZZRqz?)Iq zILR(`mc4>N$Yg|~`Q|7%05N|KTbig3+F-pa^q=`G(eJa{ zM*~RMu9?POwn7Z<;qnn?9wKry4p%gknYLc|L>th{@R)J4a8cNW+;@4YV}*&$$M~YV zzZKNuJbPIvQroJ#sU#hNx_;>iuA)rKt_n}+UI`9=)Uv$#PQ}r~1H6<%dJKZB++#2y z)a5dw4L%rFj=3{elGLI$@nWqk-8^kF_#It(IPpw$CL#t)-Dc{CvzFyLtNSZ++0obByrS{|&u)TFC?x02pJ^7ET@2r1&YF{Sh=2-TrT)HV$EBC|&t`k#=%53>BjOa= zSAdGa!u)gl5#s7idhIFrY`w7Jh|c|DbJGL&9Wq7<>#y`OF?!k!qs#QCpq3F?l8PVzvA^4X^s6~674J6 zDsQJxPa1B!rNkG$4J@_QK8@8FU0n9js`~Xfx^_8_VfH*`ieA!VnChbPeN0?Ohm!bG z#-K|%%$#5AqFvR=A2dJz>g`*_wZQt_#UdRug0+!y<=+W6uSlqJ@@fGG=hW4sjsSl( zhwqYoto;~tSB!BUK5+4@HR~V@1n{0!ZGf;5`e=~xi*>!isi0`$Zv;7xCo!0{mN)XI z3Y60R#h5sH;)P*(vmno!twGV-obeq&<=4QOu%szyhELRS;nhl|#KEBscq&e3s;%Q0 zk#A@Jaz}kr8?cE#HFNRwE&Qs)j;mUaJPh`Oui*f|ueL7pxcB@fgXO%qohsA&SRlpw zKw*9%Sw;(_(Gcz`{rnR=8FP_OBw6yxx?4;7j#-yBIcXv z2j}_01JQQ}E(0n^yQz5cub@3&n`qh|cw;U83Rr(2Tzf$vz?DE+ZpvwPD!<;ZNY4(v zpQET`!!o$KGHI~5xo{I^BQ#z$119&BPn?Ie1QjEbOd+-^A#Cw!)0gcg7xGbx)6%VW zgM;XW;`R5zq}IaA;DSHh9;? zpf}Zq2AD!&(|D(ZYxWKEzGjis&fEG+Kh5+P!>-{pi5{z}whb#(R1Md%QGF%Fm9bHw zlnocld#*SA*qN!kgNM(S0zF)JNspCmYg#-hG9R$K2|GrB2-q!WWQ_^tnoXSUtu~}iQyHX62qZ7SDkHTs* zZ+Oq(L4JDeZD6Z(@K#B{>P4^V0?f+o>{{u<_*x%lEiP4naN^-Y%0)^uU5wT~vi^m&7r2#UuF`aQ|FpCo{6;J4qa z33vtGSDYwao!#CfE_ho$bX!cmQkxl@4~lJHo<|vps!U-_)$hJ-C@sHELaRR7$heh1 zjFmX*<0&pLqPsedFla7ZfPh8pl4Lz|Yc0A0G>UcDNU;NKRcQnpc$7iy8M56l z>b9E@BYL!D+6R|>mbixNnaW7jm|(n6XXl|0Q z*~!8SD+BCr5#AocPoiqz3;mA7D-GAPdj1);>+?Z2gDH6SmeO;wr`M@&^C4F&<_NZi zPDPWJtEW-EB9h<6FRY>QJ%Nq2a7G1)4`IZ7XMg{;=Ed=z>$W}O*x1ntV6ThHvrZqy z%jJ`~N-7T~c@tmk*cnJgY{?EXxDywK-!bAdE<4BqzfG!Kdk~z0uvp;)A9V=SB!wuT z2|YPh>PIbG$rKwE!GS7Ww7ZBU3@TZsC7^^>cTe@Gu&o4G3%EaFM`#Poz>F=psn$K$_1fv(!eu_W2<;mfajSsi|Z9+(?7|} z1uymXO=gU8xXX=x{2xz+i3*24Y{%eD-QxX1Ubayw2VMn$86D@j%ZFNPz6HxAW% z<8#hYccq5N=8dPWot&ZM2udUiS3g>AI-41o{?)y6-GB%(I0R2lmcYh3i0MD|HWe-+ z1o%t0U@UH@V_O^rQW{gh5B`kMB@d26eW z=#ammOJ(rNH%>s!C22^!bvJ0i9(HX|xXS1~HH!B+nbb|-Cpg&xTqeHKsZ_kmXt%Rl zlO1Hyut{C1v;xXET1}gA+C6WF&j8H^(dYm)4>_@QU3SdwYyT+i7tt4*j zwP=8;ix{#pA=y#nlg~0Es%o+WON~3z*Ju`-q&riU$&~2jOxyAEJ5-f@Rk4e7)r^av z3zxU!@^^!55mma+8IH_8n_KE)0ibHHTEwma`|;I^&cf=R74ZF5edI+s<2MrW(58AG zob~Tx6VJC4*UPUPCCUzK1ukB|RiTsOWqSwSVa9`YNbeU*EXUgrU<%+D)kaf`x>Hxn zV{W+nh4=8zpIgAJ8sc4guSIQbhqxvRRUE8@F29j---HXeR7y;OMoy~w`KW3E6l*Zs zphm}`n z^}36^WD4j;bya^smr?ePaueloD87#!N#KEL@n4Ek;OF&;G8K*o-_0=ly}B1hjAW9K z46N1}1JQFNRAR&^g0udq%t%8!XXumQ8cqhMT@wjaMQ zC$@&0dYIb{2e`Wg9#%tc|Kfxcs&k@Yj>>j-LiY{e2KiQ;RLRmy>!%+~NUt{)HF>larI z(F?JYX3tQRZq5a+*00~danH1Vf!6E%Zn?wKFnzZFDF^E{_rXoc0s&&g>Al}TAg%np zhM}F;W9zmJ0#$n*9!BZ7*qy)WV&#%t%HBW5GoQ*_U#S!5p9Ef}5;tTyg4dG>3vpu*}pf8AGtUY($l>qsZJL&5) zpW)|2YttZD00=}nZiYd%a3weMs5Wk*8r@lpQgQx=eBJWH-8uxhr}L5^YI1)$`HPE> z1o`@IF|gaJM!KZ!OZJdm-4=p~LPLGc`wT$>M-wdG%WKuuQ7#RK1qvJkb<^D;T{4cf zYXf$lU?=4==HBLeZQ|wr44VaBM0YC6w zV;s7z-ph|K<3gzPzo;$5-AzwHs54k?@gUpEdJF^v)pJZIHL-!x^YTF2^Z4QeH}@fv zp#DpMB!gO2KO?K_4Es?N}sY&Uj8Dj-f4yUspu3LcYQ9x@i6%0 zIXVHcK%l=&x30sQ8mpoVeMjf4W9Ib+oOk}Td?r^YWuU6k>fHVs$AwZ{N=hBigb*&W zE$rdCL`|ls`j*$IShu6lK(B8(muO`EhMc46n8?cUsEeh@x;Ubr{>zt|cOQ`z65lOz zQN1NuFu)diLZk*wjJBFB^R_^C8Dss56l^DL#^f5D z$J9MY-;agh4tW88gwPdj+{b;)ID&;(rhR+>Z0k1vk)8P^ly1{_b?uvh>Xbe;t82nZ za0tDvCxycg6j#fa1_pKDfx9IIb7I#P&QL@h_HRuyLx_j?QDpp`w=fbooCRoKeIB)O zDi#+5C%PaI>prf6{GYA=;6FpBM@f|*I%@$75}(PXg8VG+)IE{9HXg^mcOYQaJ&!2o zcYfV^`2GI6sy^l2EDt}jd7n7C4siZsM3yQ^5J3=R6 zdajap>Y~5ZY^>U54(v8pD61r_goFGG*zSMrYbCVgMg_318oNvm&v$k^k9dPFx47p`~`4 zmlJeUed&&#%yB2p_-#5S%1j-os-!r*&bBzNUT&o1MJxu*KaDYO)5|U-9*W?e;E660nHjFu!s(% zsKl;@H>Bquyx{}EtWa8E%Rh&HEM--LP6A)*{nN-LT6^Z58Ou^lQ>Gnq_Wtxw|5@E~#{@1c{@V#(}xjG+tpxm%RG)Wy2s3<4~1oh&&K9-$S`Bp9qFfe@e!6b zbaKKptF$&CdtJTHbC4wIaFadxfnu$&(6o_*Q}aNPU5_Q5b508piFqo;&f$jF9|rjh zvva;cih;D_0{k;>LiF9b zJLZPDXJk5F(hV($Po5Y+!ZgX#0gUeO(YUS%ckwGkH*bFdm)}vd`rNY$+kvh>UP~TdHWY=2Q6@{2j zpE>1*u>)*o9PP`LyA+iael+fk-d`}c1t+>5m;k_ z*N|j!bK*!l#4@9|fetHU>!eBvCxbTsPaOI5$|CJay;zzTy{xb8G|6%cW*OB%%%=c@ zLy9}~0#UcD;s6BABvfQ6Vm2jM$rQN{%d^vBstZk{9=Js7Hx+LlLKN+H~lMl^rdce|& ziP7ENol~2YWe`(YT~0?U`u)on&Ke)|ZAuH-??0Ima{I2K`mrh} zCkP!6?+5+!Up!n6qF!DQP;KD=l4F51KjEX8k(+h!w)Y_JHMFul*yS(ir%i}MqKfw(LsLY_wW7lLooIA zQ%GDMnm*E0(|hwdl>>7<$Nu`T80ss5jvh2WuMZ0|^l3rvIR3TdpF741ZXOB*VPiKO zA8udm^(+iQ$9{e94)zZUIK@cc`6Y7-SIWq)ibXVeFfMrPQ=#6!@^H2pWaRr03yD4v z!EhiG@eAOgbzqk>Ys*%}NM6z6%$?w!*g&$U7Kr@l}FCsvQF> zZ#;{#DHjcZ!V3a{PLZmrsypmxKG&&&FYhnW$;Uq#6a#{ywRm!tH#VSPY27-V>bIN~0bqW*90&2EJC6w4w?1jL$nka%LW@$Je z1Z+DN7K)|Mr>C`VZU&?q4%TPnQ+Ry{Z%^-yW`rC zj&g6o&#=m~!?wM?4wh@m6i;^sj|RKN;7)Z;jsjprE!6CUUvm@gM$B9+l)hIBGXOYl z@e{En^-kJBeEbhqO3KTPdM7C3t!WGbsMQOmxj-ic2Gf@w@t+0{Sd*xg(y~Hys26&omFyTKtof0O75K|doT7%y zBP?|Tg4{be>@@+&VacE_%w}-@{?!ig;J28V-o`V}kmC6oEL_|(cB?Tc^jBgf`S}G$ zYUf9XkL_o-0T+(2#l@kZlS^xwLD`gRPH+v>9Cc2(2s@!e!>-<^*gvKm=*=`>l>Loc z=qXMz`Dx{QwMd!idHhFV3=Xmzk)asdHYFo7NA6p%*NZnHb$aTpX1Q9yt>}_sqmd* zws$K`M9`^>iZP8@AT{rEDQn|3QIXQ4lIxj-jKmDPrdAatZ>hE@yQA|A0nVTK01phr z_>RWSU5GdQ($|~Qc0;=SFs$*%jeO?{3YqGh_Vgt~Jt&F*` zq=Le?w#cY1Cp~IRH^&73St~3skkl~9U|cPPAcGUaEP5C;36(Zt2`_YPWFoj(i)tVqc0j)&?J%V z1lg}4asvo`McWjc#H!kFow(|vUCxv2o1GCF1Prw%yi4y4jXg>5MgoC#LHjU)%(paun~QqtA5s!DkPxsgu*=f{)Jou9j& zW!MZrj5#l-KV$wN|C4A)l{S|=LdbhN{+egB5?_Hed7=miXv}kQqt{^U7T!>ve7jbN&HBeLlzy4kPh z4VyB!3MY>>Xgi~Z;1b7$+gA=^Pj33=y(w^Cr^JbDW=n2s$n%`PUZp&J8Z%r%K;fH{ zbbUQAD9TsH@hlv?UiqyS{vzw8{3j1^iWayuF)8e)HPrPp>&%H4eINHsy^(v#R8f$u z#UYki%jSnb_~fd(#}kYBUS-+o4ky{fzHKFYb0xYZ)6@hLn!yHOXL+dtgVLr`>J1&p z;YD(2pLNHt_GzgSVWH$k({$3~wKZy3b4y#*332puMjTh^?UoIz>*CU)?|+|4%-&=ZD41==3uCflqvd+Z$z zS6MULH~+}`y7e5myv`0g1+RaDR?P5&&TIRzS+yD>SD#3~X6z$51*FyzE!)2@h)GBckv~bf_9bz_hXO~lm|!NHcn?!!10yC2>H?E- z8WItXr{eDzu4g&-8%pd5_hQ^jJ-r0=)z-epW=HD~b{Bw~`YC%`4|w-#50FTg2;&yD z$F}#~a+f8eF}+dqgl|1f&#OLMoe9c)4DKfoU>FidY5c69RBSwY@P0jEThu*%X_bZ2 zB!n?{*bjOU{l#Lo9Y#&@tQY@tzBB>DiMTwtI#LJnX-oXt`&-XIH=Xk~j<$|=f;ihx zx_v8ZHmirATDJ@9nbM$+4k^?A_#SAfLlvIaeW8Ei^AFiM3tGj?g|kc;U9ZEM4m%9y zO;2|=MUNMO4nSZzd>U~E6gNIl!>rk>2jWxmeTF|3ZiT?A_@Pp(42dW>Pa-*!(T<|b zXO8oC+aT1S2;*wns>Tx*uTyZFD_djG-gPf)hx_ZLj@y+BfwNKm6JgsX{@|BZ?Ate2 z((}UWgM7H6zpf81u9}cC|5y&&>_IW^(RuYc{>r#ptNj95#ossb?q*gNqqT}F4^O!b zU~WfibU?VWB=;B5I()t{0-d@BY%-}ER$M%|=~!0oXfruEHa1<9%FFe`j!^7uC(m=D z;TofuvaDn=+s?6*)zQ+9PsnP1DFYY7KE?a~DdFb8Xzj|d&KG8{pasay;|u-C{bsnF43-nBgoLzWR}^DsLh982U=7bu`mn9BGinN2Exm@$ zK1uNKl~)TAue5<|=N)DODQA%M+wM&oBkxsx%`!M zSAogZk*>A4om`=p|Ed!sEbG-6?#oFjB{ ziHshWn85ukUB}Va=^Lhrdv1UQ?Qpcd^#keRj|FVoTcWgk9uKHByHiKVNXwnjfbya| zCJkGQ%qds&1h8K^t{;^jOYE+7K`6r>&wj)_?W^6+vUa;BRJRe89lZkAnmAx!(jvIn z8qwvE&yijC^AUq}wBIQv8iNO{Y`=~|$BeBqN{v1~WZ2*d;TnQWEO`CczN1(*Cnkvn zq-vEA>tAKq@TS&^>>(@o+1aHguVc{8L&5P#TmB9EeGFRB*^n~6rVS6MMoA3yO!meE zH=W7z1C-=R=@8S7^b1`|gXY0heVIusw9`hp)4%B1TufR~(L7O=?Tsh-?a2mRRkHJ- z7)Hofn+1dGO?Magd?%r!>ETe5*CcQnhDVP5=3KKW@9p z5#ecr6vMz%DZy*=q|rDmByv}$?n15)fa3J}CTr650JnICfB6vxMn!<+q(SuVw8nz4p8Os)oHl zB7JFg_w&VXLf_DTTG5D2Y4nlo>|oqJTTQ8jr}=|GBvWUtR6Tush+Tyaii#kcue-AR zF&&@an|z2mu=;E%Qy=1X@nTM#o})g1(N?Ls-0q!Nip@i>+FG}r>BiLTY||N23ZqUe z+aWWemw<(5{E4;_Nav>5q_N_GR(8gzDA(mm{!F6Tqtw{5HE2LvFCT@XV0ap!8& z1(vHysBZb*%q;$QI~|yv+?ynu3O^IHh}WkWa*_45~r}T;W+Fe<}r+besik;*QLFKnO_W$B!1# zqv+If&jg{ey>B;TM>|#zMazoAzP_Q}KXl|cyxisYU0HYRmEbU%_kZY8;O-|Nu=*ah zD);g;dJ2)*vZ-$SNU?5rX5csS(_}%15&pWpxij(gd;$H=>bbb_M^gpZH}Cq?t}pwLYJ(}N6c2a8J*qrL2mSLYy7_cQXEC^QWGlq&CMy$k$(}zi zm(jPZlx8EKFOs)Ux3o2-YX_FqRTx0ecik=2GjpMfs5-&RPQyG z{dL9Gzkhs6`EKPmA#Dqa_%x~!cXU!b_fpk(vYr-9cR3HbCD6ZFA+M^u^g8wn(yXxG z4WJr6Ijc|1_Sov%ZH06wTAe0q&+N_C&+LMgvZQMYlV@`J)uYR~VrDIIX_YD~;rd8& z>hfKAM(7*;pxqvMPR?|Snv?{-sRC^v0WYufZ0Crio4ez}O)&P9n&0?jU;(Oo$sd)X zp+6?p3^K)zwahL#!|N1`jZIZlRC>tUu{*fBqt7BMlIlWex zIsGSk*;9U>RbM|924=_<#1R*)QjIKCjdb?lgmCN)G1r_k^mn8eQ)g19EA@@O*r3`~w1YKV>dmHqSp~X%s8wIALXFHl5rB?aahU zsVlO_#HbbkCZpfxzmUS;fgvd!LZ0Nh!gwuYYzyYUq(N zE&Jo6cDHwb)k8oB*`M{{&rwb)hsUP#^8fpAv80izZ(FIFyH@t!8;Xk}e+g1Z z{zEvU=d3`zkAujwBrnl!>78>kx8lY~wSCAEh>~I}Hj^JF1%Q#HGoK;ly$=V+n*Z(2 z$Yv7`&c%}Ax}s8$(L)VP7ncqbTz*|<^F;6|QgK`u{lQPhUg+W$m%#x#JdAx0|MTvD z!}xmwNNGaHy1Fh~xS-H9uAYL_R5UnI=cko*$Fg}uNPB7LG}00+q$OLYSx8IpPX5u7 ztje(I%jY{-_XUUMV)?v!j1cyQ0xPOJmsbtRZL){#_7nSf`K34b_$!BIr>9|tYBs#CHa|ovF|jI? zdOrNgPJLR4NxqltjiGxxRwUHg#t{ywQ~E7v=IHiU;`M*{4#HOHx0kZvJ%@8A?gzG1U|w!*3p=IZ%``3VmuPfAA-W z2nm8gtjjHOu!XHfTlX+kNQRipsY?!blQ^*~@qgvG|Lrh>kl?XsFdag+MZT7|ql9GK zm+D0Jw27rP{_!id~10GVEW&Nz{LL!_*ve|IFooZ+@c* z*<`qx*_8b|!kW__^YZh5&{C0p^M(Ki$HmpHW@T%upuhN`f~LT~zfIS?@dSxx;b}LL zv9eg-P|=a2#QlhnXX35sIe_!&`TdpOPPhg&XQ-;%e7^dYN9QiJGB|e32q0 z>FOi5BW7-HUW=uTnY}~R6RPDwXuSOus8K4b-%xE@Tc>BZPqd6&l!SozRY9?SA$qU+ z+5fgA^)PuIXgMN|LorzK@Ipf{f4xzSlV6Mq1Zk1FQFM1@l=g0EJql4luQ6tm(8Mj{ z|DdNYtEk9@wid=)p;_wa^h<;@p6lDI2X2DSp|VV-om;B&a)l;W%THqs@I(&1hje78 z%4uTGsweTQp9O3yryo$TPSQY>5FwwaOceBpf6)p0p4U8jJr`J$rm$vgvhF}%O_Y=N zetD(!v2(SAO71kij#wGEfs~l|Rp{WCi1;89&rEShjs!mzoSIfqUA26>8L#XUrbCtB z5^N9=v!1$A$(Bmhyj4)0THp#0yaC=dJQhZWI#- zAiWfO6o3+RM4BUhPNcHCVT4#|i#G%gG&qt@FUYiMDVmUnqnceh!UnNUal&g5mrp23 zU*|@Uhj(PLdQ6&Z>G}eWgw~bIj#sp@gw{QLUhll7{StxQQhd~z8!P*%&qp-C#{XC_ zGAEWUHRo_X(Rx-zxyDO|mgf3J2>WJgGXpll#d@kgkj*1EE9NrMJj}6f12MlK#io%5l zSY%e_#(x&%2d`f;tfOE3P-F~(T8$ykax(RYhYh#%vCY&q+Ggh`QUZdG@4vXJ@H}x& z;navctF5jsrp4wT^16CSG6~<_y-QojwQ1jFo(E6nUqsW{7j@B9PleP#AEh@0y*S_7 z0(O^J4VyBTogE!)QCbUYzY*|064J920eYME%K@}{1bvZrO9NkFSW;K7F|6u(r;jP8 zs-G&vk5W_TfHJPH^*gEjNN;mKJ6^e~E{003&;v{H%P+WD~=K$;j!N|uv z;90!WT93$6yQ1>5x%etpidT_LG#v4zetRDaF)~tq;R$<1+lE^E@$#+ctlrPOpBZVn zSV};R*M8R)R#q$K>f*@P!Je`HN)2$#hGw5_3DR+X)GzL%jrhL6ps zNe4Ud_{rRgykOL@`63m5J0YggxALohZ=^&274ByXZ1Pod4zXhO`F>DmG;8OIX-NTOF7|IJMmdh; zfFD#g0qVsvCVD;`n6a7rG2J<+ji$1rF8jM%VidTFrWaA9^avpr70v)qTv7Xg_Xsk8 z2Sg$H2F7OVjyhs&f+W~Uxu0lh`F%@Y;iyt@ENXh85n`|FK9p|o^(7^zlrQm+?zAj~ zyhMQj+~oXzMRz`>V6wv(v}()L3Tjo2 z9ZY?fWY_unaKe-s6X$3uM+Bm3+*VQNamNDc#5&p6!y}$tma{ zn%d_}W=U4KxZ&?@PGXdS>X65}*ma{NuRb?e4sa1=5$fodeb{f z*qpEKTx(DFLRwnoDX3OcX0I&RV9X9jW14W^}AQp8bLzBfhny zoyZ0#Q*i;H+jsK;dIfGYU(QLk+3NB({FSF}CbIklCu+sj1*Jztv&zamXBK^@FcbDt zqgbO#We_~F;OS1OmHI@3m5pzeXkvJ0RmxcY!Ej39)3x<)YO^oP{a658$V+a&t)GI= z(?@)0TH*GwO94$z?*aqfTTM%j*6opmGqvy^Ugv^*AL2p2ho<$XliAP|1Mt>Y+@q;P zRq;7s)U<6wvS({N&;-LEfhwSSUI}|((BuM7Tr0T;-A!M&kv_mA+OO{Bde{DWPPuK z;^0NR$rpu{Kg z!*{Vh@)FJFLHp(Mu%@JxK7rR#N=@Z>&+sbsXuEk80HNg`!^_m#Femmao(rwq)D zc1XuV2WsesJ=bj|ND!k#X*zULuBN7`&nA=(5euutUPQ{c-;GT}ADeq06=f))P7rK* zHaw51l)TY333LngN;(m5DvaXg!P51nNS$KR_0FQcutM&}k<@nB%in`URbx_FTU((q zgIZ<1&)7?uWPmZe%%s=rG>&&^aVu2C@%{i_a9@g8n9S~)aTfK*(IRVEvSx}|WtCCi z3cOzJRT*Hb>`m_IaJ;p73bfsuI4w$&mexcjjen4!vWDis!N@}-|YmZTT8aoak z<_ym#Rxp~-G}y7WX#$TKFBGWAId)itKD01ySFdctyGH_e z6qV)*?aVXNHXg7KC{}#~<%IifYVAyW`v)Iz$%930?cLZj>Yb6&GV#@9MFjtX>Q}i; zYQVgG`o;sawZij`4$g_ml*_~D@3E8bm4`#EtZ93R)nl=zAa2Hn3}TRTf4&ey@vsN$X2#!CstIP>{%+&tjCVxYDy}6nwC?UVLCP zZoE4^;9-SpzyG%PqVd;!K#j$yme=@Gd=THX(~wsv+1IH`rWhbFxtYxp%Q2^efEw>} zaeiCEw`iNnrxbE#y;W@#;=}%aV4iRVXH{P4ii9bu#z5jrUuiD#eiL@?S zmLk}(uf4@`4qenK4_bL;CbgfO*jj&J%&Ebl2*^{Rnqfbm+UiRLIdMh$J1*o%8X?4T zu*?iOkpHn`N93i0A*vkFpy@6NbrQC@u-04kVHr!xxdTVPtpcYBJF(Xm`%jAuxcy2` zg0!wTU0l>$xy6}Mesay%RPw#Ig9X>?@fldpwahas;hWJ%k}SRjDGF}`jYppd#jI&C z5ZHwrIUh@=(Ey9#VeM4XN9`g3Q$JugGEHGujXxWz-8ryVRBF5&NEijO4(IDUL!p|; zH?ccO3_P|DBTC)O9(IZ?YgM_TdewTk0`=I#g9)?*=`d2W$t`^)M@m}RwP%Hc#LV^^O+hp6@|CN7 zr{a~66P*EnkR$2~J_(Y-!AxP!K$h%w{52G{T2spM7sq71W$oqfN{we)A-LRdQV9o9 zM*=_l;$E}fi8njNm}S=tw=B`V12{^E5kWssTP46kHUXqhi!;c|?AM|l*TduTE!fJ- z?)kz3#r$?gFVynRi)CGd=5RI(&*3LM=?vvsBrxYw-qKOz!<~TV2?^n7o+YPG(B_S1 zZe@2P`_W+qQyO}n4Kr2x5LeOoYnT34viFzc#XLlf=B$Luj-Kg^C>g@2+e23$%RjPw z?zrd0pEHgpGI=GZ@xa-m`lzL9h2+~xf&>>9hhm8x!pnuIjtlq!LoVB#cj6haUwpO* z7qF1YUsWWt)@Bq=KbY7z%ay{b#%t*6PC)iR>!;Y+utf*gyg_nLtpquYi2uy>@pko2 zrNR=Jv*p$+UY5x}R)UW)TDA__B)Xz#VmXSzYd=EvU_R{F7(%b?{})H)FX!j%MTwzLo+0}lutuN? zDSDOd+W*JidxkZ&ZQ;V(f+&cn2&f3y0O=|v3Ic*6iXaGt7CO>Pq}PC`fP#QZ6Oi6X zLWe+r&;+D+0)!;eA%##AAe5WE&)MJE_niIj{`;Q&XFW+)=2)|gIp#a&dgmBeIMaA& z``rNb(_hlgjGz%Sr1^I~9%qOF{z}zXzpPGg0J<&51p3aX6{pSo_|jip+A#iZE_8uk zgzZeQKQ+udflrCK*UDrIb(r2jKZp_q4euY^Uet)V&piKK*b54BT=u+2@aW5ltd;U$ z8&{fmbEGx+V+iZT6V4Y`8>CQafiD&lj0yT#?tO9JJo=KvE>p51Omm)!#66Dx2|mIs zB|cU>Nw4rGuabP=^TnN#oa zQE(#a0rJsAtE30phNC6^phj>%FyeFv-W>8<7$lwrYg9a|hJgMI$h>{O2vz(-rrNv6 z+UU8(kQ3*9CN-oF~dKctMAP$eR;K~im`EanAi(^z-YJ6{D;bsWzfgK%`SDkvg5L#i%25%tnUe@(_{*F&iwoA8Ct0QIw9labX=>LuTs&jmC8f<{3 zl?^<2R;!3jxFaRo_ByrCkg4w_Vu)VLvuPpM6(i$rg8Pis22Vd@rO^o@_(o)JFM#i zJ99-8y{6#j(XsiRgBnll9y*Jy4Sa^jk#vR@6n3*-sQ@HR(xj9-Hn(+L8dS^TrQ#vY z^3LrAWRd7A1KAs#yM!Oseqwrxj#|G70ewc10Q~S=o;##g>801A=q9=0lnwWM(am0C ziV+}0F6InhHDRm@To}4N&dut%6b9rnzo@Pd_djA}?F-8*8vEZ+4$V&sEz=k0W-+j0tPPkyahk=5p~t1t#V}_0RmK z6_5dWD(0z% zqwVDNtilDM-iWhHR*mY4BIrc^xLcNG`!@c1F6`hXOf1@~)=i@#n-<#PFnrJ;7i3=% zF%xL}&^(up<-t3nf%Td|V3q%Nj&cl-zx273+y-VJC;YB-ltQHwMxG!#Np`Iq>j3d+ z6l@i<JfmL%=z*=u#zMcnf z*e7m#XeRLIqVi?a^h1la5^J4iZrGekwy!52kcae=qWQ5|pYl>FXL%0SimTa8C$ph}bQ^;YRgJUn6Sh0NAzCyN3#uNdNHfvEoipM!bwW$xr!FaLF>Zt);| zr-+8n!T9}c{DA+%t3`Vki9tYh8(z9m+wsyWTLBvSi%n*e0X zBT{8u3izE@DL?XQpnj(8%`-&Xwic<9Go!d6giuM*UGHqvEiE7=%1I8BR`f`XM%3<$ zbL3YVYOB*Eq<*!^%Ff9&8y!VBlv|WU^NXTg8y=4v$S&B1DU7DizOYY^s}YY|=znY? zH-iKCgpD`xe)cOYrMx8dT}qeXD%#xu#fKG@)cv;OZeAX-A+>nsAzxa?*Ycw-Vo#GW zGWJ2^2pQ8>vXXg>9Q&X!F(f^gMilHOW z0BXQ?t?4qqae+~ux%?+3u$;mO47wi>2E zIjOg`^ra79pc~-)MNt81RH*5*xz)+&q^j^jp7;$|`H=jNF!_TkKL>un6WQnsD>rb= zNLnkRmYAeqgi^4W^uiWn5|DhNqI#|*P`qD^QeepIS2e?n$~LGW<~q*}>Q9YvgwmsT z&vDH0PKkWAj7HYaV!8RAfY5dBR;Jbm~EMrOY!Q2oHUd3vy`TNIMwZ!f(qN*MnHL&fvwehnm5CW{ozM3+f zpsf_L8==Nc(;#f!le84X+jBX1-su~+&nz~NG=_O~5By7wZ`%_85FT_Nn8}}h!fC%x zT*N%FcpN3N?|zUhp_M@Bw&tnITdo$Z&@2^!#{|}$`2?MASA{@kicduN5H?ytz{_+Z z)AQG_3sh88I8`KZ2Ke~)NzYc~yct<%CXaU)-diItuiR0SQb^m>LVLmiqh6^B`q$a#OGB6zx^jU$Ri_%j!XY!^Yo6b4rVAm6zK8T95BIfs^Vwq(h!yZI#_i9csR z8{|`DZnpn$BQN1%u>MDf_}gRi7WvgVHA()`LxJW>-)jmg-c9V1>}#Xr1?>GNv&*K< zs-$I!o!R+Fvx&TnEZ*H-`a3ADyg&G*rVRbzZ+N z^`|p$RpveWxK<`2+~fTluPH>%>j2r(+Uhy?>x{sUJDiJF0qs1e=nKc+cz|CiVwVP^ za-(&dudO6oW$rI-f8m|Hw>A#Ezs+~pk?tjAymw_Yxg&R?l+szj$APi+*Z3q`*dk&I z)^vmdWmbBFl?8U*`#VvV!Z{4QRys2Tt#zwt@7y6T&GI~vj;O+SBPHolBhcuc}Q#-=#|6E6|!oXKLe z+gsadCJf4%Ck+NHk`>)L2BmIBPXK6p3kv+^7exm0JG!>q9KQD-!zyBfWyQL)(AM6X zPtYr>)Tq$bFXsGuFP`cSUtWqFIK!$`eVn-am8SeW9OBWZ>LC&t+z_0_i{I<_-3pw! zZkY}g@{u8Qg^KR(bbgDVB@iR`okqMyZT(7O)yIh0rfpr3r&8UzZ*qD*D)By1U-G)%D3&|9#mUg!p8B>%k!4IX0#E zv-R}m!>GPJz0BCCFCrSOqxMeW4+H`{_g1-V*z1=RcXyn=t%l3m&e+K0Q3ey$X!g(5 zOWV_deC8J=2NOHI3v*~^F7@%;`+PiT9KANc^qZ1wyHk2pd;)h?Uw(`y)jvLY25th0 zsSXg?B7Yg|*4Lr9 z#H6OHEhSYqGz$>ZUx?3xbHyJUsj5zXOE0K7>EM}R&Nf=*KcrZ^DIT!7bKun#86f*> zRf|pM*%#`H8Fc1eVF|UY5AQsrO%>!-Lh3KSQ*b24&NvI!X8N1LYM_y+opOQBC0*Gm zTdg07{!5($R8wNreW4dG)6RKC9TycAFby4+>Bm0aM>=FX*0>p&r$cox@6{{^PZ=Zf zP14Cd`r25H#5t(-&hG0&E|+JQb;39i9HDeO5wr>)Q69ri%&Kz2pCI3Qfll6b z8#P1j62C#{IwP;Fr@ogA>)Dod`CJe|x09S;I&D>QUV`z2itM^7`B#}+CP(5SK?nN7 z=jV|M8 z)%Kh)(ZPj!UseAnqx!np7%h2D{p#VUY2+Q4npO&O6n-nWBiu1#H#4Yq`yqK*-gD0a z^&qBLtTrZ0rtfszK~`yhbzA$Qyw6VYiSV#0JGva_oUO?92O6^+Qtz@u!$Xl7l$Oyt zM+#{$1e;Rj<`SZGS~O?^!Aphs-8R~?OSt!}xFY!s+<(R7JjOITGO+`wYP!8EwjQ_E zrfgxd11ja^7uvev+X^e<&K3c=efSdKyy4r3VJl8eljLFCB@ySNL^*e%BfNH5sn5u;|Ye4@ZaBt;fA$cPvpHsp=Aj zS4<0VouW%m%@o~lL=9$-zdg@8{x!d6{3;vUM3u)^D`u#ddm-@-Adaadl!=Q~t)5*3 zO!S}qkar!u^f{E@##*j!4l+Otg9KE1IW8PH3=$nDzoc%59&PNCPH@z)^pX6qjJMhwCxaQuW{|? zLMsj#7TIT9B=y&l-GErXjN#`Jw9A(1PxO5DzoL-ZxeJy&G19tqN|kq(ov&c*Xg1z> zW8k6Sho@V3?S}~^77Kz$W_~r z%?A;JOUgK2z5XQ0p-lZ0udc2~esY#=k(XlM#lcxRZF8eaMCP=*+o?MdXOi`t4+P`E zqS}v%ko~~5vZCF5&cw4N?^lJR!UP>QsBpQOJJu@~Ee;}z^X6S-Ym!Aw8+Ns61f=w@ zQ!jnLNh`|c{u;j!4>K=0hKT@{3qHAqd$*7z8*1C;psDh${e;>GRw?V(_5<>vML4yX zU3WH@M=m&9v-QqPmeh+nl!7?z%4ce{Vl;9|nc+36DVY|&?Dj1&0wMOe;*Lo-6D`oiHt|f$@WVp4~asr4a?Jw0o!- zMZVmLQ{bSs`7HI#i!!zh;3uwU$D39^V@BjUtT*@GuUHH793hTH5sQ4s3#WhG5_rt) z@anaR@|w|P85ruFXmhKKE`VelYT3)FnyMRr?lZeZLm=(m4V_3MxVMR$LV1TgHDF(7 zRiqX8U_DzYRlzjl`5t~VkFwJKbwzY4LM7kT%f85h*mF--7%OQ{L^l-Tib>6K*cyM+ zMSd>_X|X55AHT39UolWg>t#U!Z9aBm-2?GgLe`Ql4fmM^=Fs7-$!FLNwm09m=ii7+ zFn}GS%Q}EwCR_QZ6BZ-nkt4T@$G@G8Vn6NpxXc*ggist$&K-!(r47EftGJHR7`G#$ z2c|Mb0sKYz;D`5(9J)F+bUpQQ1cmZPu$Yp`F#Rp|)3u+$^gJCJz$}ureyfyXSlGgo zFwPwDXmf7Yimnwhw6$0J%G~m;Ab}#ruoc+ZuLvH>jjgI)R;OHYjC-RM1edW5Lc280Axm|81m zmd~KdK02rh<~YtqyG%9;n;V^bf3z61ds}f0opsGJL;pFaJPzE{CK|XN$x3T@zE%swJwx9 zBu=q@(@TcDZ5uQ!x~p4H-%uE3QWKGoHJM(wcT{JI(bRFZ{Nn8@p>L%Bw&mTEk-gRG z7ilPX$0JMi7ti$^bxKcw>VTNbin^Wt84uHt0dkPtuOi90+wV`4Ck-O6pb2!|0O_%fK&XSKg*ITf40O zZN)%WH#<#sv$j$A=HoBVghj-E>YKS=(8}ANh|KF4#Si99BK4~_wd|eMSx&L*&Lp4a zT+9c$8GUU3er#@`K+G=c{EhYz>jZ_SXkbH zuxh?d5$x8pW?u0P>a1|orguSc^|LKg>&simg~jd~C;8nM>3Z?99(#qYO0qPKbzgAL z;Tr%!dI)+a0yUOS*n>{^YIXPA1XL(eAqR*09Ia1AF=ItSGQ5ub-v{E}UO2}I{r>g} zr>%gne^6oo>uZ>1T`SO{^?gd26EE)))Y6WLv&2%jMt+e4$-V#ed{5Q3< z3=7rvcF}&pqg_w6Vq0wn~gzvp@c&6b@z5A+Ui?9C!5(EMQ@rBXNr!*Di6LV~Ai|z?&b~1tpU(o~U z#-@$XihMlPSs~1JE-i?dDC^JmrqFs$ls}lsR%DIFP`vpp%4jt&-QzgZr^>mLExsG%fzt5(1Y9d~m$n^@{ z`17+3+;MqN>VW2$jC{>Ums!gLwr;j*L_-@~X3!cI^;%J0Y(>sX=u)dVgYVE8&%%Ax zZtRR?hG;I2y_3oyJ69OX&#%&m2ZK=A0w z_Y@~sPruGj(+4cMZM^?#wyfx%>GX}Etd-EN^;Aa3i|G3~d`Z5-r;QmYp{)&Dzq)t8 zr-getzDRMbcyRRO)i=K#6;-o%<*7kVZ76ms*+0z8yyiNE>e;-|z6848Ti*jJ-xT}U zU4J)__h0`$B5)hG_S1{gD^~LgrsUlY?%K(tKEAncj=r*C`Fz_O}1=Lw(#swRsny391Ohdo7~hyhQ7a^HA6)!*rvLQ*<+y zuK=d{-z?3W0Ov$M{85~7sV{08vVPY<$X^TkSC#bNHuc;KVsqU1QCD^+Qp)-0IlMUQ zRN08ZTO~|s;L-PxZo6KPloe^+(=)LE){x(xpP z-`)jrUL^%U>jUros~7+1`2SqGg&vM00>=V5{`M{y_$%r?#F|4l;v}mdRJ1Gn#@|)% zP1DfPk8UrOm0eOBhR>Zlr~V--(53{{{PG;N;VuvBzuNF$1y|dda8JkWoVMhYr+M&~ z70>>A-2NE6KQAFbvDGKYwewW?jKT*^wLi!9&)bY5CodjpLA`Nc(Lero<&PX5XN1w- zuy**@0Q{xg?<#Wi2}5ZtlHYPF|Bc{>O-e^v6c6_dFaMq3kT>V9l32gxS*ZS(%zu4d z)p}FfucVal-PEMt@B1x!v-R5Q;`+^JSF6ES#{-Oms8AATYoISMgVigM*2PiHKHoZ}6ee@m@QcCn|MJ;{1 z+SbM-`rvJok zJb{t)sz{NQ?#opChLJ}Bt2WMEe;oWpRzMT2UkKGf)KS?0;7GKR-3mMIVmS4yv&rBaapoqNOYR-!SK|h@tyB z0}6=sQ2GK+^y&heGMnq|cLqs0&`HA@J_%oq5$vcv^CMLM5pKYjYST_{fv zb2o!|l)=8Zq8s$&dv$#7t!ok{E~Yp9wXxX?eU_@K@9iO$U)9}b%(qi1{@@#=0JL}$ z?GM;eAKkRN`k@$K0}p9dCQp?Cmz{>DIy5vi2z?FAMK!*vv$GtN6;5^Z08h`6?8ZDdLHdh#k(v7NEcZjF= zejim@ZVetoV6V{#txC)80&6Cp7WT&tRvp5bTW!9v5Gpb1JjnYg?%xX{aE ziwF>Y6b!HLmaNu95fy?{0;B55Ls%?yi>QvR4#4!%q@0ry_pbz$Q0&CVqH&CUlfpn9 z_|$jU;^dkawG~j?V?`W8<0;gn6vRqxNn})161L>VjT?GEQ)pS48z<+25+c2^b8EKZ ztfBg^l?DbCX(dY*Jek3+G|oQ8a$%Lhkxv0t*=+3I&n%|gml2cJVCM&lh>2+s(ec7! zVj~XYWw7Gnm#0p-b@g`Y&&P@=z>9#-+?wAmj_xeV;WzRrWv}Vgy^hX~W3?NJBU3{Q zsBT)I%VEQSoBP3HuaYFZNic9)a3_t@+S;mz3XZ9Ep1h3-!?CYI()Uv+RSCUV3m2kG zOl}{IHI>L+XX`iJwQ(ZFQ|49yyuwHB`gN64WnW4(h5+{n2}X`atW#z-Z=;j*f=mNO z3j1&`*-mQ}1iv=HpmPba*a;SPR&V8BZSpP>_41WBbopKT_3W2QxF=9NcjlAEV#5@% z{!_WdsF$>)k8abuue74aIB$x)`to@|u@x7vY*trvnLb6Iv2LkyaVZ+(zKJZUF(1x$ zVwaPazFSy2aFx@x-2ojY-S#+qc_I4+H#JIAqp$+3@v&@L4oPdn?{u-PhH*16cWXxA zmEVm>6NtMsB?5$?5W7ZsBs}TR#_b`j#bi~-K64DvZMjHJ4k@j8r}*cGrx4%Q>C}~p z`vGN+05Ku0)R)1*jf!%f4>fz?$N*Z1E4Fsg)$Cvee4tY(+$nLd-iux=B4Gyf(JEo3 zkg~QS`(s3;Za}={Fr=@U2?MVX8IxR zup8cgxTmzw&PcZ4zvDFD@C@m>v-=kF$`a~QR~!EReT~axnRO%x3~q8rADo;ler`}q zbeq>*w8tO<(B2UDxkofb)>Ek61?CBvocoO3Gq#vdOXi3BJf;OTS(PIf5X-1^pgF$a zaF_iMHZY*QkHzoBJ4xbGVuR_k0J;5cKgbS7YpcypExj(pk0?*MZf*epRBIjVb^DPq zi06&_qypA05)eO-bGS}BEFdJyA%b7{<=N7lSj&U&do*JoV}f4M#U+p9LVvTw*J+#M zD3!AmrGt%hPr{}VWH+T%?x3w~Vz!>QmB^E_Io-U!lKGA|pL}?*!yg1)Do6@<@fMR0 zILKOeFRu#5yY9c9sXW-+qOI)haR+b1zkan{sU=qp)b>%!f_D>3MzGjy8K)sz{y=AJ z`AfS#Q_sb$f`X^2s;adcDn>?S^4z(3IW>)bF|nP`K1zHl_Xx1ojg$vZR6Vw`sy{=* zXTw3VOg*)h_d(;uex%*`nR%y`2MV%^d6gr2ya!7eb^2?HbConxl)I^2zxmM8xQ1-p zx6c_diVreeKmcTTvbQ1>1}k6fOhtFoDBi)rgEFmFXtD0)RmEU~hhY%7X)D8;8mOzh zf6|e+nJ-m!nJ;C?oKM(&jGI!uyfW;{odYpTTRf^1aM+s6CsWCWOf3+TY!3As{E|uF zxq_aXtGwR&$dmpoF$jf&!E-xzJ%fv(V?_ST=vkzqf(uFawf1LOE&*XBsTT(Pm32i5 z&;^XiSJ=-FXAP7ua$P39ZPztOF+I86Tzwk;EUi%PH0!Ccxsl3bxv;6={F{#n`ZkF{ zwSzFSjc^72esKPpZ{FynOcs3<>$rR+D3|32p!V2#YQr;4Mb_U@kH!7t^_<$H#aRv- z{K1|Bp=RE0jsSM=FNe!zt**d>d3>YWwG8ZQ-*;#0KHf8MoA3fuq@0G9R}{Sw(kkNQ z=9Z_M)n$;E$v{Kp+K5f3aUy#4XsS5xB!^7g=3 zFDm%;Ywh5J@L9sr(nu8%QRy}-M;@U8TCj8rk><0a_?o*r zMYh-jAnN_aCFHZ|`@>nK{W>cv>rMQjPw>7DGH)ZIz|p(!or_$ zP30-=t+0-cjdi;=QAxPM-juOA7i93^7jN>^LXjZ3Zq~{=?t9$a109{Ord1ti{Qgpc z!a*BY&qVLn(HbiC1v(+=k`os;ie$Tip}asgf|eXPZz`oKW+zYjFG|bF6>%u-XN^^# zfdnpP&;elJ$Epo9{@@lSSW&_I2l)oBQM@ClZp7zXC^(4L;o5Vs~vUuf`yJ@~PyB`RMEt4yw^_ zK7>UNbuF!7aC8t%JjIUB%m|cLQZx5fRX+cq*Zin#2oiNK@lvG|#FEt=drRz0MLo*(1AC8&U;mOkS2nXIf5GYYS^tG&I}lB$n| zk=#f9UXJx5t`3GmluR9T@B=jw6|**`ky1KYrb~85(wL$RR;onBg@;1l=nOd1Ea6SUuBT{uGob}XDr_+m0$)$_%pYUPRYPV-k*e2D;ebaoswuWiRQM% zyWiU2{R6auA2qp3kY?~l&(^Ji9bA0kUpkHTJos3hXgYvlD-Bi56;PGfuJc_^W<*S` z3Z@iKJZuBqu>}mFnlpSFxIukKpU}?)O!)Xh%Sesnyv-Df7P6F5fxqH*Bn_NlLv#YN z>D#Q<&87=qzaE&d+&S!+TKD={n`&sW$bcDbMQP|=c#P@j%x0yX>|Ed_j6qp>KE+!K zJ2bgagom{Z(ATkob@%K1Hdel8bRyW)BUrcgWAaT_mqDs_30x~iJXaJwwI?QwR-QD2 z;w`7~D%e~X-UUW-%sVpy$LuM!K^xJ#ySwpesP<6XiHRhMt7VkZ*8y3A5T+o6WE2#z0h!jU&2fWbfuKr9DKj7hsf%sm3p>Sf(Q)h}6`8uBYa+MG54P zFkT**+(c0(2~p|lQYe1{f$-_^o~>fOjslKVM|nF}TDuzheuJ_wU`48YwNZRI;;uh- zlJV4PkugSqXKwr8gXMF)V)*>X#9{&wtW_hC;pXP%Xm9V{$id13n;8|!hWn2ny&}Jm z5O+aXUjC7c%$5hL8_>gmRaN-+v~8zDfS}+cump4GCp8nzMt39-Oo6^Hyz>GcTDw@W z&yngU$8amrv((!pV2h%BzF9+%6SX;(=>_ig>S_mn4Rauk+-$mon|QM}dQ*R)j*M*O z0>ch+{a%86d-bekm_ z#ixdb9a24_pu3{o&pl1wh`*kyRRr?8cE1jp4wZN5dKUTe@#7EB&F2x3uPxIM0i~%w zjqB7r3F@&t)~i2PoN0)JVoQXg3-*S(R`d|Hs!-x7iT9$%?72y~?~T}^ZrbElb9Ity z7p`f&mvYoY=}Rfag>_@+Uvu%f#X(z!X~ATpQNbdwR9BI)$^1kydBwIlP46&pq2Bo( z2PG;L@VMMnZKG9@@=cNJeC|ylhvD|EV#XP^SbG4Qw=Sw0HjX_RAgKqby8!a~t}uPD z_M?Br7Vp{vU(YBBZZds}8Gaq$xI!kpYVOs_??bLgsIl|A11e=?yjI$=u7NO-%%URO z-)AGmd@*EpQ+&{fye^zOL8 z!$G8C>ASz06kQC>7evC*Il00B07xikcLF#vX;=GsfgT$X6*Y=dkl)feTo*EMp!*!I zNn*jTG7|x$iq##Zy?F}uPT$cBtfR2YezZOpMxX(Nzlg|PD_K%SmniFXMxFA#KhYQJ zV%L51D!~*9pQ%!>vPL6x5Kl_)(Ho~y}dD^Nq@6B1d+u+XlEbfaJN?M~gc_8<1{?(WrJ!9f5sN=;xW(@t>~hTim( z$`3tR`7n^dkcfzmNMoameXrafFB&Ex%Jc+w0x;SowKE$fiKOq~OlW9{H)>OHyJGe; zuoF`i5=y3)U%T70*&lQWqOF;BZvV*z_%#&G>aAeG&P1XiMn%LBF5V$~R_N2HQR;h0 z3Hrkk9;y)<1Z}C?&jA@Z3>HJ3^&LM!sVV$aBLMD8*|Sku_JT6V)6w2zuHRAbK*L^p z?*cV7H2OU|;p8tJ*0Zc(PK!uJw$C5Lo+vH@O*`eO>hh6^{t_5vSSbyrqoG#-y>*)H z)R+%9VN~IEUO#p5=Rwfy%S0Zvfp(5SL(Hs7gBR1YU2^jSg9baIt{Y;M2~r1u4MtZL z7PAZ>xBJ-XpsDpn>x!Vir)LjSpnlmbXmI;3uEcttUd!qd>or^ctIzd> z*ynN{|GJ-u;!1fR=YZlA7$PMVC}`yKc*ER&>;*-$e!myNQw+XEA zIqIW74R-@U3RzcJ@m&nFzQ^!4j^aKB!qk5v&td{#lano|o%kuP50l;?nbls9kFDs} zdd%J6z%d>G1xc|9>_*e?Y==S8A^wl!<40Y;8$lmeohlO>4~oA-uOIcUHXnZ^CEvI* zSqog0G;wGD?hI3q&kLv{qnsIB8;3<9)-=+!kv&KI7E~za(56*UzGU)Uq|~CwTvD=* zt!)^Tr1|27=c9!2wGNR0kg>7MUAcv~22itVr_AZh=|rS0V>xZW+cTWNV~;qHz9qey zuU~%SENMs?GGY1-Hqgg+p~z0Up8J;hjIB7+`Sj3NK+XLMOY_HuAE3Jx6CTi%6D9)b zUXA-%53~&UJ!=SxDW$EpLt9}VWqS8_XOrY?avm@H@N?C;?ZQAMOz-p^>}FXeeGCDh z6bE!W%U+`HsQRbK0e(dhZMFUaBEe~v#n@n$E%aGGk}ff&UEQbOiN-0+R5#o1ke7G` z7?s^m&i!LURX?+7FH)IRm9)?-0u;Mho(Kk*@icbI-|5&(X-HgdcZz*G-Ui3|8v1bH zSL|@wT@r8MlWiiSFbt*|o-(Cbg>@c}Dg?_k@442)U0hb$(Pp@-J!vpZR44wh@er1o zY3VcT8j^uMiRo<&J;BOkyWtaVP*qNNN^vT4DR1mg_v)7*wBBejeOeogFTQ`wAH@Bt z?h9hYSpU+Td`LKDS3-ZSMteN*+qc_x-=**p4Gf7ZC+-Rgc1_sW<~i+8-raYnsx-Za zFvfU0^zfjAa)F`VQ*GQGyEdi_fzVa$v!yA{(}zrQ`~6beCM$u8%Q2l&y{SV@7cig?Hv<{@sP)8&aiMi#T^(y-y~VbX?c zptG9-0-@ejB1^d~ij*Huy|0uNb*3OF$c({Hf#${C3$1F#u?Zq6s$(i$JM8C za;7xK7~53wYKcFsF7gi8wxXv;xjDtJQ_C~P_*TZd5h(?fd;a<^v{koUp4dSoGdo*U zjYw%{=g0fjn+>FIkg_EGZh-*imJb8kp z3=|EMElt4Y=|N!AV5woO%qO2ftAGrfBgH;>xVGX;42zM~%;o#MDHNisJ6ufYMV4{d zwkt5f#wVUsl4#e zu%9aRCHTH~?R;5r}R~EI5uy#ofs>Q+5Lhe8+rG{P9p1v+6MmQb%WKPqZ zO&Y;{qoRNtW57$eBGO1aoh(-)qf3{CyTwP$#_|DH(t8h_hz)|m>Pdxz{w8R7Iw0lF zcsh4HvaRHjU*Je zL6#$8+C~o!1Y1zKFvY{(b3U;ySl{OnEF%Nsq;{6?jhY)6Tp+oOWxx)2)mev{mWT|tZp|4nb<94SgI}<%a(3b39i(ML~cWS{whbsfDhj5`Q|2w2?l69Y>pasjJ-SV zMjmE(t+;Cboinu-)>XSNitgOIz103HP;ci4(9ig(fi8$P`owY%ZarGtw&1a2+_TJ5GK!Y||B2BqAy z$BZROY@r^#6qBC*=GWh7yUMG>;LywmC!#2)Yf8b+f$Dg(0-xD6__GK-_rUicbDm*W zTA1{FUcbpUV-e$F;n-@;eWC!Tcv#b!n7h3ysv;V-ycd_;An7XxUQV8YU0yUccGfYJ z=5p~@u!XM`DL8!hBC>J;D<9hNE4>c)@2^PFJ?6YFqUo_{u^Y9eiIlX+=7 zJ(D%yYViJnPkP;*Yvl1IdHMl!XKI9#5?5HZEJXXaq8|%;8HRcx;O-?joz-wcv z0TMS6o!^~JO%5ztZ^TjD*u#%nuIJ6;rt3LaCcZW67dl}H8|&rR#|Ca|ZWSF-jD1}X zK;~zJTz|2=*g%!#QPT7~%G?84+jPo(Z1Fp;I@?tlAqM^#V`nt$XjO+7#MRa`#j};Z z{^FHotmAlhdqc$~Kk?%|MjW%qRUDM?MVfrz64){;h`rSn?U9MyC-AYIj;UMQb^dyq z$am!u-;7HA%E3z-ZFfw$?Qv*rMt{+ob5=AVFGvAKjt~7T+nz4&H0n`pVn_J^>QlK- zL^)Zeg}OlAStEC9x_i%(AVvmO&@PPOcM{6ypj#1NL?hKXzdZweP)SgsKfv(e2?`=~ zGq9bV@b7P{L*m6PI9+AWq+m(L8LuSkIvav!tBDck`S=!)D5FFjXqb_`)fxQ2k9PM8 z$MdX)q?u7#1+1$-pu+jchzf^?Z%0lA&*sVs&L|K+@0?0jLF838n_dB(v?s2}7bp5O zx3wtZ$<<}Q!6ygCFoK9opIaTcRZO|;FiUW=34{BjK+qFD*Jt~X8j`5C}xbVWd zGkSkHkZoNYr67~zZ)N)u!8SwghsO1$8H-x)t%#OH$l}T)1pnlL%e7J;oj+qt?4uhn!0fvJGNu=G2OGqZP!%YfQIuKY=zyd#q-PjJ=`rAH&q5OALAqcyJ zwPD6bd@6*od*1UyJ|u?XHh=?Lhj4N&)Z+a;o_Bwr-QUBPLmFx0V4@AyuYp~ifuFmw z+4^mN3rcLH({>PL<7;Tlm^a^Ktp}8~dXatYS6zwkq2l4V4gE3WjX3md1+7OZP0};1 za=%}&pllV*S2MAC$$M%us1cY43f-L>8F?E_JE6aUra)YUg2%A5nrV7U6+V$xW67QY zBMdn$1_UMtPgOWw!#iEY_ooN<{;I>VnpSLAm_ltPY}n}j0eLouvz#?YKR#0~Kb&~h z@AK(Lld1LC=|6ZaAqL!r&Q{R|hdD_++imR!0jd2Pc9-g!%kDIPJlmRI0_82~H!yKm&IH~Pm!+?!(4Q!tVhHsG9PPeL-P-aW z!Q3$5>=0c&?kv{)3XXwrt*mJ7@yF|s^jJ?`56$3D|V*cdS((_CS;-r+cw6R}J zaZpmqx0A*n6Da$#p`n^}MX2$bvj(GTHuwO1j`Lr687H?r?^jQsaQ^we&Gt9u-(PYW zp8CDEnx6tj@RY${7M~yJiiUvaogcmaaDhi2zP)V`8rttUEkFX@CwC|O5B;)0$7?Tv{Tk$tr0mK`I~$)nr_936ZV5yApf3bU{V$p37ow>= z41x+tM-27T!9n0t{Ht9@ajr;Ql21|yE&i0zpH!be2{ep$pS%@f!%nZCP78$`hfspd zS5E|e8lN=7SudW8}-LF z%6~sKBwm8SiWvfZBR~4@TfYy441;h3%`2SH{@?y#*t~y={%i35>85|{=RYdJm^6R% z#Xl*dK@ds42+EsP4lpfB0}x;Kvixx*U})I--;k zKVkSchL(XK0TQcES`;GN!k9BgJaU5bXo&WjYo^v>Rn_=yb3}1kq{2Rf)9X((i!`NBu82Vem$3Ojk zK17;H^zHw(wEuf?eiO`)e6Uj{{kMXT+;}+7eOt3R;(wO%-(~$u|IIQzI7lq&?*#wT z+`sndKco96>N$D!A7%dQeEDbY{>QfbznQAv(e(22@*8Cf)tross~7(Q-~T_5j`Ild zIZxHp@RgR8gLgjbob~Hx!f%YSpGi=8l>6c5)zDC;#zjyo;cu)k6l5{cidwr9bK=B< z%Y4^KtnW?xd8n!#$Au*%45!Z>4+97d?P&nXCuE^1 z_;1(y$3=yofQ5in`}X`D?@|xse)G3N`SC4nv4;eLWP230OWLFpC5AQ%VQ#jb^xxmS zKC)#&m;!47WugA5%lw~bRycoAUHt<^1xoqc+&T&*AN;AqsQLMVIbjTwSjYUtW~CU3 zWrifO*%KdcMMXuqv$2cK26ISJa9z|XMZCA3;ex;bur47rRe05ELHZ8gVLt1gE*F+J z?RYO9C81O;Abt4{bKquqU8{nN+8=K;ashvWAS{=9ul!4=YV zfkTI}$hmbTck0ola|GyHS$R7^$?}x3G}`c^vzjQ#+~Ake($YV;y6WLc^HG_8SY8e% z(eObf|L?kmX()DCZONJJq%tKSsd2|qo0=}RmdchNYsjQZc$4ZK{c)+2^r3d#&i%1z z9Eo1jHuP;wo=C)7H9@IGv!u%qTCvRLSyt@Zc#5<*B5sT=JnQR0pX-lHr8EXA>G(6X*H)`6*Mn z`|VVhDDz9^HX-?I^he{goJzC}cbi78Rp!vOb}V}D!1wC1GB^N~EpJ=@fuGX8-u6mB zgr60ye`DNrs(DHPV_c2-BywnjN2*;CUy-Ns5a2r(d`KQaXfemi078ul$15kCc3(${6HZ4s{^J)Hv|$XsT4UBbji}q zt;{B7=fyoly{zFi&-;G#hxr^|3?b?nkW-XDIc}Ho0m#8aA)$?)@P`#TI$lk2_Q=RG znjY?4_&-FrKW6qVOZFu{+!m zoB+9?Po2!QpF7cZ?BY4)y0&YIibUV^g@tz`MDo%SgqR%GS5nnC$TkFCJvMM?F&9_e zfbQGp(+)p9Hu1uHg)&i=UY)>@2TVX?zFTtul}#q7GQ{zh`cSPa!vsomkQKr6roO9cB_R@Bg8cy zH7zcR*#_pvJzf|iTqn*x?eu61>F@;-Om0$Ik%N{Wis_wT;;wr%`MD22Ea zHHiKzJ(tw{w(HRa3(L#ZL2%bGq>VE6scb%Uf2i)%uiZX`Z3Vm4Yh&xo^9 z!`U6LlaiK)8n<&P3bgFFw_2g)M8=Yan`A>{Cn?0$^9$&0ws=%G(`r;jJV}eH;fA)5 zt7MW#7Iicrs)s73lq^-r zPq7^9INl$<^Lmup)bbswhUm%?W-QRiOT!BZNG2Kay|3@?euP3(!>NG1ChG_1YqzE= z6}*|5Y|QdsaUopS1J3c}Dn{l7e3P(Ty5w70^egpWHjw&__6aA{78>%^ zaH`%N^Szj$epRMTOL&r*c41iM{FYpCF@rh=!@`rfzb&XSCz`R^;UK9qnm+Sym(_fR zw}V6EuALnrUPr(I&C(_OgEP{0BTPQq;h`Zi?7X~&&#sdxFUDmeP|dgGYsok&;4`uB z+DC{_00mkJk@xh;wr%@ji`2q@^3yRfX%tHfp>FH4R?VyB(yZK&DaKW@GyIH}1{=ov zY@%?tgg2@Rch?Tq=}lyiMx|3;r@N6)6jeQax{u|fTQ2Q09T;`r+`SutKB69uhkgoK*g|a@8gKVQ!hsSAXej1v zrM``;Wfn+qBg{_ez6q=mtzK_#2dm~^R(3SclS@--|0?|FVfC!mJ2#!lbkk|2pMk@T zyPwdHW#B?a8H}%ae$@N-w2b{$-%D!Ga?|ecz2Zix9;!N z)JzGHUp>g{9632T#;U&LaOD1K|Fr=tqzX;RW^G$X4Z*0#4d1H>%$9@H_Wi6T&-~*skz-2;!m;21)Z_DVDAB%?SANu^<6;8*=%FcX#*j14_vJrwV%+BDWQ7! zb$5bWnb0u-Qpi}I338FAmc{gh*c%_yVmv<;#lx>5h+Uj?7|KLggrWPc`T6<|3*Z>m zo%sEXuV4MBjX^>O7w1YFw@AJ_ULl@wYB&A>%f6T{U&5ze@V!l{GxJV5XH>P}X)!ub zXa>+60Z)qJq{YwMhi(*uUJLQbte;y7IgV#cGY9IlpESX^%K`oyqkcBkkKWqvcKP^*322YO00K}ON!mT`rNCcCLC6X#ais7YS8l1;lvY8dBaZ1^&3yI)1X6$HDx zyDMRhV^cgS>+9wLhmk5wC1#MR)Q9%#8CrtJWcQ_CbWBHZW)e)D?L9rwM0`j$_?btR znyT7<^8xk3`@v-%&f(SaLS~=UG_#x&1sRB~jR5%{y_c#zX71Wl-+!l;sA)Ky{|l6v zxZi8M_7a0ZQ1P0G&{rw-tru4h9pH`IHf9gnhb}cx)*;ME}GFo%TqnQUs!2okA+Wm;-2oS5axhZ7hr&Hhggu@u$)xeFdhmEs=4g%hqZT|>jU z6~Q7Eok+VMI@rCgo<-I8vCI8tMQ*oKir=byJ(u`B%vWcAp)$!*Vt9hi^y)3ru`Hb9 z^+9c#_2fHN250ncEifuO`!6V+?QKvC9V-DV4$sc$L2s5deNnL#9HCU+unO`^VuzX3 z#Y=xH%YvqRxEe~1*2Kul$)0X;x!vVgn(v{_zp8<#CPX1fA>MY%z2Kcfot}_DM{;?b zfY=TqUucT`-{ryr4wczi2#K&jFJfoY0o?AYK_0 zwC`~*HQpD&0vhWQc1kInV$j?&nd<9ER)fI+Rfbki9|wif2LGzH^&?|X@>SG6RiF6+ zqb!R_6wgMFfNLi!7uCYyG?;$7CP*m7J(M>%en`1d~l~-Kl4;@I` zLA+O6C5JVR@n&&kRIOyj%_O}@wOz5X=ddpc=yuah5%=0EhBkXzfTj4RH+)aQT)HZp zBr1jkdSAJ`qO45X4;_BIzTS+up|Nqr@%~%3XKjzj&+oJnHdm*{qh2wr*zehNOQ2#A z-F|rS8Xxi?D|$`(*vQ{T?dkmZ?n*wc@Q-x_5D17G zyeCV&f__0&de0f>*oIgkES42f5`u*6J8!Q9^7~Bn35RXJ+ef zr7Jkw?-gMfXrFqAT7#0@D>~L6^xqfh2PnRvS61PTi0a0sMWottF*wPqee(omv2P{n zj7nBk^pIVlTNx%n!t!8#nJIl~ft+^QQi@NN@K8W&<{1ON=u3kV8|LNE45 zC8B(g>`p@qc?rS%H@B{QH zE@1E=CV=Z`XlMdYzOyE9YdGKOu8Znn-_^ofB9QU@FeF$nClyBkp`(;6?5gT9}3 z%SBRl=pnmy_|BcVT~vt1b)4)arONv@J&U(u%)`R*wWKGxLYv^(-P z^C_+e4VEJ|tQQ`G=JKNuX_lr!bu?&5KXm+p09cq3S~kTZb{Qwm$7df zg&Hav)~qvkKT3&@if^Azjp#;dTJGU?3LBmBSy{QngcN9M22lITVpbOe!Qguq7AYD< z=*mIaR2=PY)Sp8o=^=0JSV)~!5YTr3obC1vcvzg-O>9I~l$%XD^m z5Z$C1mBh!h5oG#!J?GZiTr88X{@y0-EMkrVFIoZ533B7LO0T_Y(nLtQxBpJO-IM+i zyGJCf-()O?D_npI6I@HVoiQoH^8L8pPY!oR;1P_ttnhD&Lb_L@c|;fs)ShCTTuB;@ z)a-BhF#n|?e4{uV5doTO(0Vl1Igww-+(9oW*Z7Y;|IS=qD-Nbmu6+M)T%B7Qj~R-k z7w6ON{4yu^EPIQYU{?>@-$n8}HBnHnD6-GP4xgx!Iy}E~Xe?+cAsMVx=b@<~sM(+y z@&>VU<2hPt;OT1!5$|99q1XRJiSNW@w@T_gmm6!3nSGvU>+%nITjgb?_1G3oz(j0T zXrO1p#Gh34V*P>0UFx+v&UIFWRQ99F{aLO~2iWS<`9~Q1?|@>sy9d+zZaZAvlOn<> z#2P1sQ6@*lE-Ma{nTQC88n11C2!c`-x#QuSt-kfWmO|HZRochTOr)9IY<9rVHYW-l zvrzt3iF`cZ`1fotPZ<1^i@tt7XtM-@yL58jv0F9jamif2)71vewd+n0tuCRP())Uj zX!DDkA2_0Un;^zlkR6NFRp8!4M+Iv~a)dQ~&xdw33=Eiy2ro9l2V-;nD~rZ?PoSO+ zL`5=e=sb%WLI=9u6<@zg<4PSlsNR;zFxVA?(+gVW4H4EkNHBrpT(?TI& zd7M54oTg=m9J`3r?8Lqc#=$2a(h@~(SktINZZiFP|W94Nzd7|UE`?tGQL9B zWxWWt5H3rF3sr%>!S&cBR;<}jch=_`cfLWv4fM1Qc{E(Y0!8y_Ej)vOkXS?+upb`2t!)q#&6a0t>1l}RJ5p#K6~z5 zZMzmApa~5UffDN4bu?sXnBnx-p_X^vro0yXqr`Kuin}?H=eMywngz?C3jZ23dJ9Lo zNQzCf5Mj6JiDSJ9c73j+{sOg zZp1gZHK0R#5^W&rEcC&qm{r0!ZZ1MoqyFUW0D_<6+E_TNgMZ8Hm%Qtyx|_axidzi+ z;B}cGHCL}GoVj=pxh_F6)hm@TdE(|_jl%t~$9q^6^xat=I`V+G7zOQ9kK*vE@37SF zwS3fivmrd+)1%Lg{mwasZ)=mL@?4gcZ60yYthiR`IznQ{@Em2d>Cr{PI4y_2ceeS9 z;P@VUND{^fa$@5xsD$HO9&rx%oZo5H&=Qo$s@0TI7UYv8!~JcM{8ObRaBGf?Wv0@S z*;${>p0+t5#uoY)*X~S5E<>_WK<>ztL7;3rg)FKQ%4rf3yW;W&R3yYvFF?$5aI?$l zmvg`I7cv!;*OxwcZB^`R%D-dkT-}vF7~nZxXQyH>$Z)s2#oHh3#<>aG%ng5A5H6ts z9)r|bEY8Lcto$Gl{4J%){rwv6Rs9O!jKXd3VE57U3EU~8e8K3|!xQgcmGWrCM+6ca z>rp&ASzL;}ZE_eU&8Ub9u^OapL0-^`JgKNs<2>5?^E!{sMW;7nP;}W6+t18aDT7CcA7->O z(&k&m`&O1=T4 zbsZa}@FI{bZ5&n|Fm&60!o|il5p*29P{4bu$~4A;hoBw_(Lg{SCK4E#J>)#&j)(9A zhv&41RZhrd0(2XY#yj(5*I zeDY=gA4;5w;%4!$Vhv3TNlgtlLdn@dT0)-+C&9Yne&zUw?8VmEC6N8r5a_Uog58gZ zqs1>4>=8=9YKM$`a|&Nhmwu+`ib8Gq-lmOL5Ah?}=*FEZDi7#5Nq-zYP1vP}`LT=6 zkrq+3M00QG8N%a`Dr+7Kek%A#nda{>u)5iBKCSy>s|mL5oaF_Z$%LSAUSC)Jd^MWK zv$6ztTC`QYLQgjBBP@J)S$N=Qvlf%jrkPj>1)#pHH>fqotZp}}if>_qHl$X<1sT$1 zY5~;yU&uThlh`nmgucJmGuZPB9Ry)m)QSRJ15h5#KervTSe|d(i*v zQTWoMAbf@_!p+E=m>A6`@?dx|YRYT$%Lx_Od*M;3#<3+1p%k}xMM4gcR}b=tyOwHI zF%s-Nq05h&y;S7iInZzMNr+u8Lg7C*Y0C9nDwZ0;=gF|X3b_mugpzELRXpVu`v??~ z>6|(lz2Y-Pv44V9yRz)&ImQ0f7{4(S6(c`TTwr*J)54!M?JGV&oZQ?yS@&}`*8Ux+ z`(7^@!|CbZFK1!baG)O>RLSm*kn<)3jFBbAPsjHBh=%6?Gblj&x?ca zZ4Nh`NV~lqSL$Eea-MIEe&O^~Z`DbT&=tQszT4|TDyQng6cr#9J;hY?Ej*VsW>SR3 zp7Wi^mTcjmlwkJkWkQdM-1QGki?i7(sSbf!{H?bFrj(X$h&)6+R!3})A05kC%(&vJ zfSst~<=ui_-iQLt0zNOlXGNP8PEN5hLV!Jb%Og0PNDUJ505X^u_>iWGBQ_ekmC=kA zJ`M3Y3>Zb<*h3Mqr}~J5pkDVgIE(qI#~BN6`}n$For|@M%9nrPcPAG#54c1PzcJ9; zd+xd=?jS3|_eN~J0_VDME3#`(+T7i&aB+%^qN$SkW;#MhDBw1I-u>|RVi=UK_$#`* z7L}W6F_MqcCN5nKVSI=ezcPx@q%2arNBUZt`B=){wiF9{;EcY&&)5In-TQavE79GU z+2w&b`zH-GKCRORN0)nEO;LY+-sQ)M)uR1+b0s7}pT44Y6rh_X~ioD-0jed|}DT=j*RV zTMn-tb^Z0W>knej-Q+CcBy14fVxGpgw>z`ZErcol2z1lUe%+`4bdl8r^f11I7MH*Dtv9`iWJndgyR)B4Wz!S)c} z;{vx(Na6PwOcyw4QROxC$YJH*e>hw5ZXkdl<=`zLKa_31M=ifx22_eN?!F~IZ+13g zb{Y2&*V~z#|H%Xl>pwq(ZC5KE9UCXi=v?RDBmeF#Wp<;VZvG@+20vo9Hty-MSt6D< zM)01x;XJzI&Z`{en}?3}bffw<$9zX4A<0=hYQ<^Dj92&h&cMJbV_RZ=gkz4}CbHpR z)Pw--n)UeUv(lgC*0U8hxB5Xv4|Ec2>MRcjhgTbTXI|DEn>CUxE1_!2up+jf-*5bR zwrZF5SY}*N0D0~)K`&ndCD9XA82uq9FK;+)P$lBgLF{jXwoq)D#itJ- z53XlndpBrV@VXxG5i;h6mN{inR7ak(T-D9j+72U1l<7Ec5`DbY?+wqvYG!%NtFsw4 zaSskDcQ{|QFfe!yJys#ZQoMr^K7YK(Nc09J3K12xbqWTNa_5K>d%N311%o~2i)*ev z(ON>9EB5l&fU~01VkB)Z6Kt;sccfinmxC@}BQ` zSNlRVP$6BUhy3-0#B!Im-OLNke$`Z<_eX)|>hxgHaVarVtEuqiH`8zSv|{G*%sv#J zKG)#F%Nr#Ba_Gdpp%0fp8L}co3+lTDGaEUE?!yW-QbjUhd1=;TvJt;S3e$R z_v2-tAMdYf++cFDs!OUoWIE#AinPRl2W-BE$y|Y_asvtQrtY~{4d*w~C_^QW`o%Y4 z!9ldrc3*G-bDeQx2dBcTx5>d{@q)xm)|}vm$?UPdSYL6;vw)_;PSp3|T?74oo7hSs9Q^J4e1{{2z{Kn71;A&p2eE+@jnd>5QlJeI(6Om)D%1m(C?V3g}Mn*C;P6KC>5uh>oV7JI}NUj<)hQ zj>yfu^pqJDL7&`hjJ>SiKK+vg_}`&0z@QBzcnqkaAi3%1=e~gqqbwMgHE5n&33y~j;2`iHP4>$ZH(tA2!}{Mu zylXVL%T_O@wvcPF|M88FKive?SCzqX#M)VZ!+QXsA_ag9%Sp{ue+RmsgaWR_lX+-& zsef;qfAqK_&=E#Uut2}&fBvAqJgEg3k~m~ZUiN?9(l0#a00S>V(YVd}&&S%cZ*tdx z8H!Dd{u}D%z!xk)OcpUO{w;X_Obpmi*DiR7#{Rs)e}DP!gYJ&G|Nf%8J^A{7yDl*D z{yRp0&Q1T9$>>MjQ$z+4p8^~$skkZr4e$muzCFYX--at zF~2eRk@5V0H_06dr1Es1UFx^fFf`p9w`m6b-DG$2NGngb^DzZS`xBDdisJviX8v44 zPwv9!PZs$6|JLdL$viN9f1o>g{>=mpINk38a-_P+z@ulef#m$TGLUsD5z!})Zw?6k|lg9k7EwcGgL0^0gX9)+{O zPKR3Al>qDzE>S2UExh)tM3dW!hQ`W3qOmb%&dx?KtUOn#9vuFfr-qT~LayBoFvW!R}IwM8S zzI^i_B?;+J7xdhG6EF3^PUNrl|7*7u_?hRlFvC5efsmq!E~QkKl!%PW*m2(NyKC0T z$9EK9o?czs$uxKw|F0qa&v#E!WiJ9nOCvPdrRCY(qKm9|`Lr3v)_YpXDf|}i!IV_4 z)RI$g!ef6y+}}{^hyDO|n^~xBLB{HVlE+P&VCHWO-kQYWD}PO+f8DIZ#ob-x_O=B7 zgtyoGD-jo7rgGh+VE6yf4T>B$SrYr3mNa-=mN<3)@h^^&`}h6l$196`Ul7AXy@Q^q zP=XbJt#u+T97f(rmqKBhF&cn>!r^E2|Nd`Bw11G;`z`JSwSJ8k_iiye=d@cyr~b&3 zPtgdX2ExK(@IeLyuUss}e16K-GN2S94=Xct_RCu_PMlo5h6!Xyi6y5>MD+i0N=Ql0 zA79aXE}^Yrq$P;ZNAS*ClBrDSvSU>i_j~OWbZBRv_RdOwb9J81+GZ^SIa{2q1#Ga| zJLOf%1NbdIudg|_hK5G5wGbFkDwqhXj&t6yupvXQSrsaW2R})^{jGd@`ZJjlBrXor z95#GC^s{QsF@q-= zwkFV1iRVaw?!E({y}fqfSYG4GhY!m3CIVdGlasU&ePC8R|Vdy9A?5^XbvxsaZMXC4|Qp z+TaRJmCMZM+SYDv@cQSYMh~A*_ZSSI)iKw??J49}T}czAA{@M+AoCR|@pIUf7wcgw zVa*~3Y=`q7F9G$?Gvtb^_qtNCrqrpbwOTJj6Qhd4qmR6{ z#>KL>J@~-|& zYj3Cg8Q1(#LUPhlb>UXZo3|^&EUeyfeA*P!Cc}(`a)#}p|hJm3;6U^x+>5rlz(2Y{J%HEK~5=QB}}p%LB-so&YQY%J^j$OrKWWQ_Bw zg-$;m98{@YF&5cN!{Y|ey^s{~a9?g#1*!{X&CJeXKj~#pEUSSDJw0yE4Gb_3*`hX$ z{<(fk-?7iStxE$7bOMp+jmP7aVN|aW`1czkmoqitq=YPW@6OI*D$VSi$Ow?`Tq#rDdyer{^OF#K8Uxv}M*i7925b*Uj= zt|!=nR35%H)P3RFwUID3+8)bUlfXXSY8Dyu?j}VtCRk%j_yA0F!t>v*dSz`2|3A{! z-*#zh+%v+%oT-%k02E>9Pyj$#@P;k_d?J9mb(w4*KG3H-M>f%9_4(6AU}Gebmt;ND zVqU!z9ypUBGgbzz#x1<3S8-^ql6cs=DI!!vaS_Kh9)vLQx#Zsg&tZ)J2A@rpPnbi4*bOXqKdbX%AL}zq19|;N zlP2$j^9ovJM^hz-2W|M3(O0{}*j={)u&T0R(PbBB<|BR;d@$T}JWBpRe`DjYB@`9Q za)6Z2%;i|$*NG@xlwVB*7%$%L6wNA_fF*!-$uS5hgT25Pd&vsv|F5>t5C!jId2)icY- zm%C?x@PdCVOloVb)!?f~mfLBXWU9_}pwnwV{CUr#h z(NYd#ZDB4YIm4N|(YVv{5?GWg_*)l0X4O;V^XeC0V+f3A-rMu%X(Pop$t51nEo-?L z2hNG1Jj2wI(Tdzs9LfM6VC zXwJ+ZKWMa4>kZ4pTe8X^5Z$|TQ3&J1u?^t#@$W5ttz7@8x~QmWBf!uTnG8@=n8Jn- z74s)MRf}gb^v(S?%1THXNxofX$=>?T7&?O-+L%NJJeQl*`r(+$;bIZ)9u()kcO9!02vjk)`6khJQ5dX2t}O z0_LA5x!UsXOzMGt-GO9XLNqF?)C{Mn5Moe#&I^d}{WCbnoNlj3c7x~w`v*JI=%kNh zR`i5Nfj7h{MjRhV=5-OZL%z#gl3_x}p^qGg@mPOAz|cdo`ly!1X3)swGO>U(FHV&X z^75&%Srb_w?f0m;ZC0lYt$Mf@#I(&#=coi&a~_wKR(xngay4JJK(8@`mdtWLCA01$b?=J7-^SK_Bbad#iP9-CA?lpYPa) zMDV;uy~hQ%jmYP*M&d$KLjZ|1$)g_rK9>y!N1_e^WVsrUG7ybu2>aM^_=KuQe|~Z; z>bi!!9o8eY)D{koW3v(2FX2-7D<{xKVgzj5*v-MS9OZ?{rH*%?y%FcaB|F~Q-T%Kq z%%jI87=`!0{1ai0IskM6zig{Jz57I@<~0;y7LOji?tE)8DKin_qdljE`I;!{DkM}x z)I>{Gg>yWPiBmWr8x8$kM|o3C-qYL@yfWKM5WGK;ILwR?2%@)(*rr}=ftm+c4oT6=ejVfPOY^bE_i(t6WZfB z7TOa}K>uzvSc)yMoO!F6&sV;F?e1VXDt-NUFNLDv=}FNU>_erk<=yCsj{{^6pZVK5 z+S|QVnWqtdz z(;1cO&n%j*J34*(15yUN=e^irz7*1U{b%s2AaGmcGP#Z};=Ka^-h$p<9snSeM2we= zqVtWB0b-j_Y~^fOnmh^!p9;~p<>fQIu-Vh4iw#y55~5$xvC2`-*oPl!0uY;aJ#QLy z5kuagWp1TL(!}3p73;1RVp5@#MSVlHvt>aakZaf!P3zHcj_vZ`Y z927J(G^Wvf_?wPdP|Un~`ahBEOY23B_Cb2NYA)x6jC@qw%mL-*{|Aws{l)HB?Nr^jp_I^&%4w;qY(pe1I)d!&}SnR|Z z`E^!H%7QZHWV5kt1I!YtbkEGDW>Cq06aeZ%TsIydFRJ!Oh3xMp+|##AjF;`G>d&oK zcD5w|CXllk=XS+KHaSxrz<`{$jR!4ZE+{-oj*RrSCyzVZFE=_9UQ0;Bni zE(wvVC=|?>lNEiYu|W4NAUJGW!~Pt!3f3ogS_^nCvsI#kN%c3eZ~c>9fjvzeFIbOV zOM9Q2n;Rv6q5gSz|3y(A>=r^Kj+&fW1@-HvQ;TIzGd5^D|7Uab>0t3Zrr1+NQ$XwQ( zsrN`F?L83AwPZvHgwJ&TgPPvf$ZKy1VS0K~X8F5rCrgS77q_2PP(-6p7{GDY#yU6+ zkl$S8zJH2PJ?ES^bzLM2<$EV8A>rV%Yv3?|%Ayq>${xRxBsse&Yyk`m? zsIM!nbNU|M{3S#q!^}Ul<~w+`0k_;~dbYCbsH*?QHS^(|p7{+uy6rDC@i{R<>BDC5 zMjf}MThq7ycqpCNWm;WIIz4W5is>`92o6C<7&aR#rJD_o2B)iqFBG!!f3Um5R?S4d zvirHr@Fh-U45Nliv&V&puZ@Uw*@u@F)h{cNW&A zDGnlY%ErKIXzVcY)24sEv#Tp^Q90@^DPEW;6?7K~em+avE56@OueNJSt%1BeisExv zrZB|Sic3p}Qsje(2!Uv_o9I&D#`bu4rJmV=`D28D>;!M#L;yBJV^CTZ6&1Gk>Vsz< z1stM8k5^MvE~v?V4-O92Ne=x#k??Q-ClZb@_N}MDPjb(LUpGEAyWv23U8Zmma;Zo> z$QfA6AxZ*c#1G<1)!zQw*2T^)Il} zDJesx82_==MQ9F(=sAHnt5?TJ9dp@bzHwlpSB%0y?RyjY0hEq{hFlx}YP=vrqk!f! zkvlp%<|=={e5IhLTP#Jr$WG#G643jew3z)w19;9}O#kIOh~@jL*q~8qz4M>^cG~%y zA|;}e(^;%;E&DY2VQ~4~;Ex?fzn5%1U8Apgu@WRRMHz*oH&_KHO$QH*c4HXI0oer} zB2jOLN{Giyd#}DR4ic8-Qf_!8ML(3T?QhBDk%rtxsov3b_q%j_7vH{{HxUw4cdbjS zul)^)7tNWKjHb}e!~TunmY+8L_CEF-Y7r-|evmr3_)iv~xBhXk32y}4MfT+YYwp)` zOY{gyURhM|nm|;_9e}YyMI6_Hz9_cBk5|LH6ZaqZpV4;5bhfj<(0#ADbgt%Dzz?4< zjugHtzL7dA=X|^Rn(gJ#*(JdmuxJi#om2^-+FJ-O_wpzVfDE!l;t$()tL9 z`t>O)Wh00w6AUI6O=QI+oRIW^w}d<0$hN9QM%SQ4eXe@*moga8uYt{XVzA+)6TYO* z_bcIKybT>Fsls7=BZF9cd~3EB3y{C5wn}%P8f>PZ2c$O#_yrY~#5Axy{LbP9UQUt4i#9q?pTC$VU1rLp$}0m$kOi&t9ahB z`)1MXoCv9hvAV~ro#8jeY5{@HLJ87hXu!QxXwJq)KM{iVDyuIt4+)2qcc#B~C7(d~ zIuf(IGpI6qlq`P??U%K!Rfa#xwApb2wvD69S8d%hG7!p6k4ny-)v(rfB7{S0d}gHp ztQV>;KMn`^UI4T~opRDX+T)QE4643nIO&$7~ zO$&U*Gof`uD0Y5Qd(f8e`TB~$RED+s*{X~BoA-a!J^mG~r|tWy1SA02=l<#t%<-_o zn@4mL2zF7%Lh;2SFntoEYUGuDf152mcR=#14V;z<+FoCYxCl8(X_~I#GTv2VFm-Xd zyb)Lj0&kk|`R9Ufqi_O4?e@PZ?y}_*bVq5xu)@$!Bmr$H2Lh|2*rE|d@4?O0=Gubp z&$8{{WwH8fxzHyGJ3IAz=ufv|*3X^KuLXSrDuTG?^W_0xdEKpdz#{ahcPA<}SU)gNwE*Bovmo|0f zu5)iC;BLk1S#>d9B2v!hW1}7)Yo~c$=-A?fxGUdzp<1`DtGu(Mm-oSswj%RZF4Bgd z_XDtE)0`71zy=%m3e<#uA1>w1&ow@_P)6I{KtcmC(8rt2n%qB*Rxm7v3Gt_l9{vFA zB?cO;M+oHor2BVN8#^;KnmNl_VUpIvt!j_(b^A788w*B z5Q8$c+{M-TWS!AS1wNMI`aM>0OkRuWFgiwNzf$Xb$GiUh9Ut>OaI!x62-@vy%_7G)EN&JBRYKi^WoJm$~a*!>}E4 z2UP+_yH!jopMSh!1PaN?J!9pmU$d-k;T%A%!RlQ!|1EH_eJ?s_c=j6@l3xdiW$qHo zY&x@QrdGUhkpBBxM8&~8qmJrk5o(>oL*j>3Wxx9gEbjiXu=ZN7F?hu&{~-8S{;3wZ zWg_(95w=QaZ$5jx$~OWeko5ae$jJh(n7cEvglgyMPJ8$yFEhW)q%?a`56>ZvDto#u zR2@%RvrV>l*NdEakUL!U!PXKn&tA5Q*#XiP(@Aa6pV^5+HoNgyw5~^jx`v{cfdIEr z$T|oFcbiWSZ@>TnZuH}YMo+0%JZk)R2Gbu~PngIqWj6XqS6z%j?e{IGbfQ%Py1Z1z zhqQ`@w9LBzkW)-m1pv-f&fF3J(}J{t+EICpT8U*e0}EOMz6G-4evJ0Q-E5hW;UO{* zRU=*BJdFlv;W6^03V4MM$oHGJH~3_07}uSvw%#K(u-= zYqIg!K#zRXG0_qRAnk@;h4>p|aPuHQo+eXJ8nE*N1yj5*6ykOhS)|EX2!T=+V7!K~ zKrFNV=FxruR^*poPyg|Q|J4QQ%=-(+7yQ?U4J;>SCBFhQy}dV=#9z8IqEFL1@s$#F zgR~Qm&CZ5LK(D%O?(|DcINAqWr->;q$W?u8cc#_Pgv*sa>K5xmJKWHnSK3bmq{Pvd6E@OIwL!9{!XkGXX%?;vt`YF>b;bKq8StScYOH%u#dCx=27`kqqTuKQ0G z9)-F~29fx$2+wbtB_3sHEZ-LGXlw*#_Ew}}QAJ*he^x=o!1SLYpWL$#8(svqDDHq@ z$E#I=6wrKs3>RFCuN;!=$#yV>vlry^g-JcS+T;Y?8t;nPB^%47SuV>r;2osY%a=ay z=f@nuW0gfRy&-p|W%g!O;dSb!QYC9Wbe2twU1E{>CUJ17BGz;a(!a5RSloq7fAd3l z=H5kok8sz8suxwQ=ygS{ABCRP@?R*+%Qb`qiSM1a%Qxa$ZGc1bT`3%BL-4`kMvY{V zk8Yxpzctx&o!JC@f-ximIn7hU)N zA9P*zs@+d?o#@-YZyEbd;veX`b^YWny59Z*s8OhrV=PeGego`=l~P4)*CSurHrwH4 zj)NE3WOCSjpeS56NT767SJ#{^@|5H6IiD}zut7qdS=Z_&>o=G8y;P7Z%8t7VzMiRx zpg#A$EA-4Ff56AuD7dt3Kt%rS9A;?cI`~<^q^=0FP+A)L_PvDNjH#pJljZU1Zlkv) z**0NwE2x&6Am7cg1%X2kK0e-vQwXSy(*U=*vv#*6d5VqJInO7-6NMlrepo+mRrDR> zcjkg=aebaw9PN*E{TWG%3~w<*%;I@v6xDZwCdj8e`r`;Y-f+=OH2qD)CsKoE&Gi_W z4Bt%Cn1*o5FRP^RRp^`~Zv%Em`cChB(@ zW!aB>loaq~+CYz*o+~XWc+XwQ4t()2!A0)%<$KQLym(Kd&PmdJ1%u}X+3=FCHc|N^ zI%a#+rq*dK=Q%X6dR)c(9(|x)Q(R3oaUp~mzSFE#7j%HT3(wcA7;ZisA(1p4dVd!` z3Xs308!-wP++%7!;5^YOUI_mfzCm1ZtXIwROD_SuN)ocJUU5*}ON&lH?I?;&b|PzZ z!huo`z<~y>K^H1-upB1=4SuR5JKmXn@&al7ayJx+LCm-#WVJHKEQ=3#-^#AemVCV{ zg6$9)bd4I*#&*N@)~yfd1SF*Bh+HqAhk}EwrGAl>$eI$Km+CMIFA6q}v$sWi`8Eeu z7u(s>K1OK>eg$i}!Q(tHq~AGa-8s}P)_^DBa*M}GEEI<~#^QkljcZb?^H}`?FSWJM zVzIcu{V@J1N&swh6&9SGo3E*vZmB&}9s4Wp5t_uCi0bL5Z={KyEGm25-r%bBW90YU ztnf*HUh~cmj?O?Hw(h!t09at2N1uK+_bTt z_4vfeluQ8Mz578dx~RS3b)nffA11QeU{9V1129XEsrSpy*=kqxy#$1t^Mw-uK&mgw zAK2ZT6EgB`_8xSd=$gr*} zg=%-|2^U7V=V)HC8+6&!kqQo9u8AI6xH_;}d}P=&5^w|%)jb%Zk20$7zP^V$r@BL* z;3C7_FtfAkU5?x8fz9$lrfy;g39!&C@5IDlqY3EK`thDR<2^B5es%>DS}KJ?fX<6s zciZt(;gz`}fCJ}s4-T9gyIFc%b4PtAl)_zFtgbKX299x%^((9H-h-5WpI|SO@cW_QN3dglIm%iE#o{aC z$HKxuS}FC)+s&Gd+1tHvz|@1^A5e(MZfI2bF8m>4egk!jIi{}~P^bmiDge={IE_OO z%Apz1u7aN}H!jTJ8)f>z*`)q4u~k|oI-tXIe$Bz`_Lu%GxjtBQpa&N{N&ph@r84vA z2C_K=zo_wz^V19Pke&m;yhm4f=X^2{I+bQ47fNk(4Z^!&dU+EpItO@}u`_Y@9)Ute zYQw^N_GOk{4-6EMkkMm7wNX1kz21nlWSOoeS@|ps|4$>U%$i-kf`5aZ#|2=8>tWgv z3*lH$@)7sDpMOwQL!y6T#h+gCHp%`PUGMnxyk;@>LfVi76@%jGJ@R9GJl)i9%Evx( z?)2m9O9$)ce|b?xGig2KXupIAbNh{_^uzAA$MYiyrZ7h90^Lrp^exHNIb@6Xf3^4J z@ldwy-z}s_BvNE)K@o~jc4-kwVaQJQT`~3{Bw3=8eT|U8*bOtxSVGzNnX$|yS!c}1 zGM2Htm+t4epZmG<`~3cW-_Lvd>za>iJCEx;j`KW^^ZWfCHa_d&FCbUP`mY`P6AZC0 zXj-WL3R=nF4wvcH=0_g^z#q)*et|fwhvTPA^>LW7BHXk$ohH9P4gs`cJ$<1Dx=Rrm zQYEqM0fn&o4QCJgg|j#C^h8fi2^y-;WuL8m0a2MdOQrwMOZ@xD8&Uu21!R~RM78Hg z?dno=v?s%(J0T}?*2S34NM7@hxlu#tlk6ySXS*!=`fRN@dn)H2>R^9@P8-O+!z0K4m>{{?6K59#5+KkSZQ@#p^|8cWbL+b^J!p}O{HX7670GWOF2Uwo4h z`}U1nan%PUQPIxDvi`8TnAf5_cd#-}($arM?0*9lcL%F)HB9meC0c$fmsQ5yU75vS z?HQcU04G@hquo<~x?YdnK=to&?q5eizf|FKMX<;B_~(AQtP=pksVk=FKLohH+~V-A zvb#AVnCI6D@b9Z20{E?lVJ1Ln@Z5W!UYzN8q5?3R_=D9URsET(X9`Zs$iUG2Sm19w?e zp+Q@l&Ftq;3GFY4{C~mZmHnB3xjtqPXWQ8c85&Z@a=uXQW}-=yvt1Sv>ecQ)ycygh zPTETm{_=tIz_w#naeirca>_;#eAU1+!P)e^vi3WJ2QI;rQv%xKt66V+O#Zb0pCSAk zJyXZJUlt7?}=1Azv;}ab9?Ax}9ATb6f7f@FUX6-&aCcUi~5j%;{iT&sQG+ z@?&Fnv7DodPrCmy9{qbrYoNPxnFP=juDyVl26Y`SQwDDRp*B4H=p^$qrBc^DEO}vn zqhfUAet>6ohV}P<*B6KYEV4H!;ye*P$57$k=9LTlSyowDInqe)4nWX3Rd>xBq{K)k4X`U_%gdmG zL?ByXf4e3=Es1TeVu;Es=e6|#ke0$`C1pG5nr=KlR^&QYA&GGi6}Zt0$l>w~R{?3L zUH!o2iVG=Q+0OGGX2e6u@Zsh%--04ncxs{UuDq_g;E%`8o@Mz2qILCLS-9l@ zSpI#ZE7?6QCqJ@09>{{j2{3|71&|+eHhdJVnfAsqJUn8NH&7lB2iygk5#yMp^FG$^ zDtiK{u9&qTb*#+yAGK$H0jS+sdz$h2{nLdtInD86238X-(NBx#Opfv@J{tvU-a0pz zHIpexNv99uL7Z`~Uw4wTv^fDdjFMY%LTsACw{>4UYAdX0bI3X6x=IGEKQ5!e#Y7s=Hv{X1jJgUT^^r6TpXm$tiX)xTm*E4kZ2#yN>zxs z326v3I1)_nt~wvUW?!L)r-oF1MH9xI7rE`xgW_N?v-EUj5^UZSy>6yDa&!f}Y`o*h zJQRZun1QGlC*S}X5I$n-wAuI%Bn z(#Hy)E5_=>;tkc+BRYMY<8wYieq0npfHmtv^uAcyr?bQU~PB zaE!Nd4!N2dwnH=AiS|f88d$eL$vGavjOAvgrZk{av}i?>I}cdAAbk}69m?y00d}Ku z-%!z1rPZYFr~9)ZxwWdP(L zD=Sxbh0S&aak$fV^1l5vH92RnEdUHJtK=T^+`!^(rnU(Kq%Y-nn z6cr%b`}+Hwn-HL?XU%;*F}JtW#%laBq@<*9KxVrLif9otu6DBRHuK;VM{f^`J1u{@ z$$2JS!K>jI-wg|(?t)ltf6UOoHPfYvs1|AS!*$(&{*B4EteypGny{mtUB%~*7e=ZB zUIUP#K7=1){@Vvj&$(qEfJIe>$D5|ecvaQaSZ6bx*2=iy+NzZfBs}$2S1-jzIuYYv z>uGDB@hyfzkyMtQwQd)nL@s5!rIL0p#;&L~@?&=EgWFEAje3-N$-_QIB=f6m#qi7Z}fS@v* zOk1A@(Efljk=7;*>Grb>vVklvgu(DF(L5&*KTGY#}R zt0vcc2QIG4P~;6Bzo7)*fxrp*2qFr;Y;;aZ2{QyUwTL{~#nR!`^o3f2Ge@7^r2VWQ z7=l+;$Z}hAm4NO?!H%3^u_Ts~*%*9al{WjOG?wgj(^fz4^=XA+X;;JP0FiaqvgnHT zg2ey;nYhbX`7z1h`F-&q(zl=iKp)|X2}!2`MJEh=BnD7q!~7IZxhCDd{eAxQhZ4X^ z3l~iz=Vd)xsc9%8bUt8U-)TRZb(_HH2Cbi&V_UQdCFGRjT! zlLxDCULjYp&b9O-W3lN;9y!P*8wqjk!MGo{wd2~XB;wSq^OHXciu($KlG4??`y_v2 z$Eq4GA96Ywg1c&7|6KXhuwPam#fkVq6|%14Y~38|bCL z^l1c-oL?)5(3z@j;};DYSugN%9(xyFwT62n_R%q*$HgoSVVyxLDw~Rz9$C}Aoo7L) z9MN>~^W-b2>T8tu1LH0jN!V5t+>bJmp-(Z)^MD+t^$E25|5}>%39#xan|N?&vXCY# z#SuLkGGV^nJ+CKUQi|LocLMqRNjH@hSQ&Q731hTlSnSp8QPr1#JR`?Kk+5+@WLCd0 zsi2@3KAL()L{zkN%#Q^-+iy#12DN9MO__o$V=h8C`Dl7KCS4;G>taD8=dCH!p+24YaV&B)*RrK=v^tSFPaW7)Zlv{T8>F)=crHrR^cn%Ac?hJ62v2DJ^7g#3RNvi{s%i>qYs!(@QNakX z6A+*Y>g3u}OIZbv<&yQUxz6NiMiY=q8KiYu&nLg_MkPS77@9|tS~^FliyGpHKqhE< zMTXLbRis}cZlP|4eCl51IUo)@8_Xou`mP`}ldm=C6&u@da7^}=hpu$JHrL*z-pq$A|NBh31Kl@3?f4FAtJ4pJ@f+5hj*GT4~{WCD3H| zr93%O@eUQ@C04gePNB9Tq;lOaCz@454T5T6&e?ZfyAA629{(^0-3<1Z3;6ziYbsmI z#BQ;PfSc(;duv*PyL9yl9vmMT?~(D2{!j-)CA4qlFi+TOiV>;iM!AziGrOG6M$`xj zE9__@BbAZKCh}>scinGE@3rQo40bO+Q*R5H3Ch3OWCGOt>ER_~0d|=0VD}RYa;DvT)vXX?HEvt1-j(vLdt z)sPjCw;fBMp=c&~1SzwO&6X|L5%f&o^7s|;H6GuEo=5uo(dPIitu5o$m;f{$iLoP^ zner3~4_xKl-0pf$U{=7IT!K`V(+UmL~CxEW!ZZEiu z+E=L(MyqTEIglmAm4om)As1|~yVqrz*79Jr=+69$<<0IbkAKG6G#T=R`sE1|NjdZr z&O`4dXq}u1Bt7Tyf}w)MhoqaIMHyfS3aZNgT>(|juLd8TUS|m>CeP!y^o)LPVjnaq z7Ey){>N|Ira>KGHaXBYUX1rn05A9%$)~o8+gkzwo@ZA(w59a~j>Yh&Y0oJiKeM0r5 zaCS?S&!*sGzOkNy_2`=!r~C72zERq@!V2fwKt`obPp>^ZBHXg<#&hgY$ove+4>3C^ zvD_;W43HR1SX%g8@l%Z`jF}PTK&@M5&dM(mgEVRjar>Olqbk>KU~|N8bwsj17Xej< zEY}Baq?E%PdROJL&f18O@DgVZik74E6chLdDc8rvRV?SK+ zi#RXnORIc0Et>h5hWPO3@Ds*r+`85mHzP5|hD26wU>$a8b04s0%%@<%%R69st6d06uizx_?ON2sP-Irkb*I&LtwFEP&fXb?jHPdChSfp5PjMlhtONi~^t>k1Swf)u=o zoBiMk3&#SW8GZ4WO=pt9VNHrA6bA=~Y)~ik&0wV(ruxW<7Tl1toaj5gQm~``NKo;y zlw=DrOZc^D^G*pw||4rn;%b=lTE{MyzQ?Ggj691v(q#g&gf3no@{#mr|w zEEvJ;{!^2ax8X*hV#DGEU$dHLooPl;wSM2ldk^@lx97SW8!ceICK!H$TrMie6!xr@ z_Az{7jERe0!S`$)p+LrU>>1{1-BAreQa@!NBrN8(nf#?w#~SOw;>DigYY%3d$J(rW zpI^NZ-k<~~DX4l!A`uvEjR+=A@swaNy=RU(r{6d&6Tk-| zI9VlamGX98L21FrV(|e4 zBXaTSZO^3#tq>rntSoYNXj*pxZ~QMpl_TJ1YJ&% z1Xn}A8&&i2{+;nkGA%_~noS2WbOz%VDgjlF$7;=|E^<<(t|@pd)%j1PJDL_MG7QRO zB>xPk&1(~k5v`EXj~~gI^Al5!g1fwx7pAev)h03SrU1+@9{G%qntQ3ellxGMrDNk$ z#;%gPcaY!Xo|Nxt8I)4B3v7^*!#6KT$we^Jf}zJlZ=Jt;6h1xG% z^|!UP!=PF$yJQ5n4-#C@1k1W(OATw?(wB|^JHhH1SZBi;|9qwk-D${gE~6`Yro4=U z%M0*l>ras0`EznxLH0(T{-|B9`vf&eIIa<-m?mWr%}Gsig*hk>Di_0yCOUN2KiKqo zIS{ix;3^$4&KORb@weWg;i*kYK*Z+iB}pCz-!p zk!TaRB11u5xjn`>V|+yah{z8{nb-mUjTpY-Alc*CP zn>HV>0L)(X-{x3edTUdQ2yoi)Ko(#jmQ5nP(8)}Pjpf;Lvb=8peGuj10LckrYFOSD z>c*%v$gZn-IfT(64XJ|7RbBSIs$32jH@c?Zg`fBPFyO$Oj@*5nEg^OJP0=kq_D&TYJS;Nx1D zrM`uk{;Hvbe!_`y8W+81Gzd{3?>%ROy^x=7c!X{w|KE3bUb+bM=#m Zp=iZ z-LR`05zjF4t3N^wjnGzEof$XUYJ0G!;Y34Y?@uZ>hvhm}a`Gk}-n?eQkcWX$h~()U z`I_fON3x+|5n>8eunEjPqkwMuINz;=j6X>GZU;`V$e7BvsaIjejUjTD5;M!h(-0lp zyMDr-cHk@Br@lZygcQUDRa zDPxxiAmdq4WL)~$c{(}`P-bPjab&}SOM$&03H&ghtuUCH-^f6}t|AFZTk_@ain#@d zO%reT2xV-GZuW4G2qgTYh+AagDD^X;JI2+QwO<2<477?X*D z!?tFmmGjiI@^)Q(x(1G@w4xYjDu>e{4(xb9bz}RZp6uLt5C~)Jb%3kq?tZTYZJUYg z0GWwUY2SvWc{r!j?7L9d>{F)|coc_(mA2$|!1Zf7hE~@}evl?#KwmhEXsfrCpPygV zIAOIxVmff0C(qYDmrxwZ*;%gOw~FL^z!(hHWJ#VE1Qg*FR%o+zUifF?AD$F^I6^}Z zwq8KSxUIjlA3R6$a|GA$+|aSi;Dc2?&1Q7+FhCXb>BNmLPPYs<8e|*qc;D?B!Y+T! z(M!yjIP}vFs6)6lQ4((u~+ z$(&!^&rSmPr0lrp;Q%QWy&mY4;auJoQ-XQ2tu05)&qh>PSzq49F(#SW&aYp=EN=h} z;VzfWwNh!nq5C5%&G@Jzv>#d9OiF8Ru?4<8O|V1J`87JW#W1r8UOjNf3x=7)F%kf% z@Mjtd+UL`CmGXnmLtfZl8&qm~{Uea*o`V&KPG>Ns z3!VM~G9Dn!0Si^F#6Fj;RYZsdfEQ+TRBRWP7QpJ`a9FlOSz%^CZzHGir{eh@sY`Js z;-~Ikif!Ef5&da9O}2`g9;8R~^{v}@i5wzMMm8$0JS}*r#|Mu5P-2kbw#Gxgt2O9J zNL83_G>~F(ad7aATXc3V(pu?FumfD{6=WCKQibD7!^%6G+I!?{lH9Bo1SLbs=9Ra3b9G@w z^I~c`ONJ}GdHW^fJ9#WCy^M?#^I|q|a_%+w;Sq=t(k-~iW2>pQq}L**)uY=U^As)m_44wX%pOzjk^KzT~>;huWjghm;-X|7uOg!26YJ94rFeZT{ZVD zuS+wGhh`3ME4pv&s=3ENEgLm$n>3AAmhgvZh%(=a$`w!KRJ3D@9KZoQFW`D}k4BIw$aRUPl= z(bz|7O)Mb}!#U4E9Gcx-spH9yPI7S8grV;HVD*u}@-NOzhA;LGMWBaYs zleoC}hG}xbCNrxcEB(fxj9{c&X6}Aj_V@M!_*hOy=f@XX)g#YI`#B^zGWu6R8@d#Z z98EDCF0^_KD>A*(m0onp1>+)x8<&(4`=X;`@j4l4N4;ot#qmAUffYRvF+WC_4Wx2C zutm)XX%}3u$t1&h%+oWAm@A0p>d2lAD5xv1YP=>}S~Xr{d#8Fbu!2@b!}*D8RfbzK z#wx}iro9uKVEVOvbov}?v3(M+1K834kjn6>@sajjR>NG=<{=c^Fd@~SX~_M|M7zeA zdnayexZK|G|T3 zCfPetXUM@UQpiGZT()=;?4Ix0XC&-Bqpj~{5AIHYAykFa&n>Yf7J5edw%K=1bZ(=s9>DU>%5pvS>9kQNTAPA(N4WZ5&vPKPYA2mJ4?Q;lH099Ap zN|~$0tmtAo7Npc52id4A_#14L4el3TcP6?6$TyP$*UObWAO+2yKQl88#Ko4g?uR@G zEtp^SyVJU+EBizQd zm!}yI#-v@hM=BDChur%RGZTork81|%&a}N~Nbz;;7EsE=`n}};hykmsAd}r%k(j;} zWe5+^^zPO=^s)MwU!ig70JySunCgAuhxe+=oYAARMP2qQqK3MiO2T)-@5zQmsXZUb|5G8W)3!J14Qtj;o{;4KTH&vWfZK2Vq$dgD@6pFybVHDyp1I z7KEF2>%GTSgbO@PnKng^StS%uYIP$i%b zKTzwazJ39t6r<>SSl<6fwWDl8LITm{%HT&`o|abb#Pes8KZ(moDLksr;vQb8)t%&g z;mMf!ow?)q^1VFu*x})gnYJ)=9$4?Xp3iKAUx~hsagpB@)>l*9{<2K8#*re_K9KXL z6+I>6@!sc6zF!{$#Oj(UcPJ^v@Dce=$-Gkv`$;-rANaWSBUgosvkk;iIA@U?cA`gT zi)2!aI&D(KPfEG=G}zIl0CJLe#*gmH+UPnHIm7lr;FKJT)w5bK5m=dv=od9jw(E~w z%o=tb&YP1rX5r&nkr_363}}w2oS4A|J*?n0q?|AdoQPKCAutAoI3F&~n|iB;9l?yW zECz_MqM~Qa22=GrA8}myWZ>uK5?ahKF3e>TK9BI{0cRM?>WWC8eFGfu6T- z_c~^DWq;d@_%T^CXABXaIix)OVq4Lt@AJ&J>s-h6m%=f%rYzfGF}(0`YiqI80io)u zL&TxM%Imd?zDb!k!xyR;I$v{i*eL?aWo~Ehvr_3XJx3;5k%}@+nAwF&Nh%k+-&p&{ zr9l4l^Jyl5A(qB8>)tFM@~MdV?yx@ilf~D?!x&0winWBwXkdt-N7I7+ zBHR)T^KnQ3!G|NcOK z3H?l`YTFGh`Ve-#;X#5Rp(+))VG)-yh);!sWujdw?(ytTX*3 z#VZzJV|61IuV1HwE6U9z?(vHlZMm)KX}`0s@rg-U=!=qxrLq!(cirp1Q7azeJwgDn zMl}w?6+YPza?G)I+DN0^z$oQzES|jj$T06=|5)l7!Xi^gM1&N(w5E4IV^_!T;K874 zyA9wxw#lnF@DPKltn?k~RbdFQA4QLK$%?d>ry3K^9q(RTESoJTHo7YK-#C(Ah!4Q{ zfc4zIaq4c+@5I;K3i0X;wm~#}K}OZfd9O+t{lQ@PYXekOGrOBm{G&S9yFHj41_Rc$ z-n(Wy6sDp7Ag=yAn#os2zks~(R{*rvb|8l)W*|CKd*CaVE0xiqKyAGbm-iBu-xt&X zNWjZrSFeoh1)RTPMF%kIJ76}dzuRX&-67;Y3xYYJ$%*f`Zvbf4y#a*hxh0Uv%)ja@ z{>?n6NC1u{1j14d`TN(~{g|qN^1SO8l7sYrt32Q6_Rre4kNNPuTPnJL+|RrOkiKW8 zDs)hPV;Sr^!f62AdA7U&w-=uE|I&u@AEwQnf2(G1|0tl38{dQdj*4ybiZwlD_BR9m z>u1md`rs1EoeONIQ`F7xVq1Iv;*kI8Sjsksfxw@nc0mGgTS-qw$3IF{{O5#UN6Nwn zRIqR*w(!g6NgAPVD1URSKYqSBeL#$ae58XGQDXB6|6lHAO~`wz_Cu->rF(e&*dBdk z-+`pF3)e|Vot-5$(;qB{X%d!sB`5dl5r;pXTc|!wNke2zPEYP!vM>{V;m`0V;_FYJ z0I*6OtUy8UA~|O6#l=PG6IAP#2Nt5gO}UD6Pm-IAfYnh^dIOvduOtPE~9|;i>*#q5AJ% zx`%iGl?3um*Pm=ug!mKCRyI2C4A?EqBn5KTge1FPC(%Na1O{FC zEX)i&k4f(3_{#jJgLYi9`?t*S07mu!b&a7N|VN} zmXF@zyoXKr#NNM`yYs&}8FWXIo8ptcz3D7zy4Ac25qQph!sN1rS(f(wy~5k>iw8{l zq#KeDS{2Wlp*6X0Kd{aSn4zHr4Tr{rS*c*5&)s{4YgV9_?eAWSZ|$lnFA@I` zBnw~@%CZwL?P>Y3Bl1#L?p}FnYmu?N6_wOUa)1HJ#iS+oJ^Q1t$u}d(6u^>va?{lo z8G?(D9U&Vk=L<+3N;2^m0`G6JX5RsY<7@fTKIm66AwXNtNFtqVPRJTb#6c8rLjHRw zCIg=RksjJvIJ#6@^%2;S8Z`j}y{u0zM0`)v_nZiNP_S{W|A7cCSinR4#InwT@LvXGwm3?_f zXIGA)cPQH&!U3ySsj<#W9{|;bZ>y4$w0>-fR-m|O8^z_u=9#_Tb3dK-i8a;krGWG= z`hW~jS%(ucsqRciq9Tp$tPR(mUs3xc*4l=s&`ngcI(8%slAJ`LS$2}DlV*V|md1<3 z|DnI$`<9#3xg@U@D7bu2nB>Q{mS3jD5n%8Fa^$q+@jd(2SH@58v^XG8lEzxB2X^(s z0*xhxaclckiMWNW;H|#|^FP}K1Pvvsyw+)B?F`)}MNFWXs%0b*9kXBdorLX^J==m{ zQ-fxp7NWEP&5(nH)w_6SK)Y8aMFSWjf9=r!7Q%`T`!9X^LcZO-fQt5b7kGkz79Q~bp15wy%?a}UIhweZD?~cM#Ppch**I$wx z`R0Qk#1D6vGSkxO0<3MSnmgjDL+TQIdtZ`Ne^%13d8zg#eiUX3$h^=6gxXNyHdH-V z*yW`?X7|7rE$d+?>2f~rbT2dDd0)6wQf)v>nI!Wk6 z9C}HGsiGV{MI*@74jC4J+ES&?=@-l!O!< zp+ClKn0j7vugV%Y1?sE9)O)*~v|X}%$Hivn+!%NB=APm83v1Ahwarf3 zQf(NdR1tELO3yt(+m@B2NlK>lb8>%?*fZYGFa-4r`!315-Zc|Lb~hrGsSVm+qC5FrBhM+K?hKg$6iwl9W<#i!U&#NA_;s(I68WYHRxREFcbSbqmYM zxHXVL$VkMs1%NEZ_w0cl;w6NRZD+w3{tZwY-Q6qj-fSD9B>ekJd)q=M=sZ_s<5I2G zhDZL9%a_jsa2q&>$nZ_f+W^6K;NmJaeI;gr17r}NxZ^1I|Ln@|gf z)=_3oHk2e>Ovimq2%ywsj@o-35PX2grmCr9yR8GiDo-&DCJ^CY4*_jFvH4n}oY{to zNP={CEPE;L+05ma%AMIiFH|XVsZn(#M@YZ~MA2OFpcpCg$hPiyUcgrHf-5c?wOz&# zr6{sjNvs~if%%w-wqx=~R@oPLfI!CqIk+g9*@W7EsY`v&8QL4cpdA)Scnejvn(p>K P;P2k;2e)81&4d3Bd+KP1 literal 0 HcmV?d00001 diff --git a/public/images/cookbook/example_usage_of_fetch_scores_files/example_usage_of_fetch_scores_23_0.png b/public/images/cookbook/example_usage_of_fetch_scores_files/example_usage_of_fetch_scores_23_0.png new file mode 100644 index 0000000000000000000000000000000000000000..8ded42d988b8cbba64a4e015c71bd22f1229b879 GIT binary patch literal 89209 zcmce8by$?!`u5C_k_I7-AdMg`A)tT~($d``rIbU1C@I~ow9;Jzj38Z#k`hBp4uJ?V`^E~TW_kFJwtfKUg5RVcM0)Y_9$x5q1AQ%Yn zj|>+Z{ATb|NHh3=I;lOp4=L`aUWP#EA#&399>WdS(r^+?;5mxHYT7{h|JCaOh>DpFzXZ2-dvR8&AAclf} zzVz39YEMZaXeII}3Wn{5j=8OXxo86{!;+B{ZRu`(tO<54zS@~uu5|x@=~oiVnccT{ zv$p_(_&m3DvNX(Z0KK?QR(d5=7UzDk-tcq%f9Vc+s|13osR;61*n)EjdkKWYN=8-{ z=^40#WwoxjA(y)x#s1|Q2x;vt(oqJ6b!qdEn1%juD7d7ElY#F19CK$netReLAB^#b zWsr7QXP2V{fhn4#*pjhHPbFuWl=p$be7w?3XVdyUHK$r0mHWqjdq0pdS z(kRc5sjoWJe(&USCNf_&E8BjuzTB*Xs4IytkMZkxom1X?cbvk5aB4P}m2c0@d-c2` z2Xhos6trufnP_t_fS(7e?er)lyb){PYn0iwiaGf#drJjy^rez`E#{Xpe8^VoZ3#R3 ze|NGEuvM9PorsPKq0dklHW+8UA1fVx&_>%oJTjAXwAwD^=ft30yl%`8WBjW5o z>~nrvBZijzmH<2cxy(rCiN2>|h#Z({4OAHVps^73koHpTW*^M3ceki!ikFs@Q(L9n zYJf{w{4jgk&8W^%rs;5zib4!tDw%hFcC5V7bZpONh^XbapBOzU!CF_s*qm((U6_lI zh!?OK?);MVkjbq5%{ID~SYdZ%DCa>KC3LkH=88 ziS}8Zy(>WcTlo2Xzvs8vd~RsyeP|(<%>Vw|2MvYor2%eoZbK5W&&p{cL*`=88@kCf zsG`U3qYL$FlpwWDAhf$*UU}!6FuHF-6?VUHv(_hr2oP`hDi4 zu-{y7_OWqJkl5lDyuTw){Vh^dPTDZs;r3bTZ+~S_fQn_GZ~C0a6zWuTzr@0Sj4eF@G1Mcss^If|(H+aSJ!%#q2VTJZ=;!iCSkM}m zSW8c!3NPX#Y_ra3saMQi6Qh;^KZ5+)a{=?#DYo5*n8xzI&54 z;^EoRY6+DguJML_n$Tj^r(KVQb{D5d7skR<}Sy6dhNDjRWtJv;Dg z2p`jLlfaMHYb<_zephbZb(Kx0+#CTj_Oghey^Hxdn1I?BBdIc+Ml_kAY^b!FENPZm zF}d?0otHT($7&#*nK58ct#IJev`OEZ9|q3+Xqj0wmw|{*lV=@;%~-ibt{7=j*T!T6 z)%D6`2~?V}Q?6fn9EVo&wi-lC@~X|fqBpnXoyl+MI!_8Lc1E?Ddzf)pw<|z;ag6H|PHlAO4(E-i?@6>`A5M@#+3_ z&XX^h*scW{1+Fyc`+QIMtoo^A45SyYikNt_7Rgi$7q{~d>lP3wo*gdHsjHoy9dF{J zt~0Hj9`8pOu0AcADKcoNew2FW%ab*a(}kXd1X2#o&ZFJcg>;XNV1a=C^t&7&03+pM zm?_@Myy1WHSyH$1i3#eO30pnVKCqJI-lhu zXD##i8J_O;D2<3BCWZLkST3oK1IqFq3>>0Z?xus5Pq^|U_@wOSra8}MT5=mEr#WJM zGVVNYF|WMB@mWZ(+V;UTvBU|wzHsl=rE8CJ;2Tm75Ey;;j zxdj)yJEz8?bdf$sgAZ}8lo>TkMf^4gpsLj&#<(hNlv9$)RZ~B65)64!c#>GRjlJ?6 zEU(_iki_(a&7!A?#Sh*JV;unt44Aj8+z(Tm%~edngDlo9rSskP-GV-Ygeay6c9k@r zJw+1t(V?5rE%=sV5XTRX-#@CRw8(>yi%n#icscgO-y+QSIa1 zblPm(r=-8*bB2H>^dxXoL8=9N%YFC1Jfst#GP-;E^XuXgggTX*>sbpmCkpF;kq;ML zq*aohL`Uzuw>Fk5O>TB<35Vvf=3!ONSargQs01JNrwTJt3EJL92RFBdLVTGes~^8t zv(!gSAYGtvRoEMw7Hzm(6q`D;Is>&6A-6ByYW-F;2KP-g19ZveTYi-1>F&rj2%rwi z`*0}408+BMIwHg^4q2J@J}%NJz?Xo03c67k+9rT%!yD%t5HnjOskq0jZ`Kw}LOoch+QiFlTW=UZ0Sv@P_3T1-LMz zRz^&UIM!T`$2WoK-I?Lc3k-CGViWo}z-1tj%JbtUnW3?EGsZ%9Tuiw|Pck|06JMWC zm-x-IE{d87OswJ{S*C~%f11?OYHh!f)m_s@E<=mFx=YuV*nSIZ$vRk`Qd)GS^;gQ; zOXlPgLj_t?D$tX#>pTocD-c3o97$$lGQ!)nHX~dZHt^1xWGq_WTjubht5%RJ^e`Xd zTB*fLgerd9Uye5#lo$Kk9%7$haEFKLaM}4?=Y2E)fpt2BBcX3@@@9Z6Dd=Nokv0c%M_K3E>}&kt&zW?*6AM(>kyjOz9(<6VMIr1e5up*Z~N!>;fCcQnNpiCWPXt|+zVo^Y$#m-{i!hBauG_&H`X1bRjISLo| zl@LVSTnK7D`i6}eeH8MF;1+MGFRS?`dKUTe^MNmUk_+M_s7_eJwt;_62KM%nj(hL5 z((BX78c2RaY{;VOpp8HQCqG)!0G{KN_B%fMkHAjvFwotxmZ=`rUOcB;ss zwkpXy*Y$C^1TKTwV~yJq4?RIp4VV|HdPiVSUMU#fhUkBdydl-AK)jkG*ZVQ;ps_`O z{yWXi{`K2oMi?{nKhvu(_Z^&^x}%plUaW*Wm5%W*7dK8iLD<2B`naPzuKfW+d`p@V{6cbf|n%Jd0vlwWhF z(vs4|TiU`w_;Mlf%6n_MrUP6Wl*P7Q9TrIXjlg&$lQj%&!-9FuVuKhMQ+O@9pMZpP z96zPIBRx#Ideh9N35l;VkSbh3aqVsRDoj?7;>mQhC6cy00K#sLhBRtQ<fxsyFYY!;bc9|rc!YWsRTqMKv>NT8(i&DMU_Oi zJYGB6KNkKp3|S1)D_nowl&_2Iftcr%aom{^y58Z&392?Oc9qGwtw%w^XN13OXoEZW zvFv1sga{t$9eECNG)%b3@@^tVcjWV*c4xli5Wh#!4i!iY<2Sn@nyn8+ zAS@6A+vyOQLpDiKW;8=ZaI}>#w%`=>iJAHhq(Xsa(If2smqJ2*a@;;cK+48u_J zrZ+a~!5$5jRoh4l6w%~VDqmHUK=>TW{g!yO;T@gfZPaV2{J!ozJt}J~41}w9$>mM> zd;btjA3{+tGXri)@qt%s{DycaV*dMG2#rj-m8uH5i#J6=v0Q^>#Una)N;b96d=naY zMc)br{;FK1U&2@g+HxO^qOen@J`I_2G=2&Y@_m)a)b|lmQbolxtYYevQ>*(Z^3#!- zt?oifmyC~j7Ee4kTKxQEhk1@{M-;&`f^OFsBnW~^w{u#%;=!XxA68SNLllGF7D=Gm zLZOn$aa~pXt<3UpsPVp*Dn!^7c?Ao)@ic16!9Pdf!*o5z${I?$nebt9r3HC1k5hN`RjI zNTtInNy}R?dUvb_%FJipX?(`cj5f_PS}VuTzejeRP^ZweEhMSj*a+38^r_R{ga?A7M;rBs?P8LQDweRW>COO6C-^am+ z^Y|3jwI`dJ`*`W;FSMTVA|Q7V^!K`i1S$NZNGT)JKw5Q=Ui)d$6Wx zzRRYx*wFS_{m!{r_VN1LFWs(Lz2Ak%3LR9;u5o$djEz61Oj0rzn|lgp^Q#)+KVY39dBPgstcb& zF>^foah|X!{$mSX8Wm^F<3~Py`>9I|OV?NRUkg&?t!yM%BJ>{Vn6IPX602bG)9YdS z-tQ{HsvWip=FD$7QiHr~9=HlTITGJDV2y29d{&){wdO&sT+-yIH%J7|rKrk2tTC8?y3Miz~bu=%%*`QOy2a$g7#> zJ7VQZ@8r+x&D=rB@Pkg>v-oQnOPI-(aDKCb=ZO#(F0=Qc8woS{=} z4sqab87IWp5RpJzCII(qO1#!Yh_BKfJ^(RUt&rB7mK;Gd^n?#=(R1J*NHbI0Jl+bk zI@l1k?F8>2>z|{ux9>ia}CrEjV zUN2C&pB@88vaI}t?_Kj{NZRN-@<=~h7D%U1Yaq@KV?Xj3nFrN2BgMI56e)}*o=6IL z)2&EQ#csWT5J-|s;;aVqut;7me*q=|TuJ8jKsxW+N!;euPz;bN=NMuFZ7Kx$?k|!| z5A9Co9Dx#O*mL%p#ONKok(UO=WzcK#)?YYLZRZ^dgyxzxwqvGE7&dW2ICzNBL&|BC zjO%5K&L*4MvTFi@11$lntaRZ;AC=d7!}`+Dju0LgH!5Y9g8e5U37m&T9|wW?mLVmy zsxU~j(577h&t@VKDQb*_s8{(aGw4ibwbhmRksq107J#L=_^{2#WGAEu>UuLb1Fo3Zn?kg99PM2NsM;D79XxUeWLm7 z)b01#?@zr?*yEjS_i$VC$*&>9mDdzA#3wyfZxja*o|Rs?Aqe|qf4)9m#V6W)T>a4> zC*}E;^_{iah_tCPvnB<*#Ev=Z`7QTG-zhH!#~KBe+0wsww`ZZOXn?gOPws3b@vaTi z(xGR+&yVIbsb)RcUQBUFE+Ikf*pHUc8i`4^avdLh8~^-Hs*jxHXn)heHDDTm8HXon z_;$@f=2+-iDoBt19cW8r#`{Q;)^F(i^$m8`y-C36uD3INtY zDeK?5jPjZdX6dc@7*$n8+2j(=x!D!NvH+l@Xa*TPfSGl>;dg`>jY% zYrN9>+TG7!WlRs&>ak8s{assg9bkRUS?;{7#-^Gn{gdaGUUjTYC|TF`LeJ#jTRz_e zD$P13?v5OoAPMeB-#|MFWA5sB^O1Ztb|b^0dzI0T^eaW#<39!}mHA8;g{oZnW=`cJ zCKtVjN^86LZQp z2d~F3iU?6F@oEs(g=XinPRB)^650ew)xr1Pfr8~O7A|7Lnrf{RbIO?1X&(+NX*j|b z1$WhMo4A{fTrF<;7_NjO)Z}>)!Gf;GL5x=7G4+BJ7A9B*fIG*v(Xv&+q864QG#dlI zt!~_14_CMS$rqCol~1quzK97D`(Y1%?hKHGmm0oEszTEZ8fBD=@^_U7%;hefQMl759gN@ob zB8>Oi1q}|<;uL(AZ-m>AIKPN)A{YUl7=wjRCi^v4(cyseir{-nLEFT`Jubo8WPa;t z+wn>{;5H;7IetIK2vB!#Fj!*7jcA&+vo_n1oRDjWmHkczipRUV~bb%{k9 zE0csCy%LNGE1~7SeGOK^C4q~mKLNkm_D2@<5LY4f4*W}TtM($4TO4WaSZ<)7I=$L? z2h$=2O)g^S9(vo%*d`#c+s~zNzcHp9&i~IiS=o`!->b3>k zhXuV7BHJH;CtVA}G`tIyL=DYh`DrDPV;XvSUxvH5-A4^A;P@pV3pf~rsn{>i;9Z9A zVnY11B0viRL-6JB9%yk1TtfHMujWZ2FMtJpn2PT$yXe}p4TA2u)tC-ZomplIKWaYpi5xfOMk;o@5tZ^ zl?0(GtMR);J#Lk0uNwGm{>lgbG`6^i|K2pt-|Dt|ewfB)8S z;Hja1X9WJHr)r|SSRYYL?e?Nq@P5Tp{Y5-o`FHU|@i&}K1s{>48z_^%+q_5cUmkmK zYvosLt;hI(Csq7CclwNvuxnxXc4XxKYC&vVsYL)WPCet9kJPyEn)`l#={0|(sw+iE z0O~Vo73-HfF37vhM?GXv13pIk{nB4W_{GBqu(dV>{g#yU@V>oQf2fpt=f*EmPN}!w zK8$Kd4AU@5j}(qiiqKm5#(wK?+cNGA#h`q}BBRB}7MJjLlUkgwc!(+m33i7#Zf1(X z+}JP=B89-M9gCrUjID0Tep+N4eSEq!^tbehJ_oN03I?&UH zkvDALejJwq!x665L<#H{ILc&gXn7PJ4}FA}6gx(V@z&n6NUB)b{BcYwa`*Vh>2`Ze zgsk6M5|h`5d9|h<*0Iw4XNbAi$B;gxUWLkYwv0UA>_^d$1!>2*rO3D=PxDNhjT%p$ zU15vjs4-Xc2-HV-$_dhn&}V6K#(S|uJnTv4a>IMCRTwLl%+zpGIaPWuU5qP6vp6zG zv?f5$y?KcdeHE^OnYkyYkASO2-;~SrN}eT46yezbU@1%RHI{I7K4=}?A6ft@*k%zv zA|j!eF+x0Aeb`}wBV)Hn0p+r6zvVe2wr$-QGPsvgSMJ#1{r=q9QLRsiX(FRqh6^biy}S`qLx4eIKQX1ryl)eEH_wrOI~HNqaE&5p$Z+Esjgq;Mubs zX8QFZp96;Q5E?t=(d76fQGTII-7|c7nCKM7Q-eX<_L1%BxE^or>Sx3Hj%}-P81T-Y zL9tzFTI>>!WyMeIQ~iwiA)9{c9TqL!)0rK$&kmzg&o@n^ForYZa!_c^{lLtetxg9gcn2?y0`Dy)S{o^p3^v8~b+R zysS^&veV2U6Q4iVKqLM8=$mox6nx@i&eIbH_ZOllu|j)}`PzH-vL3!n&DjYoz?vE~ z=|*$iM2paAm{30l9OGb}lhs(gOF_15)O}h|nI!=xF8fiETGP=A$MW}@lEX2Y7ZW!C zdmMAmA3JGmeX3CpRA3AMGmW_^8!4IYwWmXI=h<8H?%1vq1fXA;6^;P0+6};S&IZ@@ zXb!F7#IZ2GmOo`Cha;EZvchb}l2=jB0};bH@h_i8!OYB};EbBaE#1zEI;XzfSwx1{UebJTlDeSX_)Sn&UeIdypMJ|XsaHAj2=qFqy>|L*F1>Rs7XJ7h~}v;^^zaAsO#G8C5Q3K_ZMt9 z!2&USq)3m2&imlq31ElXM;sTrDf$2@&qX2bSzEW!=&_%?TCN+%t})*)y2;N|YWH2x zdJ0i@viIG=ac@nhD@CZ}=Z`N^>E1`nKjwHM0L!1OeL*y5D`yyvSJ_yd^*_CXv&aKz z$~ofp3re1ZL$jCqWumVVV6!4UHtITlT<~IYnbN_q5W>~BdIGJh9#NhAw_B-V*P(P` z1$|WI?n_W>3Gb%mxvikWA4A#?xDM0A}XxkWIw~l6M+<@|0 z<^?)g#&3#$xYedh7sD^Q z6z^+6u{*A}y-OFmkXN*-NC(;MH+yJ4zuAl__TUaNBF=BWy3vRYV@k))FkwiP*wCkW z<*@qA$ze(DrWT!Mvum?_RPW{~9`{!K?h|Pg;dX-eqdsh2uf7akul1_qA)ykX*t5{Z zZtm|G4MsU~@%rtJTk(}guH}UiwFAAzj%n@8>L)wHieLCzcsel$CaGPN86*si|UaYVn*prjl1s zy7?+MFj4{Uo1l=u)dkifW@jEVEw3$=eDi@$;*+llK;@ZCT3&58pPwqHyDd`4rHj=$ z|M+}wFjtYIHGq(hzTTpT3}fhd)rGnNV(R;L#Lz=AQs8VRkS<#>CBH`WU<}YkcI}U1 zn8PZc4s|0bA$UousW=eq%h;t*w4u+b3&tT3HN*jqTK4p4cL7Xj*e}1_W{K!9^F;s> zdGQEpJX!C;ce}x|k20nXJGR>H`|ycSdt23g4CE8rx%RlNY9uNBrP?;?7$yZ~d@|14 zpM%JW4@3)x>^{Hs`w6%fi0LC#8-4%|EnITSb4PJ*^>Ak?j0;U*Hp6spu{S9!+@dF5 zV8nB6lxGKqJZiY02uHov$~taZ4`%aP_FkV`2T~QqleZ@6K^esc4U})&LrD%W*DnMo zSy2AoXr|C$oYWn_0!Q19l~Wj8c>w}}mz(u6ADYk*iUy%{{c-9wxPNrdkbhMiKZ{bL zWHo{Pjj(|J+ZNuMt6DWLvlXKrtq`X#YDFx@(Ip^s_+G;0$!2RASE^%b!};&o6h4!=ll@IBe{104^Ts>mMY;V9M*#S1^4=LzTBQDDUPe! zEAT(oPHNMrZE@2fmanH_!ex&Tu$iGbMEak zb9r_8%I_Wpb;zxJKOdny6~%tHDZaVdD72t@NM2zJr(AAxCmm)TD^KLxXg+&B`7eAIM^Jv=ACAD zLw+7FbZB$)dDM$4PT#zAt*bfVEat4aH@S%HNW@1edt#E+8FxYhZKgBR~YF_!O{o&^cbNlH^SHXS(RmSVy(+~G7*rr_`e>)99 zQaOqptR}L|O>WD@X)S~~1oS-5IMygACk3tcU((IqrAue{o={>te9q8nBd{}V!6Eyx zP?+E#^IP50$)?3Z)8tk-ML0$!%%O?buJ!q0`OMOWiEu=9%mi5mQ@!V5c`UcllqCBZ zIcjfEf&0>MNG3l81rh)&6L0U9KVuEXLLUjnmSy&mCrLxN%X1;B1@AmbDU{9OUR34b zzV8eh-P@M=v*P3uEf+yqYCpC{2$MuI6MO|0Oc*bw+1t7CU6g-->nX zfeVDvmwfy_N5PFOe7kpd<%{2SWy+jQd(Y1=AiCGWTn<1Wttlx#@T zeaNlhLtTr3ri5@?w&B?Jp~%_p{E=v*W<$wjlP1>mSE0&EJB+|4imn7%;$a!-GH@o7${*)R)|h zf$C&7lzZwePx;XqZ{OLle%6WG3g=xLW~tL%fJ1)JpE!Ma%ep_|R#xw_iWZkaxciNO zfNdRq+r(F4#jZ5L^%)RX37>)x^Jb1T#P|zD>Yd{fQF0Tr$ArifPF2&7_Su>Wskh(# zEZGhying>V3?D$y<0xmunv|`zr1GmWP-yMYEQ>hQ7moYvR4`*2Qhi*zuVsg%vXygc zDy%gc3O@B7nh6C9ulYI3sRMsjw^^!9Eh)nfq>gefyHv$zToj zB8H|CP#9Q-1tgSAZIEnZs`5V8Dx&Ia3L7Qpli^$qKz|R1F@y$(l@tn^e!{KTAiW)2 z_3?~yxRH!i1!*q-5!@4UrykZ~ZfX`VFOYZV!Pubzh|SR7)r z!-9~O6c&`EM1^kK70lEdx-G>0aALRyf?adRkzNHQqa$2?oR5dr8hpd)nl9#++4BJ- zn9vfAp}M?Cn^lxe@znS$yXQ;X42Js{&0L$H20a|B#9QbR=F4qXlJ-jGwj7}3fH!ExIHU+8PHRl3#S=cROknjC58zaqC~QRmm~}tjCMWs zF8XI5KGqln-Og4W$GPlcPJN!`Ud+{~H3}mH4~yhtR~`2hS_n|SZql*%k-PCm7;{8? zBTKQ@2i#S6;tX*nf3k;%K73RF1@+*Y8yK!D+u<&+W3}i{u z|IVwXQVfL=ZT-ES0Sq2VA}%XG6bn?!DV@H4NTe|Q>2bk{XtTbSIpiL;%6v?wqv`9Y zPncvH991*4ZV2_Mx zs#6mtST;po8fcJr!AcJ&&Nf3|jn+{zbwYSz)y(|4V#Tr!sf3D^3EHp`qwgqCL4BV} z`2_o4_p%9Qw1kEvp1$Q?4Cl4zB`v+ASPIsQBr;p=lJceo9e=(9rm${{Of!%-ciEHx{X zQ$S@TyJxGaL8Q)H89C);)g3Zj)7_=MG>`f?+PrDC%8YWf3PXktc>XNV0=B=~AtpOp zAsvUe6vey#uu~#$AW4~wM$B8+U2(s;!l5_X(%dyr-~;<%g;lf&MjmKTTqM=D6bkvI zo2-dyvkErsG}6ZAO0uEd_#mM>8!&Lyg>yf%aI{gwd!n+vQ>VgM4!|pU)WS~V5Xbi( zbg>@}@fAkg_{{tKCZpM0bnhMhH1c@Sy^O!a)Isw?ZjwPc@oEc^Q|^b-`QO&~IkpLw zPR$?m?u~oSIW@D#KJ0crU|8|isCh{(_MCa|I4(l~v8;A8#$!X4F=;R-nn%$ny1mt^ ztJ=R~zVm&>VnlrIt|&q^gNdEzXie7(DorZkY45@} zVo9PA&MBfjo<<{2m$(cgLld}Dlu5nLwy7+e{Yv7`+4Ig$wdCh}Z@GlVMRPe>f_k=i zUGZ7Pi7G(FyhzC81UV1xT!7`#-%Sa*%i&;2($po*&=9!B`mYeWow-tzdX+~g@0Rz4kYiqW4Ew2T7 zAur7H%A|O^gNg!ppf#iKDW3b5m2QyJ(>w_v2TK;Hd`i@EM^A|7;dT-^3=nz(d9a_e zuVK!gfWXPKtbxCL@nhu${72q>i}9hfmtl8JU+Qi{zBS!7hHkgP+I53%27Sc zjJ}~Lzq39;bZwF9KqlqqJ(n?$pV|C$%RW0%iAbCBn|HH@w>oUO_bFJK?Z&d&iHnf< ze(3edJi1N?LB}!YC(Q&#XHMUQTuZ743Wnk`YV0HB3bMp$hHB@(s-ZS)qs86ugkNlB zc8w|-?dSO!REnx+M_cA};|o^HC*LW9PA)XmbjJ!b1C0=o^t_!%vl=!+b-&VCH9-!cnq*(SEC>NPGDPsAWsK&1HiOR1w*i$LY z-HKvcMX585!R2+XPs5n{iVfCo-7d96HDb*>d4>Qs$QEGi5?A0f#Oy?}K#%+ba7R)j z{mbc?hIyn_LbQG(>E25F%xICK{KhR@#NJP*dLh3NYnk=1hkzX#52fD=*Mv-O$&3{= z2W&r$rJUv>v~l0+Flybm^*Q0$b5Ne*qO5hH!8ELiCG^&ZIiQp4#{7}1x%D3-6j6kR zd_o?V;ggSr4$3YeKH4l=f{{xR0uX&zFS?$>FiJqsn4C)b&}MWEmr8Y#i?BgtE}}Ug zEv@W9;w^rFS-)Fee83GWq52RY&g>`Tygu>^tt0EI-od>>h2|keLm$;BBr4w zTq=Tg5Af{B=ist%1_Lpsp zNS`mXln~WF_ZAWg)DqpZD^sY@brI%aHLqSS|xyfMzI~&5zQ>bOaryH~|-r_&5PTs4f5`WSyUZjdDZw zBF?g4cNB$}{$REolh@JDVk~^W5dmxA+oYv=kY91U2jcjB?rGV94#P2}h%oGhwX2%q zvDp>)y3LPyTueijp-KrdKcPD)ta&mvHEC=@O7l<6jte2?J@JYc@G=kzgpXW?I0h2Y z%p?6UqJQaY?>?V>)tkt}ICZ8(BZ+d6mkXD|qSgdnUiwxrfDt`@dEj+1rXjg>70*q- zkpMWCGZVU={zKS}O9;VFPVa28F*a9{=(@o6p<;EiF^!YpvB>v|Q4FsiCGpC9&@7@n zoddWlzOM_wzqUjkzmYk9`%Cq%%2^BfQ6aM|?rj7kym z80AFM`fQhBDAX+*C{sq#3V^K#LD@~!-we=lZH3 zE^CRsH+N@Rp!pi}qucap99mpsVCz_=-FHm@oihQ1CkAW*sn5i?$Th;Oq@^X`shR?m z!hV^{s{IC9Br8ij>oPn|Z7}IME~5X(k8i9X>SLWPQ)O|c1o+0WQ)jC15e|*J@qVLV zkJl&bDIh&(da*IV>vQJGrdM6a_n_nYYvgK3A$2U?CaIEJ3l3Xm8i>$@P+H5iY^0!eUYwsV52?fLt6A=h1Ed!-TethgL>yE zAn0zhF$^G}c%;KeKNj`?W=pkRhSOXfd}o4- zAiA{t`8K9u;49}R*Dtgj_+6^eZye1%LvRUGG%W_w4W_*IC+`RqQ3^bb1%Q$)co*`` z@res?o~Nw124MC?!d|D~4qE05ZyzI@K;)8k7;IhCc;I=pLmehcHK%phz4yT`x z^o;%rFpS*jsw!UFI$2UkzSI>(%`WeSUdi>)LVAg-?~sDvif;^)+$Dc~W% zBx4LF8Gloe+a!J?&?_|5FOjQn6Nw09P%e_vIDuf$S#vR@tg)tW*r#e0$}ti=S}*H0 z5f8XcBsQe+Ttc{hGc#gG0X>W%c^jeQ6F_mjtn<9{D@>?Cm}DDs(J7%^bWrqxENE=D z#Gb%wKm@@Rcs(!=Xa%o>+4E!m!bTaU;fq~DS7(?*X-J)inBRzjmp@I~F9i}UP#|ed z8$VhhANw9 z$AxfXCR8vz7>J?aKw;C)p*l)Lj}A~=@l^tJhHP#r4fsg;22Be>Qbj&85d|ND?=eK8 zz@#fKMqj`19i7TT&({LK%!e=`Ny*EEePoqH5k9!}A_AnZ0*BHpfRk(VPR?CIY^+eN z{rD$!R{{VZdeLw&-|Jt@_nEc#h(NWYb~}L>z>J*FB3r@LB)to*z_9q#^JvT|dMu~I zXN^dzll|vXQBQknXrz{1d-hEN_Ty_J$)7c_UrfB57lNL|Un-veop}Fm!XINn(C&97 z&(K03s0*7N;k*c+0fxUJ>-qb7B6(0j^8FW88iuI#t7Pxa(#LN6_w__mS^{DeQ$>7# z$e;dM-#M`eJatk4>>Aiu>G|?rvJ=nT<}=59)7pr z^+Oaj*n#SYB0*u8KXb2hIcL%Yo56S+Uhb5I!B z|EOt0oyz}F(_Nx%XmS2S3-D(N6dJ1bo389P_d)W5&}C4(_Yt`crJRPieSgTMO<_8&g)e$K^611;G<3f%ts zLHqh`CR;+d5Vmwj* zO&9x{y?=vk+L*9gr-NMlC#@ZEY-zkU)^j2ULz7|DVvMeY8q^_wR|CI6^%{LgLbQAIrVE*fW(NgBZ4jgD00RqIV`PUC0ULk4^Tx0N2+cGo;+QVf;qMmPTC@GGPny| zX@mA#ILNy={HZkKg*j?EQ>1cJ=B_b4qNmfm#iYD2aBGY&JMQZecV`LJ3%P;!q4S@+ z_yEP(k72)n(|I3jGft#RUZDx0!(S;Ld{6i9X!7SBFtdR2Q4?P$-@4 zrh`Vy=0obqK+4m;<^TZ7lI=3^cV7zv%c4o#T?wpnjR zRy4(2<)KJmsas6f;H0lNRidvYjK21y(Wr5++icO$c_i(<#ZLU`VAj5~PK|fOG`>PC zs~KLAX_}H)3SN9V-#pxD+wMly6m+IGSIhcCzZM@x z@t0M4*Hy-H!<(~}FtEv#nVf zu$m3Nr8*2GOjvj%k?Y@U6pHohY{M*En9=QAS=Z8qO$UeWRYEs+Uhj0~?Xt^%cUbK1 zra8_z`}#V^^qrVm{VA@n`;mTOLi%n$KX1{{YWZ>JCE@3Lp8V)srF7{4LHB#@=k>aR zYr>q?>dZ0yCGl~uE{Uma&G9J7TYGR85l8yzkIpgebY?}&$L>WMOLl>g*bO~az^6XDe!Fee@4|pFu9s}1@6}TbS8b~#vA>n3C6)j1()SBVq4+AC= zL@S(Ec{GUVgxTWQNuq_GirvsKTDcV%k&0&$zv27^7coHI$9PKlIJ!D(sq@47agKK# zgIbv^E!(6!eBwNPI!-gUx`?eIB9;F<{TSvjATl7|g%HkO=%lmQlwes14s?{S(Op<5 z^80E&^`U4Zh^i$YWMl_i6Q@-du(Aws-k8v-wx4`jo)aN{l;4{wtge>(h|S1rH|{6c z@_Dj$vEN>2=t8O&3YNJw{MLigKw-vmagd1^*a*)13?p$ke%(*Z6ASyqm+HUzHbtaw%M0%v=F%4)U1f0qUJda5#g)#Rl@4Y3~@Yj+dW8 zxaB;Ipxp+ojXdbH-ly)? zLm%QUc3#cyx?}CMQ9Ca6-vX;$!ShJ~ojfskcB}L0+;x6^zV@Tz&E~KdKU2bZ9=+tan~!02^ThMvOi@X8VfcBV;{z^J5R*bU>XX zcWfTcI0%D6L5I$jG@R_ygTuwEVzg1Djg&o|SU%m6V?C#any`q6xs`=Ct|b)4neJP~ z@pr{Mz$j@ZB3|m{oc4OG7g9yZa2%0F^q74lq9M+2M2lJs&eOW8RNMPQO;6K7f}ZAK zU)b5HwqR-SoAjMP&$IP%Dy65s`(ak|K7>bYA~($8U$Y;v6CNwNSPc?|eYo)HK`eyX zLm`2rk&VVoc26tjnAdT3EchdARMp z*_nR`-gMI^^mKZsTEJqq#3uU(#@J28kn9oYCc=Jq;X5gn1+p;b%W3oGgc6^i0X zdj(!MXejU9LJ#AC3Fi?SDGEm$gA)oOz`K7&;~(UK<5;|DwmP`M^TYu>b1#!@V2wu9 zHTDYQgX>D}Kx#I>Ga!)wMsWH@f&(>krmMC1GnB9SK>DQQI6gOm{sKEO@;TLbI`n}F zd{#kA)9-q8I}O}rVNp(x1>3x?LojQ}*dKTL5<*tMkxkn`hM9Q&pq+$J<)Dit<2rhI zseoIx4s>xA;DiorbFD&cleYpu zTZNqsX}~4I{G7;R*6SwZFlAdzxIUz16bBS@T~--hmauDYPX;8;I~BMa&5=~}5p!R& z<;)fX+`!JXTGuy$wtR1Ep3k*!e^XcPx;W#&%^x}iADi%zZKdtlAoUJ7+eYC+W|{@$)4!C4 z6cJ_6g9JdB7gx&UxbgE4fJbA67Qtvp4-}$I7u1kg9_8yYQBl(5_G&M}I z(+PW#WVbr>Yf>}ymPT$WuFPZWnpGQ-J4bnEc(Hu7Dh@hRjj$J(|MJkWt0GREES8Vk zXu@F1mj7{lN$sA);1BL;fnYy(LWvi`D;RW!;M9eEvmG>X_7~JL?>={i&%kuylMO8g zBJ}yoBDbLqCgtikgU?X>%QoSSwD71IFIErcujikG`P3McT@TB31m5o~ljxMmC?^SD zpxJ46o@dTvzmp1-FEec;z)?&W8+#@VvaG{_3K^hAvqM}d4cB6 zi<3VtHz#L4Rn-5p5^po2Dg1w>ct+FD>|{227(lrfwQcaAdy8*r4r?kq_-c3Ma7j^uA&3s3N%Hg3N*)7Ca&eOmz zLi*Mpk1J&RdzUS~ZnQ>=xba%6yiX+Qi&5;ZqBfzwzJ7T1@c+>E)^SmGYu~q&2nYyB zmq?cg(ybr@Qqm0~DcvKD2ue#ygQWBzh|~asNSBCo4GmI5H@s`y@$P+Z_r0&@+1K-z zAB35+*16WPj^q3L9Sdi{m*)L3B(aPdUdPCU?|{R6_~K)Wb?wU&D`sWXfXl;!+?!00 zBkS2@>qoKOy!bJ(+%0}0Y-RlDX{&O_PSXmsbZ>Qhqu@;&h zC-zDd?RSjvxfhm6F#bve-y%4o z`IGG>3^-W!bv5X01>&z<@p$`i-@aq|i#creP4O|tGys*8Tp7CGL67%vf#g!GW{hyTnY8O!^c3=Cc9bvPcWo+*4 z^fMvkOot8Lr8ETd#}j)i~6PXcltn{hIe|_T$j2CPO;AfKf7Q+?z-yL^&{2una<4r#sZ~FM-2$IHS)HLXu zg(2QjN&thIU|GApc^!-nTOG`cSJ^O$Va@EYddG$471LR&Ut4gKopS$ey1-ic_p13~ z^%^yYTDR2-yU9g;YmaZyqKO3h`PggyYJI z@7`{<(0VXurArX1Zmt>GW@j2GG~=W3RvwdvoJ;o`6J`vPtV}Rl5&M(#H;aDS-aDPF zz5YSPlh#C7up2joRN`^_)5S*257eTg+-upQK?z6~8&|%HDuB#=Q+uou8mRj?j5cZh zIj}FF)G~LBahJ`fxQlO%jmYY`V*B_>87&v`_OsAx0l=5|?Zw|n14wTLnw@zos_pd>n@fJC`;({o$Q1EQ$y!HNP+PCZVAwo-a7V$50xMu#7T%o5%qQ3RR{8tX^#z&noU=iL)yYT z?HPqxBC&wV0<7tA35=wMbD5t@CnH<;K2(`RZ&4m>%{anICpCc(WQ9IU(S0EMVTI3e zu7cS>7_m=EL}?N) z_{^6DelwK>%i#MNh`drG3rduWeF8@~g4@P>YZPOj-5UnRUUN5Y7I;3Axk`+t3DnZS z?o|WM88B_4P)TadCUdn$51$ziQvZ^Rmx`}uv>fMtq;0CGdyyv8c*@)@rb;$QJLwS{ z-1boP%A0^GU|oZ@2&oN>5Tb&G-048HW5KQ%#NTGDw-taDewp9~b}m;Pu6#`3&!HD= z{4&9Lg(s?Yd}DOH^zCfx^#CGn!f3o zf{e41a#Omf_hF{;aJ5i!?^aMP-z%t@{!U&PhqKfA54qS^jowa2Kic`|Jf$v z@m}SYc^CgBHIE3%c5`GlK7`lXPQU7TJKE|>rOl9|FLn1y=0zP~9dkoT6r++ZGjzNk zs53vlP21j=NQ)h<@cnD3dCRw@t9GSacl!o&JYICZV@QWxgo@oDNh5jk=#ePWf%3u+ zPC2a>Ae7HqkllK<-t?N?q#^>J`FYTKkPuPFQg%EgUg`D>5NgzoWsxryb%@^P4BxLC z{f3)*i(w7N>4Bmo@IW0%)qdKNpOmWI+JnrVAyE~7+J-JKiG*V;MPBWSi3!GHYaaq` zY97RLHUb`x+oUM2sF=TvdHBhLNp6W~B(%cNjxU%t$JzIaMG3FmhQvt@7lqy<$xY8@m=!E+M`E5$Lx28LZq>Zi!}$R)*F?hJ4_-4w))56001(LTO~D zkJV8{HSI7()#TbU6Rw^$8wd}Wt>yyv_;lH1*`VZL!PwX}PGG4sV} zNtJ}xdW6qpULB33kGdrFUJ%Y2`f+9I)|SIGtp99l!Z9JSb-BwkgeY2*cpspaa=q`gCJ5!vU4rw}2Vm;?_(0sa zFnBc~`$8hKqGQXx%|v1M>#)E=lxAn%xzMgTy<*C)dE#bOmqOw;-a=~TzGkj9*7Umj zm$+H{r4t!;n*;K@1!T(cY%vk^QW?y>vq!JJK^h_7oIF*BAt)43i)5)1S!l6pAz>#j z@zgn*6yM&EtyqQn+=H!PkG4`hF_#BP1hb0#0MnA-DnWSI#`rlJ4_{4y0i1T}TE`a$ zo5oDUeX`;4A2_COrc$?Ov~liCm){D1vGR?f@`B>ZHHq@j;b^G~YXnidG~P@<@odva zZV@=)NI-<}$!m0&ieY<-fbBvHp%j1K&?xBy@KWNdh2*?4n!8ea#2mEsjcds&6u|B+ zc;;2xp&aJMPp%rlAkG-)WXQQBU=v6gS^k1@`0xQCWPJkZ*&an(KTGm3u&quI(F(Io zWM_-)B2Tz(qn_fp?2&YL2F^2{OIXxBox_@U+);r2E{U53Id=-{_G;WX98Elph?}{& z@e{%cXx!>Znt`LM=~jIwM&s@&H>`z=L{%7(58mr9;wrR+wKB`p#aB3wFs$->Wdxdh z!r6GAhkP`(lM*F3+x7SMtRXX6n4lfUU(2sgXt~o~gru0~W|gr2_??$`X$*BgWNB zHmfr9k0CSoJ@*-rDKpU(Sc|30VG1Fi*ezN%TfRH5i(@od2k4Zv*l)KU`dRE@!zi$A zJu*8oAAiqNV)2g7h;_!(=_Ggc8!-z`esmX3-WO_%X>2G(EGW;CMNEdj=F&`R%IXhh zvme)S7`b9(WAQs#Z3j8lEnekPQBh!q$~)+j_Pv>}EeOECMUYd?kjOA!;p@%fkAzcq zxla=KI#?hYX!oLD;Ohq-di)T5Yx^A+7T9y{AszzCer3ERTt#>-8d= zZAx7*`WQl6`-y|M4g;*R(La+)v(Qr;W&QB#&yaXI1(UJ)<+bvG5L9&s1b#fhfn{+l zt4N_k#p*&tIkt5E@h8;YG`R1Gi3mmj-IG=AZ~(7Q5(|8Dj+tve(f7x9R9EBkDgHch zJU+LJXAy7Ygbd?b1u{Zo3@bo0~&%8@#8;K==>Kqhu@zf2t9>b;%Co+bILzC zzx@6t{K0~|exQ&6D7bqk%?^>iMOlit5!Swh{*47dJ-yriwu<;a95epySznz6q}8bm zlVCJ39Fv<1-c2bC@IZYv%^V6z_?LqHAFPxA>6OHZa!=h?Ypr)e$PGp$8~OVGMQQ#IUfUlWApmu#M?Lz#y0`q@QtH2&SipT%022$w z-$hVGm3_wz^%A~6XGJ~g+C1|xwpKn;kR?2xkYF{wT;w%TXUUs$e zhbtK6A98SS1+|_g;zXe$T?I=v+cIGO9TY)3*e4;!7CVi){6b%RVdBGKSFL1^E0Kj}Yi#5DfbMHK~Fx;F9va%;^;(^(dL>H&bF zfyyAt6Zm}m=Ig7NGw0KBfHvW|tuz2Fa%>=irQ-qs<>d?*O$H8&RsdrZE&h-Ws+oWJ z=8+f58xit|s()C!(V?{aX@E0I2v_<%?O(qc9m;)7v!#S^H&i#k zAcoj?E<-@^e;(Ytx4@mDid1@C3GkYg0E9{(8tk*iG#2|QG6SvwmhU0Q^xLZ?hNMSx zM4_}J9pF=c>}D2_K~jTl@VBfmjSbMgqFQnY7Xv0*Phtavu)n(?cVi7PMq*^>Y51=&89Y!?F>jKm+q0bt^3029wCD7RzX5CfKQh!TLn zTJ3+jNA*v^(BGchKi^&Ogmc0efv4h)3ScA$gd;E@9Qn(z_{Zn=Pj~k@)^r-Mb=foz z8PPr~zX#Yo0$?=;v?A0ft;n0@2Ri6byzFs`Sh%f>IC&j0;ERXa-U9jRT8T3Zrux_P!26cF8zPOyh+{<7hAA4bOE zR1X-|p?RkNnj`HU5(g9|?fKs*%KzR(4m(f?f}jO{DnNJkh=5L<4H!h0U#AgP3nSzH zIWh{$j~$@0XAb-|mX?EYNn=5a3KLJCbWwM6VAnFT&tuXE>&cLqs4@kDm66;g2z&wvt4bOhz+__oS|-Z% zzr5gkv15+vK4RXJw0%|P`EUt)w8TMDJg5NzuLc%SDvAZA({9ji0%c#h1i7*WK5M?v z5i@We$D+&uepl`2#Kj26=eTzm8ff0&?bujdHg`ma#yuaW4@WWjtdGDujZ$O)WtD)N z3-B03{pv9{^7FMps_90+k>9G8kGaif{p}Xx1?a=U1lmdfbq9$JxDl`r!$zO60Im~^ zG;YLyFT%**R9*md!3cZ!`p?Uco@5AZ%_(Ysn;N&*0k>jre`mh-=2iTyf`D8_yraN? z_unILO{t^bHd0hzXJAMVb6VYuy|^4{oR&;})Za}!-EJ}md z3gfl`5PAIi6|j}!5z(Bre~TpZ+FKz~Tm?Nzvb+yBXMacm^glTSW;4hFOnkUjc0tn= zGhpm83Tn&-?LgoW3Jgk<*n9a}^~Qny^L2S(l}QP7-a-IOc!`NaYzjz=H$;pf6G<_v z(ul~2=i(u_!tcQ>h880s4h}ApMS~Is0B3Gh8N|LC+v_@@vLhaE8N30JxY?EE&`1Eo z=GKJd;KG2bO*@d&d~}!+1)^Nm2d_aZmoP593Ix!D-v}%}u}_M|_nDx#V_AT@lHq`$P)2MDT8oF zQ4jIz6GqBdIJLs8ooEEyHm*G8`eQ_7u9F}wSf3O|0pt!G9Thrs5xrIx&gcX+Davp1?=%yW}pOya}i zL;}#Yfs^HYaKv9&>wj`B1!j>6F*Nw3NR$@Ri}>$mk>=nz|C3(8 zw>IaVEhPFn6Y^)5d{hYT(J%i|oL?%y-}{d;icoPN=E2$TGyUFw^j82Hv0z;g5RLNP zjQd}FH~C_7vd|@e`IDmm)}Iu}2`fEZEb+HYFu+RmAOHNd#L zJ&X}@G|sHQC?{6}=Zw0$|LPSAHsd@rDc>hE!FCDUhD?oHd~kz0Hyez0nb!oqn|mM~ zRkcgjYM|%Z!s9_h)97?{-rpp=QV9C6z(05$n*HFjxP0=htX0>Yanhc#N-Qx|dP33s zN5Lr_=`6kl6r2QGtw%E>1xPJUuUmENM8_q)F0I3d5ja7(QtuD_IAQ?Jx_goQb# z=-}^>O;q*>Oos zCBPPGC^E>X)%DeS!hvtNWMX-BmgCgMj}Qu-h8lZ8tLqF4O|q_}XmW0Asc z_-T<^6BnAEQ~H6`2i~m%1%5WU@)mWr5InY`I!a)HdmprE^^6~Tt3`N6)6H!LopLmiQUz8k4x~{`W^**A ze4-JHPHTSTNd92)wg}Sl)VaoIUPX8c6H+h8_PS!D9n1G%0mo^zZ9@&7dfVB@jiQ== z^!4j#r}+aZ4j%|zK(*{PO-G^-$pO81@Y5h_5S{h_e>)Q!jOngc*V$Cn;@P$B?(($` z8~!pwiiEJGuLkz*H87LbFiKiiFM%(M)YZIR7jkL!E+jm;N_Lx|YGHC$PlLme>}E#{ z+G$iq>nOn%5ro?(kt5z4-`D%ceW>4Vxz!BL52yz5;!IaikpT8w*O0;N?Q^KRg{GgF zl-FKz(6bA2HJG)B+mVUDk4p$90WATd*BVr8^M@4M-j6-(<$yX&7XiI8s} z$N-bhu||sZH{$*W{(|&mkF?UPRWmwN>G~&tRTY3~2x&xIFu}s#k;p?21hcP>w&$OL zFopued&gj%GcVAqWC7Auo0p(}7CI1_w*4F`CX(=S(=5>ikza)L&mV=o%V64U2La0V z>W9p1u(SyKoe9%P`9%Oka27CWLd!LtTXeW&TyH>On+(-ZZsPtU!6gtUZjV`IK0Q6y zctgfbRbkm11~9K=S5+`6`>!RUqd?p`t>adkU>Exe8%U_pj#90 zTl@hvky>#L6$8x886YWjKbm0~LuRpZj6k@klv%6;rQ+5uGYmDTc3=Ri+m-KmcvM0T zc9MxTfZr9$49@`3;n(t~EpNeEP+cdF?FbplSEiny0O1@kaL1VcVAui<8{rACo>s8n zQ~pc=)wM_<@O=h?Jo!{X?yCeeZ$JSuS+Xp^bEeT(ZW;J9_Acli?<_`M0*5i_9J$E5 zpd6?+;th=9a+(LD;xKag(pXjLz5*K=2rHpZijbp28EbiMcf*Ip&;{sGHE_?~Mas3I z)-25;%}z%D+&DQz`q4D2u8%1;+1AX{vKAg~JD&9m(f+Rem`8+B4SU)L_wGfZA%sh2WOK`-=qax|TAJFBsjizpp0>pcj`|~* zPA&{yB+TR%`<>uQozv4V`S#PoXMhi^*qXAq? zJpwgpZ;PbHr@=kD$)7VmtxZ((n062`I*Gj9)fnmPe`X~|bhZ9mN zc(!ywK&)XRJoYOI8(B@<>uUhqeF%WFZA3GM>jh}(Lg~AR65O`Y`=13$cpuc1M&Ly} z8sbDVcwx;zD0Ojh>WES5VxJucsR!|~&)&eJBS17h0d}PCZNUpu+ZiJ?4QW|WYVtcT z_uMiDCZ6|bkho5YFq9eNLXx3B0GX98K-k>2khG9;G*oG&>KX;C@Kqu;>SJ$*D-{t^9KHa)5fN~os|1^ zR}aV5^GAdd3Ejhf0PxU`SP>S^W7H=|jZT;dqUXQvV2l-dHkaM`wsv;!24Z6-x1um! zHku9}z`-qW`jJ`aV6!nU@*PhS{vo~Om;H%L)7`-NBg+FX!+Q4-ZQs(XtVn&Wp6Ls! z5B#Sm=ZYjq#VU`>J)UpRk&|i~QP@>QmUQI;)WWQWFI9dTPE2}kPWuPAU{xk_AY<`Q zc|8VL#QkU*RlpwMOpNZH<#oG>Z{!PL&x-$<6QDE7@}AZ7_E0sPqu>f0a3?QOeE<+7!ld6Md`~_FlG&)! z78};`-7%~Q5O$u!4E8-LXZKiegvDHQJEuHa(6wg(QN zLZbA5LjD@V;*`LoK&-)>$gwh*A_R+lz6ct|y}kPsUZ+I43*HF)GsRXt{U{od>#}~^ zt>pJdxU@9UHsRX9lVPDhlV1H8-(WVuHXfS;Ju7enxOB3-UNA(jDjP<6c})T%MWr)1 z%XGu>QtH(XiB8mvC|(jnNdV?r*VBfuf*?UeZw4RtiMAI#eSb!Pt!L1Op3gk{g60_= zZ%q;(LP{y)n1tHfqKHT?#eD*@n(nkm4PM+o@3!cT46k-Xbfr&NhPj=Cj2iUuGOx7} z{BW_!0Sr2=SjvvkXfzM;WS1X41&*-uM$SEmDsl7eYou~QfR4P_YN3j&dI`s z`O%@!87M!RV^J;+^7N=*ZMVB~^w;lE?^Mr9Si{HZaY^4<296mlQ2{^K$10WA;Vh(fX!Zj#aGd~! z_bP5>#toujny z=E1mezJM005xCt1%@{~zxNR^ z-?MsDY36t}J$vhC>x$M#?c4w%%e@tOA}NM5v)20`m3VUOhIPKVAH&|`I*zWr#V;{W zaqT|VaJpD>7vmYs8STeFhBT;+y;?}Tuly0Ri*`ME-izZ!h^7K^;@i7|2`d)C4MIQZ z*%)g<58z9~=D_s8_KNW|^kwAW=f|$*0iOHiWN%2sSf;H7_zJR5ofB?btCzBc3DT0? zc??F2zcV8StU|K-RA(!hy{m$FXJNH_v|^D*6RJ%StmsDIx$}`R1-Pg@vYxu*Gtjmh zGd`%niL~@A_~M;JYTQr!nAj-4xNH1Lavi6Zq+TMY)DlRFsHfjN!m&gDgdPw$m?0CT zR+Oxc=Btlq*g~D0#Al&j^btK{Z3NnmYRtv&0CH+8thcB~7g8`&@;Ep)Kogs*>$wjk z9jC?bY3b(s;>jyi8PVN%Wv@<4?i5wf>1I->>mx8pT8XboIsX}FP zClqDn_eR$D4DY6TgIqn? zs2Kzw-hHZ7ZUd$iK8+Orl_&Is^pbMt#?4Kx=5a-xCd2m+M18jrPgmRE2s}v#hksF)mfc*|9?m(!oT|NXa;bB}J(CJ%Gn7A@X*S*^We6w}Z9F~IhUaP; zB~$L04IiK$>{==2I1Ie01j*qh9+>@&+waO^B4rSfB`yavAJBm82UlB~8rjuhK3FvM zsPBDyE<(9jFv2EiE3tkWWXB$9mVV`A+h3KhG?&xQQ4IdJo<7Gm96>r=;1_2xSmb-E z`hMnp!0q6%PtR8qkDeaLC8lZzOJw%k(C4pa)Gis1oXwHpv3fr6NqpM7nypJ~)1I#2 zxh*KuKO#q^_kIFb{?s^hH}zi94*3L*1T+``vXhH4loAs5lhrBXa8osjEe4qjtrfI% zhi$sN`r*pO<~bkA!9hxqUCtGq(O+YG)6KoMK&s=quzZ!4^s!AZDY7n{eb5k#%cAIW zKvoH5!fG8KvsM|m6Svz^-rrb&L5@KF(=w#YQum`#6f8&mEePl#oT(;{J-y3=%K@N`;Yr%@|-!m)_k>osre3sXe()m5L zy|2^2t{GI*Ht$n=I&B($-KreUZYXxP#xh1_6ZBg+MV=Wy{!v8LNOO75BXxwB^!}om z$dk>=k2P-RpI=zSOhT{rULR!;w%?J}mCU7Fg3bilbbn^h7&oW*mW`XwHDPJ2!PLv+ zz*YHKXIwQX<^5rN!YJ%gxNN2_{9f2_>D_om|RUX?7v z2l{Sj^!h+jvE;c_kl@8=uBdnH7`akQ1>;1xlWPoD<05cNGNt^d4cqIt8f}f)8Eq{w zOdd0>iDN}r#Bq=5oq+$oC#H)nsA~Lpj~_vL16cLs2TJR;a4p}k$NG|o^8+|O=ZlBS zp*NwN*flaF3QztrR)^cVFam+#Z3y;G9-%`=An&@be_L;mdxYKA2kVS^**u6#kDNSr4)RUaQj}_lC-P<|$=tV0t8f0_fS>JmmPp&cdsbzL zVmdU!RlFsC924IsB&#O!A!43e^VN~qyl!9nX9aUPw3(>eqMwIxY#p?3lQcVCL8@^) zsw)IpT-qY!0r0enweCMrKo8UzF0RnifDiFI*b?~^S8F5oxyjMXw4Vi!ko#VPEm=`Q zG9S(GV{GjfRM*>n7tR}-O3GaBuR`D2Ejb=6L-jn^ADXOoo5D1H>=OJ_2~m|#8#t0; z>;cT!#tX~#M=_1pQpR3j29Bt>m$tJY^+$U8fO5#A$W{V0lIdMl3qHKX2^)@EYLa{~ zT-`OUrK6m`-qofw?a+^o?9v~8lcH3ausU%05R@V`(&4tsJYwD?kPXcdFFSOod+)mV zOStWay5VOekWyPq6pAM{R7IBx@5Y7hmmEh&-xy8syi)(Xf=oxSbElPsTI}Hu^HRsr zL#oqkx&AK#B#`|Y+27X@WVnIZOb^v`Py+xuewTa?j`+pup}b-K!ubJ51`DP~GFU#p zdVXR4wmB54=a&lz3)fUi{j%U4!>`IT({-)jy42u*;d z>$TK3kprwy&V^qS-j3?Jrttf&YrpU)O4PCGe;pg`x5owmml0~9{E4*@u%uVZkWTxS zAb%?UD!2S6*koXbu9JpQ8HKRs6l&_J4P?rZf69A)fA_Gv6OCW&Ihq^cN2MyVv}m zS_YyVKKD^2xjyK>nHB!&&;M9S4h7F`sRestbHeI~QANSVUq!*Izby*hM_2^^ftUOT zx}zhAo;Q!e{=88KG!y8)X@$s(ZRS63o&j$#7MN!oqGf|UK`TrOe(M{c9{Cz*%JEU9 z5zqsNk>8^)P2>n9N@lmVqQQpP3?6`1pjoJ{b_qoH??GK6>F!f>U?mtbV&YHxtSy4q zcjNg$Mu*-Q7?Nth8dN8m`L`9#8<0{hi2vF4BTy)~0-P`(#@v2**KI}Z+BZ5$9|~Zh zh-I?~0eS9$ys`#~Z&3}lC?g{SL1c?f8P18SV- z$76xHqk*}F8pjQHP=bCk^38zg8f;qqyO{Htl}B^&@q{-kMUJdqV1wAzpu=Le?v*M~ zCx$AlCP;&SI##M~0hSO7O4HSzAFsmDYXK4Tr6Yzh5<8k+N)Fgneyel0^#Q5DS)XG> z5TVoQfjzM8=e=48EUKUYr0HGEnqlB?uf56ZPW6{oPMdP>ij%gHk8Z)=15)EtCX%ht;kg zlqJv3&hC0{8UnSQ#L7IXr&M7_I2kvtrxGYN4FEZm&%v10{mjn2Mc{&J1{xU&d+o7R zn0LMe+gz$^1a^Rk;q#{lomM>~2uOnAw&5k$75}9HuM})RRt)6)iOcj5PFaR3sTDZoC9oP)e?9M1ITY8;+1*ctmNHLZ|?eL9*~&LtE5RP zERsd?;hUV6EDs$I>BDI#jLrI{O!BGLVBnL8FD(su@Xl@8Cl+7S9D|>wv2m1tQgB-2 z4axzSntCbu(Rt3u^)P*p0@ zX|M=n`AmVc>-{!z9%GspI}12fHVJmR%+xvx_0IDlW82B8+N&pJP9SI?0%J9*V|_pY z5GkDtx~$p|+PLu?5+aC1Z0AQ6K#=AhtjJ;-N1MBp#OWh8z?5}}XA9@FeQps~1gegd z$b=E%-V6z9RIXf%vzs&AJRJ(Nlus!cNWd>Zm6m`X#IxZNy%pg7UNb`6xy)el_>)yX zUE{lskB(@nvRF6SK`ij>DvICZBmV#6s=s!kMTZI?NDmhhWPuIE7mzaVQRxCcFG2|> zHo%8PE?+5G$z8C#)7uMG(>yvoWwaeGp%8Yu#i3PnbFUVbA}`oQCFKVj+o%Q2tlmbJ zR#@~n_%6(FComeHyY5c|3uk3<1%nT?UA*K+F3iVkHAZHrR_gl97N ze7~DZHhJI(PJ)CKcHoF>X&TBR{DDP(|9!;1At$RBz*p7Ac3n}+TZR>$H$Xi9PY(MN zYub^v_F_itygz2wS`6m{s`Kl77WyU1u`>=AHLZ5Y|0PuY`%^-N!~Z52`yb;LEGT9e z>4iv#P5FO=?EGKE5PXc?gJ)~>2FNpIFlVy3z!l4TEL80|Cu{b zD7LVrC4(7j9bLG7ZaixP&?Q7tem+OX$F=y5dC&<{GBNRDsatpp{y33T@p5Hpt1%oF zW}obZC~b!~Dk1xIb+%a3A$hx5dcn8llZ7P-GGGB^QfDuXF07`)bV}7!BA)Bxb9!8a zs><=)J%85rCW>I_@m%ku-dkP^vq_jYVH2%*)Wz=b{Mo*N!!yyb`}dH;eFirjEqd{r zKz{4!3uVNmFL&QGj4Vr>w4x~tcWmdD#miUu{hhWtcdh!#*2R6rSCZ&RpWpUO*~>C3 z5r&Zicy2y-ohV~X@9Ok2=M5IEPuMqjSpo8OLO73P%U%R#fKSdgvK!F}KI zJ^89%9u6|2!I`wuAO1Cz3O(`+BWOdTYDI zqF(}SUcHJN=qh^j6n_4*Pbw?ma4Ng@EyD}qU1(y&Ih_hbm z0-g61e9Vsn$y`6oHZzVK7SoXy&yO@+elMDA_ZiwF9+OYPid&vKc(9h&UYBM@vW63F=j(EhuFfG9 zvL!%_7uvGCu$qw#2Mukv0Tpd}cC;=0VuwlngGwYIqGv(X;_GyS_rPa+1G{P1m?kR- zl|mV0LT=rEiOFIHiqTFR;{x$)Ptb#~2}7=!fh_|s*cN>S;Wdb~+JGQHCSBs&1wOUl zd*JRq+UP5$o+}>+-0o4kq=Ncc@cJ-Q(%0$i$oY+=OC;FFh@i+i z5b|f4HorUq{cN|#ZJ}7{4j{B$8LRv-ptQ%XSHVQab*;cW_?2tz1@OT)1q`0B|Alxg zt7;Sg%$@?<(bMz>w&w~&y3D$oO!~` zm7`_1=U$zlQ69V>;md3O&O@Co|6xGbbuqsRZG6;#6RF~}MZzUnjuC#ibysH#ykm{0 z?{VZDbb})={Jly#;>UZD=Lh(@zUECLaseZkT@RI}4~pA))7Fo;Ft%KOHR}l%8)qtSH@0g(1IoBb1?a--r32B4+I&+A`79}4r^z7HIjYeIc%QX>1=w0|7N~V! zq8Iy~9z2Yo;C%~F!FWy`g6+9hnUON17-46#2x_4|YvgjK|7}2L9s%MKiSp@tjfsAS zet}{c(7bFI0zvzU+M}cSXkOc4F4#^Nr?BTHjmOqBZLVrZBl?6(1Nyh@Rj>gWDAMBG zJp`;5R-_)CAgZ_J5fhwq+!ruqSI0{MwnAF9zENzi=vqQCu)SPxU@hs9mAphg8p2=p z>Z_mg_IAPX9V{E2QcRb8)lilka_N&gjA>#Kldlo|l5kG@*K@;CqD7%DPpJZh++WI4 z7*+C)^JJi17AL;k+dAecQQ5hoy%;F_k-Re7J=EpMr;||FU83eoDuV)_tPHX`wVa=VJ}F)wD1)S5d5AHJM?Ds7ImD2qGJBQ8sH;02U0BgU)bQB2<9uCPHf7i zk2zw{-JU+>x!aib_ykY*s$k)fV(UHtvEG1|b7(?=$|5so$GZc7LzMz$+^1_QS9wVe|tL*QKxTxDC{R;V1?Sy$*Og3f9TTIpf6RA=^Qhnw2x)C&ee~ zv2J~<4zfK5SwDssIQ)vHShHiX?r>wmstEDapra8GihM)kAn|~ul|@J+Y%2W% z7@@Ig7QCh0eSbgbx-ho3n}uQ1#Yu6kHfJQ<_93_T>2r+fAE6|sr$VJjm8Pwa^DD{k z!?)Bc`NJ%`1D>BZ60*u?C7Qqs^0(eU==4(TJ&> zV(;@L3JBeqZVcq~bVz0YzK;isYPyr&{@z_mPqQy$6X?p^BJDKoQEOh1{#^RSV9O*_ z@!Y!!_wsUR$!{o^ieoQ@*s19@QcjT8kS>u?OW$X=54%9hSG+8w#>Ab&pc7PE%Z|r3 zjK+JGUg&VZ0(;LI?3fo+FSF51l7CKKCT5oJ?%`DPrmskYjOIwF_`FC)c7Svo zdfI8q z64sA{^)V9MBlDsykX5=R&3c2w9&{KfP|JFW)`bF!1Kdo*uOk%`^zxZrN5t{lsB1{r zkCtZzwu7ca2x!wwPF=9>@s)FvPQTp%RJCQwZUD6Cr2lU$02)S*o8v00^hQxIO|iH% z1oZJ{7~vd@v+(*X-JqG$@{>8ix)6qk46)-|0#=?`zzf&1$91Wv`Qp5J&|`rj`GBjj z?s<0L8O|8y5*`_z-+N?Fa%hO_=DxlhYY28|Tz4unoX_;|^F{$lCT*x!I=%}09Bwu*6X>NA!@pW1H zVi_g&;}s!8dT)=x74t=^)1K1pSJ%RnM}CpogaI!H*+P8-Hwk*5@7Ga)$F zCgu5rUxN%5CnhDzolL8V6*WF2yJ1}g7yFVd0JGI6f#kfqFD}}Jdo4+kRDc7{xn^K7 zWosJeUQzF{ft%v81|FNWMM`;q`RF?^b-$0yZUm{Dy{#Gg9Y?+mp@kI9`T(7>hi&wu znATWy7$0uDrh&qnN~GSo*YJ^!lOPi2vEKO~FOth+>6mKK33kX}79NGb?x+R|ttVk2 z7NeDLJclr2ElylJfaA1Kk3or5ueo_#Dx6wxF~ctn%m}r7xnIJ{BDawP^Y7t&zS=2v zNles6v`rM{_ddWklPtGxJqu$xGDQ;Bc%0IE-?@$Z1oYjVO!|1MKIZCYU0yTO6|wys z{ydSp+SM)sPMb^a5#grfOTxU*%$8o4ezP4yUl-k-(NPA8C3#C~f}yK0?GOCRiadwK zazr!GI+g2nCZRrtEo+jYbFH}kO;kq3_j5n+3-K6JJv8ol$@8v{m)aQXGd~W=Gqa60 zYY|T>6+?X8ScX#1JkQ=XpB%xnL$PjD^P0^j-u0)&=$B`^(Rx7~rle!+y_*3-KuT#z z!ZoJJUhWIJdRexx1U9}&DVa)O?*oRNf*QrUi`}n5>!+*ko}`C1W>_jV1Zj<2z5ut1 z0BVL;Dc@4KUKRQ@Pnp)8hL4}AMhazdDYomH@=~bdfenU-IsN-{dIn_!VUAcIM zJm*kTMt5A;;aJbta%oDLZO+$1ujeDl+x=cUYy6Z+Ofb4gi@tYRskP9y8Ojms-T-JC zcn3b(#bu&0C-R+p!I%0J(&p=0&ASPu{J5tguNa(MVYRimtV@ zh2C0`rO^S5Y|x-~`Ama>KmcJs3|D-pnSYO*TmOe$2@|hHWVwVvd!Z=QKWWkB7hw^|02?SK*P(R4}1^ONfJM2iGy^)bcH6AQNszu;pAb|`a^`d#cU9|^QXhiP6Ym#F7H%T+F?hDyg# z_FnZd+7XzjihG@sC@k!9pm!rQYfS{oUiA&iOhR!Nq?5}?zyOKloSm#P057Cr z$*l4mIr(ZV^MjvEICo2xxj)e~QGnIr6T*i5OKI30P)sboN;AtZL) z`$RwcgR;%L$hh1uoC!*WTvr?4$#cY46n}*0pBcR4((57Uui#AxD2J8FpI|!NWKNan zENemUR#%Q>bC8w827e8{6UrPLS%^8^bh;^a&qDMzBEg@0G~r`ks!)GG(>g!*4X!$@ z#_#fi!(a!Lh;|4v<;ned{<;X#QuCC9<{)hRBQQl5TUI|uTPpWm+{yr{d&S_x7Z}qo zu_{b=UcH;WV>>Wse^lfRU$W`fAG`+3e%iu!JOF#}G*{{73{0$gt;FQ|nPTes3)-|g zAKDF;`e`2~E@TRa!X??A(ie{3l+G@e6$C!pU>Ot1PdA)uf1b2tOq5yfH$8h-g|;<% zUL9FDMqwLG17Dv)gGN2qJL86>2x7#x?Y5+!9xAtbG&f3JUsrs*nRvziv37u+9Vx3e z7e<|d3QhB*#KaMuF^~DeU$#sj#PzW@zL+^3Vy`tRC1^CMg3>xQrObJ`3hCHFW;owX zNV|;+ns>_i)H5OM38_GnUs8KXF14GauCV8uI@o=g%`1_%PD@_Mb43pq>%Z1n>zuRf=Xvh?y078B@9TH{E+~T5O7Az~ z!N1Z0$c+qwu*ojv=uM|XOVRBveV){Z-tms8=H;8uyS5~!XQza1NKk5+QIBb)Q>nDt zdb^!Ee313>F7$U}sMA^v%qrRIyLcc`xDvV^Yw+DPo3Och2C< z^W{*<`;2>5j`#}?vz^npt4x0U>=i!0zNEd3b`X-$W?=>5nZ$hD6)DMo(x3JevY1Gok%PnK^81$!rzDuve!37(2-}knV}4pdIxU=bf?#MZEL*59 zZaOiar&sJG>}TI>!d1{WsCPIadg~OUB>FC#|I@CgTz&?~#=^ zxxW+0rQDw0PswYn-GzFvN%@?lFGJ;dD;Dw+I6feSM z7o}>Vcp#iVJuDUhX?Y#e<6mlg=wYjSzDXg_y)J+_bAvuw4)^$xr(_ISUp5%8+#S9k zz{pXxPrxxOfw&ABd)ld=O{jvpSp*$Vh`Cy4Kc7#H9$|zo4|gr!V=1t}#c>(#t?n#O z_b{&laN%Z70bwE3_Tig*;1HV%H*^)~A7ykxA3pWZ4#gkE$v zG5hWktU_Y1Wa>G}KQ~dlE6%ttJJ7!=f)6@aM94gGfZLUKaN~0aZq=@{Kv`QL+_=4f zg}x)O5G}_FS3|k!82|~idz!?NNI^4@5}WQuhxQ1_(Z!4b;}GsS zBr+#U+}zIqk6_^Q?dQNgG(6t{>=IcK#mUEks%LPh{~&gr%4x+JI@GkJkU5SP_a3?r z*91?XY?i|MEv<>SKf!(y$sXpo4oSbAElz?3IP71~HxdJK`$Mqdm3yUEcv{jL?tfV9 zJk^pUZMg3I4?b>kV3?SO8!J@01}x@k!U~ymP^l}`r5O)9wueyp^NegB3TK9H$t}bE zWr|WX_Zr+W@oHy)_V{+9MYwT=FwyXgqH0L>x;^Ae1ok6E{y_;?-Ppb^Qe;3y)xgJu z{OKYeKFl4gzEh>THb@lm_)u+|VAIlNu~9htYO6#gH@%3bfT#PV-_E-A{_6SoYwn=^ zXU9tAbO50J$Y55P_!QEb@kQS))vJFFaD)KigQE@}FTDbwh$cWv+(RkDo)-+`ru z)3A&ez%M~ik}P|p9Gd-BI8TQ42a5S_tzCL}dSUD_P=k16Vczl@lw`l$$~Pz_L!c(> z$K4Fds(4w!XdWbM`tK?bz;z)THl!O-DtKDc>h|kNr_YfyTHTeGJpJE-E@dNv@l}1Noz@xYYUyx1){;S+3 zPe5G!LDh%QG9r)!NKH~hYSI8RGSAC`AILlVP19civf&7M#wj4rxb%th{@BT3&Ii^F zDbKs??`5kWRKz_FK#QDG`t`?8WZp!>oX@7~Qh;^jiWx08-UMiiwgt4@eN>Sz>W%h{ z6Z2p!fO-DoWb6(5219V z!~kV`_*Q*|NyGdR?4M}Qe~q%*92%p8590M8dj5n1rNrWa^f^jHaRUF|NTV{~og3gU z%s7tswfq;a2Qinl0U=52LrBt4K6zIrDHM2Y`+=9uuC`I9<07s!HD=ofXk1Oqd90bi zq}z6C0Q77OcDSTJS}N0mCV`ns0-AZ|wT|2B7==O=br}t$lT`$&yZ|h&(`Vp4jCnO> z=?;Z-Lu7^_YRHwNL1Td^2&xQ>w^SRYT(`cz>$gDy*HVk6m-R5l{twq&tb@xF>w&wi zrIS#urY4kx$hZ@P>zN-tBn8jk3e0;4)zaN<^U(NyZw#wEcAou132*Gm>py=*E^9su z1yuv-SpkrqVe%FY$U2xJe)IbO2nb8QmQ`<`x zJ(pqLn;s$Nx8<4GZvB^_1pI&;bZVeNcPGJpO7*tRCv6ef{F+GKAHwY1j25n*omat? z8k*YuAcZr99bLmPvYa`voH`zS#IT&oPW{7iZ|r`X6)dN*nKB0~XJp$-2P|jx0$|uB zvZVccSJ=LhB5H)-=qC;Ohn~tX@2w#q!2b9UJpbE_p^V0k&%7@I7Q_(Ic5X}t4hH)# zdbTI$1>G`b`zb(NAtTb~!Pg+jTM-^?+2o16sS*Q*i{@?7YaYLg1H1+A@Q}z2=>GzR z2gPq_8em<1-;D|IU}-dihLGjdgrO!*8-%=Piuf1N@96^c&CM$)T?4^@EiRsi^hfpdV} z?bwKTW9J?wC=HL(P=WA|woT-Nppe-eNAr{RG7nWDR+0r)0%asL2{O#T z={Y=%C>-eBFFi-r8OmkyWr6&`SDwUq+rheeO>|wKJmsUX|yL2G^U*x_w#0A~G0sHr+-Vkx` zCBri9;Gi;v&J{@FvQ9Mor(Xpg%=mM&h}t~{yLO=JHM_ZUx8yg${QA!1cIz*}>>Wp7 ztB?d+g{fEgf#;@&kcZj9Qoy82&w-_IW5#hrsJ6&{&tE2g03I%~C}Z4nt!;ICMYpOa z84+LN1K*tM{%mUj-^_uwBBa>g!~~Cl|Cjp*45+V4ld@?17L5lM$Lw(S{R=;7OEWsNg2;tYN6y zC}bKj?8VDaRRfOuNXKThWsAKOEL$!%<{sGBhK%^RjP*?lkjm4b1J^+nl0lC)OG;11 zfgW*NIr$^A%*{WT!)Uyeb7;$W6Bh*?IqeeM9WL|zSMscba^ zFhX$Lr=G9!{3c~kg~O+E@TyR(<g^BUc`&yeG* zn8Rf3_tyNyCIpp9)DS}}*hmU3@`_==$4BSYVr7K0Z<^iC&oYLb5xXl^-lWSDwLdLhtKpHc-{{kiAIP10?^qXoXL(n zuf&NYbu*Og+zz%=lMfywaHFv=e)(s z_#PWMV)E#5!jS{Zt4ksG)C_g5^b5Uy!fSK+l(_fF?E`#oclPI-i_gj8*5RpYNQf;JE{Sq_^7{+|ccr-{r-Mkz5I%~W&j`5|&8M#5X zr-fES(&bGy^Dn5;GqF5(t+XF8TYe?Ffc`33sbc(a$S>KI%Q8qA zl{W)kD7cJ4r^}tB#^q_}(tK?S4~JBgr}r&FOp}IGsd-O;7~bKV(svXkEB_5fn$-5hH7*BNBq?g7Mp2VXs}^(DV|Qi~05P>^$Z9s7N-_=x9nVu+NN z+KZiFcJ-aS-s`1}`;1xWH00~{TC+u2;PNQ$_KkGyzu>YjKn_U@U#h& zfVJYi;q8gh`gb$g8ZY-v_xkMbu{-=WFvQch;3m<(Auz)&KE{uP>j|crt77DUFik|R zbL4@u?yawZQ4j9`Guj0gNnDEBORWBNW_glX2~Qex39LM>6u*tz&Z#CY{prG|E_q;a z{Qdpy18SyyxJI}Ndi7G{JO@d6_9M(0zNQXVYy8K-!0WFSj$r$JpSNvB?{n-W8NXh( zUGd_Wln0?vFL&4P$gV!hDxG6=|>K5nf7LWom6l?XcGgu=ZN$zheov(WVu?grYQS3zUI zoBc%@>sve9n+U-b&@owODnZT8Kxip=s|bu16qB5V&a2O5{1}0oH2CfYuvcD z<9h!OSk>A_u!$OXq2WKV0PSn3SNE5#IQqBPx!?G?$j6W2^DMdfY%t}B@0SYNt3{de zr)w)x?uz1>{lC87jtBp3(H#2H;o5lV!ri-%JW6hUEU@kGT{Hbm;w@^aQlXHm>+b%s&NsQHL)#uOFw##d7cHa{69lU)uyEFWpbVJbN;In2woygOQ z%X5L%Y@}RpWy^!-bpQ^<5H*gueThdR(!)W?aZ%9%FxmwsoK5 zwo`Mrg~I(Tx{sCOjFR5>-OOY3=pKFZfk5z03<(5VN&oH|*6KcEo8wQQ{YtU!OuFO) z*MJD^)slN03%4=@(xsHlfwC6h5;wcjNjFyJ?6}w9mk={K&bUP**sKg7wge_oDvOfh_&Gss#$Vf%zLdsaT>5XaZ@dkYekHD7mI)m zw-4)aj;H`SsroyCv$Oda`Q0gWU+F210y;VzG!5s1YdXs$%9ax|J-NYf&t(b$q|svC z5vo|2d+gWU>0-U>pytXfiQi}Gy{O!QsaS+P?foJsk+_w^QWKM3sD824XtXZM|CI!w zD$B)&mAZ+rg=SZpk`ahiMW9~cjKbNo!Z`@s3xDT zmtqe4{7_sf>?>NvypYzc-Tbtb+##>hgtqyqPLXyPoncVrw?TVT7=0_7tLdJBwk+h_ zKiK1*-=>v%>FfX$U$pKEG8bP5^j{;kXbIXrQFZe;qs)=rQ}J(RJcjYUJ;yK;aKW7< zxU%v|BtyT3=|Gmtl{V9*LMJag<-@x7xzBdPZwXoCEAJ7D#XY2y@;pB)<91}fpOJMY zukzCaI4_Q}rizT(wCgK}nwQONpI4#}r_nkdaXsP{y}}E-UeMn3akKH0NWQ~)uH93d6EbrCQGT%B!Un) z&9;t3xb{GEoBQB3%%DUKO7z@0anT&YY6)GuGOzpq(D|YOu%(R&jx`U#A0+tYB1v|% zQcg*ik;8*=#X#L8Nd_?|wrnyf&!0D!?knQ71^_A>imLXcyL;GP;~ml}=Y5dA#vBkm z%lHEFWd9~h!o@<#(a1;T_OGb>GfB~!9IAKcexatIQz$)zer(qyZTj~=>?`FMMF_&Bx%=jV|7;>J!a-n0Q7+rIjg`|9-z@+46U7wRq+%+3@# zTr>Q#J}FJosUQCSKv(5r09eVhzu0TOSA-$VcKunL!(-* z%fw~S8YrGF0WejUpp&doCF>iW+6+spbger8zk39fY$r9wqt6hR0QNtD(BQ^X{n#SE z55ReS?NV#E9Bx^QYlU2cnHRqU_}(*I<@WuA{zFaSObBpP3=<9`oQHxWBK<_lIUWAyv95#~mtv+Jn*}ghsh06Y-XGJadChb6 z3R67@wQIaRy0y8h5q`LJ!ZzzvfA5E^1AQ~#6(VF<3;}qIcLGRTIXZGc$M0fe_;Grk zDg=e4YdTb8K0);g@0nU+?Q?oRR`Kau`Blt_{7X@%xGz-Sqm^zg+Xkv)6IF;P)0+sf+S5lncCaqf;AB6pOyt|F9%v*gg33Z<<7<%p8G&{~p%o!&)XTys3 z%%R#O<~mA)b{=asr7Qy!l z`3QI+8L5L)`Y0bgr}2$7Y~Bv|08+L8_5fK?NmUM16$V^I-#8NX%8V1enTrC-%6MZ<$n!gk z?bD~g+5^v&Tc1XI;%?RQr2&`wBDmm*7jq&t z?nHB3F1jss8VB^1=Y=eqZ@68JnW_UJ6<>a9=p;KX znjzjYG5-|oNOell}{ZHu^Z|404L6wM`*z(IQQdyE~FLdW-y$>%f>esfAJ z8Z5r%dW3Xs{>z7wAl*i8KzDUjP>QRWn7&y>Ds_~gQm5PXH2)CR9Hs9vKfrfL51-qn z>@1ui_Rz#AT{-69%cpE_N<>OOIBl72`OK5?4_7$s+_X74(!hgZpYBc*@mz@usoqq3 z)_Xvkb2VPy&TGAu@8^{M0a|{erh+Fj^mHcg6F*}8R`H|V6SaKt+7~xmTJXL@EEOIz zOx^M*Z8i#_t!;tR=0Q|9SM{lzt7zzbB)ha&OQBVs-M=G&`nb*`DtL3kfYp3p>|ueo z!nt;n+5_D&4ziggEoWa`rM{+L_8yz55O4BD&&mN)l1w6eX@QHU&|~+GQLQVjHUE@{ zN>t-2G`vK%&j5^jUoAiIMSo84HvY8zkQ-624N2O!Wed26t!`U zVUV$3a$S=nt=xF37#z~jOF1lilvEbx+%^ujQD-rujo+dDc+z0{gk8nPsxv_6rB3$i50iY?dd-JhthCmVn5UW|(6_-akGP2cmb+2-Dv zb#X-i=Lxy$;_yHq*_#Yn4OSdTM18Z`Z#ySle=`G3?fv;3J8V9YeKR zyK+Lg9Sb^7Ln*!pKyCe#=-l#_2-Br8bj0m|8@|Ps#EJy1x26|4EU1sq1@`I=sa5uB>no4Y{TO+|pf-lSDBkO* zx@e)AMOk~zu!u_|#)=Jl`MdKcA)kJMCmTQN&x#E8aRNc#VixY|&fPoaJ5oCW741pI z{9jQt33k0#OpwXAS5J~FJbiSPU3gyCk1=}wI1Lxb!g6xJ3AaXPBQs6Eyuk086kQbP zlv8RS2IuUNpX2PR=i^Bz@++2`~Q?^xfII^F94gQsHG9hc$tjTGC;`$Cv8p zHv?$fN7w4lNfmJ(2xGt8IPs?N%I$-rVkcBtX1gKamTxeeGPzA+O5q4jh7HI$j#)2} zgt6DVDM}8q7TN=9C__C>PBMlwGq7Xi>0Oh9FrV#u{<2A%T-@WinV-sjWn`#Ye8`-~ z05{rvQ+&INX+hUbzg4Hsj+WiIxKJA}A~ZI-t#vP$_Opb?VmcI_X-sq^=ALGHa**c8 z*(2q7ME-e0h?{~zV7jgXntbwj7)hY!l+ME& zj-`>`M}=4EzA3Qb9_=H>@E95JED>n%pn4NE@s)B=v_*{3!RAZAO|`I4-eFF3=~vew zF=7lO1;$SH#I1{Ub|)?bvl3(xaiS9=yG+6^==|{)xSm6OS6997x)8Ko)Fwmik1#%T zscwca#y>wG6w&0Lf1}+09T+n`jh&1A^CLtA8RdEUfO)$4Zhe9vb%>>2l zR8nF02C&K_TJp0u1J~2p_x@lR+3=YlNo?BGsB5v2UM!KqMNtAW)X@FJ)lO)j`RdxI zbe!;|{`C`7*be=;?3T@F($_`t~yb#Q#bf2B6#(`J0B@|?|rnxwWmC`sVENkv{ytoP9D@8)K7l|Mvx3^&j zaQoAd&uHLJ*3F`ilA)TiL$$`XTMt?_-Gd*?S*D*R79hqv32eNiaF^)$F_3m+%N0K9 zi}5dJy$_M0ep?l+iI}xz>KS4TvML2&0m%-H4VyngV6}9~?IQP)-sHGgm&;K2jbLrx z)QRXPkEpP6XC)Z#2lOJ7_NWyK=>Ne?g$+}ud#O;TTxVyIa_1-|Gl4atvUh~kLntE7 za7r-U3+NT&IWEkFR=MsbO|qc-+Y*7w@*VO(%YSH?@h&Vl154=(OSwTO!Qf93p{f}7 zQohbEsJL4lF##dX@Kv63&lAHg*Udyl#d%U;f8yiyZB7LeDZDubN+LAz#gbyh))NgOcn#7IHx=@j! zveMf>6>H5-4-Lcf1?KI}56>;qU1)@yRypt8S<9)k>Ebi4I;wSeXL_OAXB z+eN|+((CwX>sc2f>5Jm*mYIyi7`hHsc^EG;fMHDgZ8vc;VvMGS)pS2M+K_G$eOgW1Mx)*lOVS)^!;398vawULwm$^XvF75NPS1K;1x~ z1IHv7p%v+`b+Y?SIahfQ34uV7#RXgb?EHRqlwpPNf1o}uz<;>b80b9(A0PqCG53Ih z0y;q=$_YN;4@GI-jQ(wj42c&Kz<0T# zx8mPUfMk!rs)!R=zBtLmjQAKLVhp(+Ne&no;vR=FMt}H)>v)a-(KpK1Aq6MizgP4!ruB!K7&}}8L&pWf{^+3 zeN%sUr+|Q7#65yF{t^oR4Z3Vw@E;PL?To{hz%?D_J$D50vH!_8i7^Sw^_3u+co2;( z$!w~Z^u^y?GWZlEnhawO{UI(0tAmKbrU&=F;r@0Mo()69Dwk1xnu)oT)lC?t%wsgb zqlvebpS9fwVjb;5#UXA~cmJNk+SU~afdZgF0X)|$rxGb5ehY4#=%Ei?Cb6qLzXc>v z*p(3^;JpBa-O+A52LA387`1DtlGjz~i+i6TL+MtO=w{-2!uoplVNG7wXH*LzZZw}{ zPhm@M=*5A;3V^~^dk_8WIH2%baHGN^1AwFmvMTUeS!F+CP}sqdxF0})kQAW1%l+-( ze>hK2AA_^6u7S$Nf;><)w>&{*=?yk!G!VaFMFf!>qU-p!(jRJ(4=T$b%Q(FA6F+TY zampY3ofwRF@|8>P*#7ie_46B9IM*g+cLyZ!4lM)TLIPE3r-`3FGn?;+1lggy6Q9pO z&{Be+#e>pKTq5YA=AQ#s_S>o~`DQQ_<`O^fM>dMcCI&!K$^36pc#?@lnZbI z5VcRBnv^AkDgXY@=tX!h241(kXt}_Ki@TU1C@WcR+0e(1SNT@Xrg_h|aFEMu>DrBv zwXn$Y8(y7r{b$`s?NKrp(Y23^Gu^xB=XK*u=A1c<3mkYU@5&20?zk29u~tWQCR#IK|U_sT6ftFj%fA%bunKF5WgDpF^t2c~nm7MZFF^6&w~E4k(E{qQ;RL-N1=AxMQM zvY5sHEbJxhItgKrO)yBeepnOfy@faqLxi$J++1bzwXU3`PW8VhWMnJ%cZLw07f_zS zLg7f^2_l0&-K6)C@Z_cQ*CIoH_%~z=`m?$K@p5j5_wUW|QeCb*9x4_zfJ1^El7`XH z-bopHBUya^kP-=3T{mgpzy&YTBlF|Vd@hhb0~1E}2wX!iWQqgh-V=E2wSnG`TVE>f zG-#9SfJvXd401ncC68?U>MdS%)%;*!cdT1!Z2WeyoTI>Fdmn5>lC;50!uihrmzYhP z8wORL1|v{xr!~AOov>|`QMIS`NfCQaq+=)~FXgND<(ojqj&P>%pH)yr-4@K`o4rAL z(DL9g6gMaW!T9NEph?r9u@^k%5(9eq1gn=3pX53yL5wjp^PCyvMtkv#6bF~v#r4r5?0(VEMyLhg0;faW zfu>|UFcEIAwDJsu<s zeDm`JJP{Xf!p1Bp$jc=S+=DrJ`yU<#QEbF!r0R|FZs_U5?2Px6Q?EQEl0hj0C5c7- zebOQrhJrD4@{og`n=H_9F{E$?Qp;^{t!e?K|4*h@rhAkD^TMYX$@TBh~XKx-5G)K=k|bt}HbH<4PCxq_2a~kRQ#Fs@_~(a4#)DLW7wl z(L!ale+Pj&HouJi7qfd1PMFEMDb;ZrUX&PBxtdv$Zt|J+sdO-XSd?q_)+1F zAS`ZEc8PBKuK-Sk&A)AfxrUrc{u!(Ov4a5D=p`TsuCcmn{<44Ko5O5*2DQG`&~)me z@TE0DAsz`u1MM6wE>NH7Yfx&@IO@4N&$s`;5vo)7#xjxp*Sku#8^|&AQlH?VtAAL` z-unIWd3!PDu}>X2`8T~(s4ZyaNcN_@!+R|9I&m0#z-k%PHVfVPdWFlV;`ZCrKFBIV zi(A>6?Ug|Vd5RRmj-OYPp{hljv;g>L*q{hQSLU^OVdX!u0O}1z<_4BjSixgo7ZjPV zKu2gv8(3zx>Rv;j8q)E}Fq?{A9NAi|nZP z(YldmuCWbZe4C> z8;z`pYCp!gVSDRS+ zmWGpdSDj3ocP1WttW;sb{?uVJOsSldd^~pO;|L~4CQ+B|D`&vDo<9?2>iQM_YHkqC@Sjx)akA zFOUa1x4dYK9vdPhx9DaH9$TIySA2K*b-Gs5N2jk}-Wi^5dBz>sjxH~omGG5QHL0Ld z#IM+0SA8_;t1wKrns{n$CRB1;!OEi+rSDm^P$3%gfriDFY@NwjEYsVUsOL(`u)#p(*qTFT-!xb!xz5V3Jb~~cZWVFxs zT+HO(ygHHJ&ppY%%_k<58S}X6h}>Y-H)4i1YFN!=?j+?Tv}Cb;zuU#2BlZe)^lf&m z6%u5q$G5Mt4L_!@2rRfC`39(j#-Tr8ED*`4P_ij71Jm$Rq>(zLQY`^#0@yj4I6?EE zLrl^}P{PL10vQzV#TJen##RWKTzrOQQQEmWq;D-I+T+F>C}g6bR8Rr1E*StV=&ISS z9gYBSOEcDEX$;&uY$=7rZsYDs0#DZB=0dG9#E3CqEs9wk_ELlGTWbA7CZC_`2=j9~ z@Tui&L-ZJj40j|{dny6Rnk4{ii|l&&g(vcqE>=LdLML-H$0ZK}VYulo@p2m9>TfIM> zS#;-{92ex6PA;SbGe!bts|Coe$HHZHA~xr%)R3m3QzNytX2-mJG_zE-dmoBPFMra^ zQQ7!8#kv98mRCr_dt-@>mpXazNXx}VU~p?GG;bP106E!S%hTE(IR69bjw3aTK=v(x zvK8^XcIGp*WbqwhE*9B+mCxETL~5y#ct*%#{j&a#CRO>~7|9<}La*oPyG-ZL_dAWf zusxS|$$6X$4$@v%n6me);p-U;Pc7#bM?Ma4cZ>CGO(4hcD`C;6We(f2e5)N{X6oD& zG&uF++qSp-zi=E}M zg*M#`&0emLi|8x|OD_G>;aaZ-I;jPQq8+HQqu#YeDv;qUuGv~_GMy6fHGR819Xy(6 zQ6I1@V5+EaT+0>GZlA!51JE!|>UkcHQVF!RuD?MxjjWL3P zZw?dhAAv64KU^X;iGsU^+!erfKLskkW*}-$htpD#$C8z>2$3U{DHDCAPThchiMjz| zurDshDjd``GKZ#}J$jr+bD?5dGnJv9vX|gvE%a|)2bfOufeSgfxuL4^Yw_n50fLu0 zQDpXx4B5)_>J?m6is9vgUbtmjK+#s@H10<+adZQ%cyvvs>Juystg`qA97IfL;((23Cgvp(*XF;2CbniK-s6o!JyMBWH}EI37vrR zjqbyrcMIGW;|f&pncF5#>#siBb=fx37EO-%p?YhgbJ~)QH(CCqXiGGTNmom{+=%^h z-Qe1;(T=3+CP)d87a%MV4wPNNI88E+fJ(wDnC6?5aBj^X>yg>Cfcw}{kvxd*Hj znY(z|h?~XmZmq9AP-gm+oyw*bsdw^l!ZE(EGVP>DBZ|x?XBw4mbCPFrRyVj(i4SlC}KxBu(M%pEl*JyVnOuv2t`O z0@I{LTM}!R-?R{QQD^|IcY=%qM_SFgI@!4Q^+m}jog=4Y_?SA^S-MV$cwgs4I~3IW zITr}0!+BsqJSA9Hz(lQj7uG&f+|`y{h$Vu#LwfsX_rV2bqAAvJ$-|M$*)g!5wn%{Yv-dII7C>RM-=2EA4BqzD&i%f_QGgfLA*1Ez zg%-x@0nn~ENGVkIf;iXFe7srO$VJX`_j!o;^9jtDh*PC3TcfxYd!T5$qq zLO(d#FP8vB0x#F0hEo4M7hqbZEeWvI1Q-D#iTih4EWyc5yWa?-tdPcDyBo|vY*qnq zSEYi~H-_XS&-`47%U+t))?k-9B&K_zGqR2V369-O)BZU2bys>Ufj|wfE63v)&Db6C zOHc?Az^t0S8|i3{mDH zQ%Mktdqv-+k@GX2Q)XdDbc=d?C_W=yq2t=38Rns=DOZ$Kn)jzyMNu>2s;Y^#RCzcR zv@W6l_q-h~)VSFCWaHtf3%6?8^~`&d_y&m_r?pz5PvmvquGlJC?>xBTV4xcX%`uhc zNJJOjZ{W6d+2vObEn02dDTXyB4bM z82b_TYdh|0W;RAIA5e8HzmVMRIKdw9r2NKEv*`HOaUP-D15WFvGszl@g|8M@+A_wX zS8F4Z%Lac8`ID#Ngn#hOc^`rsUtBa?6P9t+N$usu8o3GXA8*JdS7WOvqZ)6q%h`=Y`vX>?A!O0bkF_bWoF|;| zxH={D0on(;_ocph21sFnnMr-LM}3my$)N?Fd}yj(kA* z`qPYzH}~Sk6JMLOJS5+pv-3_vbG1AXPrPPSZqR|MVY_wlOLo|3$i!aKMXTsiPv606cm9iyu>@pM=-Hb)A3)k&I@AtzRgaa7xI z_qbC^32|c>c>wLEbCr93%H^nIKE=B@()FpVkqo8rdX4WdRYh5LEYRk!J(nv>Y$ZfK ztvQ|?A*pNI?D4ZIZv*~r<#H&85oaqd)v`yTBIKFMYv zDb!-=JX&+K1ZYiY9w^VUAK}NJ&w^z%qY#+Dm0XGSCJR^r28ghO$B)dD56@9?X~5WEfqSYc56|Yn&$8^iaIf9!n!Ph_N_Z<-q7|qmZWbr)Tb2v zaNmN{jc_OYa^1Jk+xC)CNfPd=fgvNR`1*t+5@z}6y0f;QI7@ribuxhBqYExM6l#OY zeYf{>C7%AQv5-`?Kx3hHB&zB-TSRzn@6xHRFC}O$uEpy*Q)}Wj5_ zSPW}cXIsn@ho}nU#Wp|EC(<|dP+cRdGA~8(JbW|l%2@!&5ny@mKco5#&#xGF`r#=F zU!92N>8UIy<(}9BSL!3BhpHEcW>vc;5=o2Bb6O0LOE5UtAH`x#wypICi7>Gd6W>2i zJrK=pU7p$H6bz9r5A!k%>M&ww@~IY2^=vZeRH%DSm*E-S>B{S>=A(i4tk29lhAev7 zyLVxZD*L`3+_WuZ62=kSKiDubbZ{7VOx$%k{jILMXUks^#1{c`R z-U%wFZ>eU!rCt!e2896Xj6)Z7Z0@tO{)pDB3-QGh5(<#qqV5V6KXE*jL4XclL?H57 zyRfH$e#krRjDOv+%O)2T42TO2d7VY3e!l;i5Ox-TG{<^ol)7z>kG+}N4dbq_88)Bn zXqC^UX)1YJvO6qN7eX%Am80TyM7jJ$y0**_d;a4zyWW~zIak~{B7(cV&_C=R>`98T zcz9f?T%aaaN?uhdwQ3j8e28&3&WqL$Mq|1VzDw) zBMbNGhGtrl<<+h#83^a72*36oH(kjuCaAU)H6;Fl4*%;O5n`DcB8i ztBLL~Xmgqi@DuS)1hu#LTc{sx?>k4&xyBIb$HGM|iCz8T9KO*546&(=SH5yvSU0*} zesKEBz++tES<`@l)sWDSxFdpLHH3_=p@Fod2Pv8gRn%9nNEi>6&5gdp?n+Ihy*Ol0 zc0DXfg4LCbCYDz{jD6a8lzrWF;nupMdT?lS5@g}j6Onz-!I2!xp`~PE4zie#FZ!=!DC9y@*!N=sMDL2GYoQ~@9?TG%$KHHC({*qv`N3*v?Z;p8Eoy@Y{hGuV41YFjNLZ3& z7NurNN&ZHZIO^uYM@{b6!}QUQT9=5O6*5*ETk?06jkL>d9HASo%yD5T$Bjr~*BN!< z678yG6hAMli5|;3{H`-#HOY%oDf56PS7>*wJ;(Nej+oLJx0bkK+VSRNlTUm_`dH2$ zKyt7S2H~c{w6i=8LzShJH}M5W=tZsta!XKSj~a~ltR}XW9QqObR;y3`WM8@G;+W$2 zRXNUc^*-u^rjVX6V6cDtcmp{4_WJR1JPzR5aRl=A-Q5 zk7;(N@9lmj-pylJ^rTMQ)>5tfw~M@Tx+DUIoFRTAIlj>>9!f7w))ZTwirjl+7kYgn zuJ+agmupXGg9>{Z6w`Q938D=mI-6s#4~2(mal%Ar{UfOR%O0V4YEAp9SnOYs~ zRoY4oW$3vET<~0pUR#@|i*D=$XE-<6M*i^M9Q&HVQ{=QPLMOB}m_VsP%@Zjr7k=|} zG-{f|Z+=tsb&|t7ojUrCRh~g20ekg@b;7Q6Gj+v8p_lfXOW7{T1qu&Mq68#*WA-<7 zDr~CnGEVhobQEipU02m!oegX&^5{H9x7Op-zqmU{9D9FI<3jqV`-&IK0@l1@FA z5Rt9e*TX@bkCKTU>j?ENzdV}|HGM8+o#-;Zv#^vt@+dFB{X6$L#oS@ur z1a_ov8V(VJx3?>-jc35+d9_i<$RPZCyQ61j3)~qB)3h*WPlNTfp0V5!2|DlfI;^6r zu`@t4zmIuMoDky}WE*B5u z;CGVk;=M0qP9a3;&2nYXE(N!&#J@5Ki6H52iK!<6tE%7M`5KZ9_gQ;#NNM1QNvr!D zl>z5@Z6RGAv4{nW?E;4r$01MB%ZFh!t@ck>Hw|s>&d@}nZpJZU49%+~i45FwsH(Co z8H!I&${hfIbcr!RR9J%o&-qU}brRkPL@qBW9k+}{_eBsXFt0$Ky-`{d1K;yx&&px| zG-W=@3tpn6ss>kaQbyG)@RI1~Np48?*i(nb3&4E%E0EDTF2eU1Aec9nzi<&_tX&LF zYT#|_reAB4p*p{poQL#NK#y}4+{=aoT+I;BRUUH%EC5y^0UW@|7oM|`0llmjRNix< zh5eWN_=qv`x8vj0@wS9Bg@$CPaNK#}G+aioZg-biIUpxckT3L1$;^Vh$zKl-S(zS~ zquFDaBi|#Cim`;fJm5zBABKd7$}Y6mYx};gPGGxieKj2U0x(QWekkoB=o+ zy{K^>eE-SvXV``P$@c+=T3Xg801q92hZtYj*j}#7C4JR&iwi9k(ETYiK=-&__zBA|eeN-$!g+$<18ArOMhgq9nMH+7DzLG;QkQ!;FDne*VA}op zL4Yp3ff~b}Rw8>rDeM3Ztpw!WZ>xdYNS!n0`**|J6A!4(M;X8=4W@GvW6Gl&bU+6T zKnFm?8fo0@$(O+*lMBy83!|Z%}|Plc9hV z%qk@l19~W3hVsnBEnikKp+{_UIgft@FiN<1P#Zgofs-&+*_oH-e?3-Eo8%n}D+BtS9U4Kp@F1;;=G&VUAh{(lGk-+%tG3K(Pk@&{pJ%z>LH0S#k&ehy~AOI7us2q)4bm9^(d3y# z1oSo(nI4DH8Y3R(iR%bhyqA?Yz>lWWXKEbDP^;}OfN|=U`xp&OU{X@K7u~ zWK7ttml&YSYD8fSnteC35Ypvx6^xazUi(zc!52NgE#;yDa+xvhFCYbt;RlVWY_430 zMJzcHvE(k-5z#;SEP$hZZ*iu-=9i6kb-G*ix(*U$HpUJQ$LkWEPS(@^v zOFA|B|JE0)UMH zr-z;r(`@{6 zmaS|d>yWHvO_i|m=ece`|VmeB*pDhkq+7(aUL6|2XX(VAg4nR*aU~sB&(ql>l7O^IQV5HDL zS=@%OpHoo;oFEbk&zIML!*j@I9g|yu*)Xua4uWJ)~8Z1eOdr(AaL)TSD%C6im&}TuWc%v zf(zto)>uR+XA1$q=a2gCkFX8V1t7wjb_p&iNNcxsP~XQj6Cl@V!u=f z-T%@YBA?7NLG4kgdA|$R->`QI0#k?k)ppuzamKpB@y=L90BqLL2HjEH0Bli81apH< zAPMupcT{M?A3i<)aWene!=DCoBfx>D=S$*Im|w8dfSV zq){wi7><6Z;LK2m898y}rXuo}wv18m+OUplCkO9TZ~e~C18Gz6jjC#4j9ec8)#^-i zQ#BQ)etZyf_hZr(0!(4oQ}(7kJmLuzdecE|;^qKyv!6#GcYc85)TbA#4>mpf&p6SK zsR>wD+<5PhaE@UW-rXD`CdwcqfPA?mP4v0u?l{K^pLu8a!S^w1^hQX+f6c+s>~iUJ zfHP8ojkO}RnKQ$mN+iG!%@W?5PB*3eT8Ou(MbY|T5kU5uXDupk?p#MW$)^=SX&yaa z%y!Q-Y-Vhh?;bG;y+!SkV(!c^)+&bb=?%~Ne}94Z``#5MzXfEZd||in`b-387jRi` zk5@Q!GkZCTsb-bE6^(PHn|TdvR?Jlq=x%nezbR7(?%hXR6qxz!I zEpZf0_+`mc%PIjQ8l>XUwT=J$7ATVvk*4EO_z(@W^D?zMy`UigB{sLHED!F1(e(rJVmu4jW@F{87yno%< zo>n2~$HshN1(nx3d{-nRk9|+-F<1u1@y%CpBx34xx{5QV{@Xjt1ZfY#H+IT0%W`{d zkSg8*4=VM>A0Hn?ddsUx)vd8H&F3N1Qr8|4Ua~KI`gjK16{kl)>U-?hijuPuakzpFm1RGVn>)Gfg>eB}&W3qnMb z{w1IV;DrquNw8W?r`W0%&5$bc5d&H@6_AbyfQMBwTu55N2z83m?pEuBeM{h@+pJPu zV22`#s4s6-IS;Dd5L5j9%Ntf%MHLYmPW8~HHT?o7oG$o@kASjT+|Grl@ll|eQ5&BO z_3KNVmJg`G@d=`qClM7X*kzpF{oeGu69Kc(t8gvyz!dum*l*ZLp0S04s-tx_O;Q6y zh5Vp;H6qwViZWNA$&>B$7pzD$M7?viZUjHK`F z!0kBzowyGAw}RDma2wKr%g6^B$4Ba@MsCQX!rorxytdLo0V}ndQI??td+4XY$w&uQ zhR=au!^cLMEprmYpl@60+g8E(D^ZitWBJH&XZ%s4N0F`P-TU+4C*LT)^j3(e<#y@E z>)#d&BDNa>zCZn4=l3N?;oiQGG;lIE0$ry7+ z6PoUzARgRj;sJ>UP5|RYc@2*KGO8N- zj_x@aKfzu`JN9QjYso+m^UW`t3xjGtOCwz1)MOl`nF&wc>_`l|EDu7cM#eeHE4LJm zJ}_IS5s=1NT+OMDZP6*hdE%Z(6}IH#S*HK zB3lOe#(9K1`2okTHEzH7s6IU89edHfBy^xM1;Hwi*6z2MYU&24k%8w+0y1WbrsA&U zIrRkI(5xVZgh;MmBCz!^UThsgd;(z06N#k)?(yWeaim^!rr#{>D9o^ea$9Y=un|Nq zJSHtumy!n@533y%das)xt9G zV%qmo+Ka!^jUc^?2CMxpxb(&gA}xKK0ZYfE4$KHLqRE|M0~#%zmQ3{`svqd?Hok8u zL)8C>rc;Zgi3a_`lc}%FM~!%27nOad$<$zzZB|9i=uo7U$@whh$4037kr7HA7%rwj z_qc~N0f)@B@NBfUO5eauJ^Knhewqp`9$T@!SXh$yutm|A8Oac9FpUDZQxy*-t|p2? z@>mlv+D3p*YBfCo$Nf{c4z{GUvr%G%M;<}p8NX*4^guZCH;>OsNwda2D!k^@RXKx#_v4ri!hT6s*oi+m_YqPgs?+BOQLDw)~5@N|;!+>D&>5#bv6Y?APW+QpY@$i~7JzYLiYDOKJ^wK_B(shZR`;TK7<};-W;P5a6e}=|3IaApqamvdI=Wn9`wFPyAkgx!qO zWyspugMMc`6DcJrFDfy|$f7V#;Vg{iIgK4OWFFX;woz!)Zki zK_?;$(u^~i@}m>>G6^pPa^{}dfRUSetA=lyb($&WZLLxQI6kdX{3{3LC0pb(1_GAu6%z>Y2?aQpnS~G_#!Kg(3 zby!O)thdk(AAISyv9V}}m+)CKgYpK%vF6rwMlehWcUhaoOC&|AzJ1)6GMW`FmC3) z-_f@Bxjkd=+gWUk30CzKEgVJ%>z{|P>`n!&CP5jJmSK>3cM}|^3e`<8Qoo@@9Ws>0 zns$))T9%~>Q0TjZ@NjM*TkVo38+#arE4{N@6?GFyivpLuijhi98P&)~jQa?OAs?+h zk{cN+ueJ8B*4v5cdz`mD3I_C>Z3uV!r;XSyEgcNZB8Po zWy&z{_R#Jmj2vQp(7Wi5)L54+_y4LxYAS-$P|k?^x`O) zoYwcGf$W|35yLH1+63<^np^b`-9;S66!dAsj|D2wGq* zNRzxUB9I_veJToU7}`SDd>zM*U(N#mIQoP}y!j#dNLc<6bv)>vfc|~tnKB3N_gGWg z0cB=^q>I#NmsIgMiN-)bhA*!vFZ48L?W1qv|HB6>x>PauVv&q4$ zEX=qydMKxx%%V4VDLJvER-KKHy?GGo6jR+Mvbg0Jvu^$@cz$_UFRZr_%Gj=$EzmL* zt~En2esu%GY|SN^Bo5j&zN_>%^EFkghY0~^9rBR`3DSRXH$2cBFTAzAOsB+o-HmZV zPQD&wdL{waLX?hlVC3B=WEw?II7LUsccqAz5E8k)Ob}&d1L-v1O5y$>LzzcT@N6;% z%K+h4Hb%if(D}}I?Bh<{brc*Y6NYaxRICi~rDw^%Z~pqC$q{mKL|w*$nzd)fOS4>P z>63i`V_VD~z(ph7hrk~=usXOnP^Y$d<@dU>GtS3X1@6gE8rGZ>aZ4Q5(+D_VS=lDc@P z7@Z<$TfQ2gQrqPz{U$HmBQb`2bRt1ryNT4b9J-t8s0;cO9`9-P9eyMq?Z5G{;gcYD zIOe`J_XtaLPm@OU!T2Yc*L5Jq^CDw3(6;MS(KrF#GgsB= zuPWEQc9?ye5k9>DZF<#QAMzIyL0L7hvSX+o^v6MK8Xq0~%Hm{P`!f|1#BCI112$bF zoen9sO7VDZjod%4gUZG$Hy@!}WV?r+l>jTE{T<+zlB4jQX*&S238}WEqbIP=z}vfG zMhjcJv;92DpoQ8asMpg+stY7#NYS%+ z=mgsn=1SXXx&O%%448vrR%Y1y;R9#u%YMU>6643cV56!FQ+bczdMegL*GRR4(9p(V zG?bc2ecNAI=bD7cm?=ffrK}+90o?9tT$Ju#SukAcCX+_U8IcB$C1Ycx;r#$2G@;8cO~XnRwllTRGoh8oM?J zVbmN%YmXCNAWdQhdmm&WXdXVZ=z3-HlBrOzu;rY&9teR&F@~*{wxKd=Yl=TU+*@?j zV8&t2qx$7HdPKz)2=#t@e@K@~K$rIzXUuhhY4>Jb3kE~A=SLG)D&q*-!WlTlV3hNZTy!qv z5Qw9%8-{)e&@$-!$M-@Y!Rw!6#C3Sztb^IiZne~;a5B3+o)Oz$C>@xYdN_M{KN?RtMUigqR6X|r3c--yk)cRRP@>G_gOaMnEoqTF+p z{p|(_Aqp)Y{ zLg75?Fn`1&_pLy(6r)TP2nj7I$;U3>4plI}xuF;?OCb-}RWz^pT` zEhA;9loE^~EC$p=iV>m$OQnD1dB?GUFjxb^`#&2bIENedBqX8zz!Y zeXgI1S}$A3=;hqp`FRD9h_x4MSQ}AwvDi(p$O_4=|5FCtStAkM2)QW*(H-eBLDXLR*KEdf<|HZz$b0uo9p~Ki5*M! zGKXm=xG3qS%j{HJujR`b0A9CAKl)mR4884+TPX5NZ$qDoq&j9dy5Uj$it|GU))gz@;Yc z7*^Cs|B*_xz?JtL1Sy|L_k)2RB9>KWqNZUXa(=*DUGauTjl<^ueFg(hQ_v>hi}=sp zf3#Z<>J%ipDAv*4(wAPWE%D1&KO}%NmtX&Osj}ogG>MTG@-;j^(OI;KFe_b{ay8PZ`PgL|DxQPd!CKLK1t>* z1;gfA5zhst%_Y@e2ucPp6z7wY@pmz;-8Hb7EPuc;ROX`iH5knu8qF2S79h5nMjB^V zD_pHoe#G4P=1WM556t3fd=8LqE&?JYnQe*b zIS$HAzAKD3aOp8r;}US`J&;T9c&sl4Ey6G1*mJ1BFgF~4sMoXR;r&D8Jke!kzP)yb`3pz>7DH|fd2T|uq&|m0*mzDYwzmnXXzHkCZ{bSgNC5rW z!^sKmxsN%})=J-+)_X+AfBnPai~_lCN%xZH6;Q&eQj#bmdm;6TJ zuQ3PHQKLRX1zqUllahBm+0ira<$PBX0k$hh$?@Yt%ax9(P-tS`0_YlcT4IXli0Q^W3QxPY5}=xjTl^dWvM{SFemizA&(`f z+zMmc{Q(^4JsZxW4N2pznu2OCQXFkR_G(f^tFP@`8qCqqAp+2&^!48DRw=Dyku*Bt zh{zWDS{}{ViGwSg5#rN7bzA3ip#BYJ8EwvDU}Hgyavj9~QJIlaxaIlRjHz#_fQtd4 zD_K++c*4hPpkahZ6afeY8?>P>y7;3r=<;TAexbf}n`Na*2FVr(( z8@^w1oIB#Ue9jz??VGKg&pa0}Mh`$MG_MBn0yUZ%=S%OVw2M%>Hjs4BsXtV|5p*Y= z>NZj0GDEBnVt=)Io6{253p69LH~zZcCs=~}Gq{b4H&!Cwq%axbA1*Oq|J3JfqhTT+ zC*Hfiq9dhs0EWR*AJ=+w6VM>R5~h|u#^N-Xo|5A~tm#BqCI@cxl}cA(_HQxI8GHnC z8pfdDYd56ZBrwabf>zr!YBHEwJfW5=;A9(A|NjLpFkr|AKamDrT>_K#%&NA0tU89~ z2JeSvf-Jl&$Rz@pBcUC1VvuF;0m3nL)hfO=Eo@#3ez7N$ULGyG)~>ar26~1qBn=JFtO5z$<`9= z53EU1;5Ykq!wd($fIt&4Vr=U18W1{ZH?i&Q{{Sq=!4$DyM<9ESg)mupPSBM*!zRg2 z4UeMhPtY~5cJydpx(9^1avL*iZ$eLL3zR}Ir~S`Y%&FuSh5GD@exNJS{xon^8tNhs zLs!-W8i;QX+GT8zu59zuDbbFh9=lj&n4wIpX3w5$cGz4RMU`wr0O^6#P5ZrOyb`0h zy(CrXdr-4jBFfU)?M<#G!zW;Q4vLr=Xi&|tegE@Gl?(vp|Gxl3N!!gZ=&=g2sTQqJa5bQHFRAi)LtyIc0VOwSDgT0!#6|d^cjN}m} zzhdmv?GM)t?-_Hwmxtv1r{g(4-&h_ROM+bd!Oyc^1o=*gLMtXuMjuz2NRePBBkGrr zM6qmVKcafV)4G)xy8CV$sPO9l{BTd77a--2{H^f^Dd9t$xJZS5b+4aUN(b;CdF2#r zZvx$=gIz0joYg5zPSh{H>%R+JfRD)WBxrR^aL0H*bv}?TS$8Z$NIjw`8haN6 zeF)U69-m0#6jiYxFaZB6QU&Xe$O%+3X?{)I_&yoWFX23Z-#IXgk!Gy%S-y`HCK*Y; z0Ly#2;m5#!iWllNr*)xX78~RhC)LWB<4PZpI^ucq;7hH)v-HpgaO`cShP^7g(#`to zspc=P7EH2WX`Dc;3kKrx0ISfdriajTa(_FL9x(AuYV#CI@kmMidh{tCc^LnC`T*Rd z5fhO)@PAJP=>7Wg{be?66}$3LYB zu256kAT@QnQMv%_7LlT!N2a<2rYaZDO0+nCp{D&0rWNSP3|Nh7-}Q7> zuo%N`acG|OUMkxknAQ4z9FpA+m{&g0Pn^7`yadnajzaPh5Y?F!n~|z!T(@P-)@EZE zFIPA{CS=z|MJ6jTs~Y?>i%MK(>*c9kY%SF24hC!AWeN9Z=T0hdespVL zY(Q#?zF1Mf6LPSm6oeFdOPC~!cfi0?VXl{7PsAu6)e+aR=h_a64S=3GKy9+#!E-lX z`dcX@hm~0mj!46p6+y}z1ZuF5<|i>?aLKhL;5jhn9pJ@+77q`mFQ>lP#2qVQcT5cr zv<_mF(@bAW4$glFs0Hn2LU}455h%Rv_W=r9+icT3@Co-I0^iTTYVrih0UQxPvo?|l zaED|Nz{pp5O103BZbvbc_7@dQ%)aO^j)#~G*XtUlh_9B0~|*YpfBUV-AA}N1|3++ zKuC7%O4M#>11R?Y#fCN7Ao0d6)hGhSIuT(g;w&(>0IaT&2tZg?PCte7A58OW&%VPQ zU?B6B>LcI|9zLoU6c5WUV+6pq-H8_`v&xkDlH|nSbBwhvFmMkxnRfL8Ien2d4GiaD z7Y#zgN!o}Bq@9tdsOi$1vJD>@4GyPDXbVf4? zyRW~rJm#VojCNNc2B+wTz+*PWkX5_@?=`A&HAf^o*W*HIj$MkhDBAl{kBt!~dzBLR zmEJlWFasUXlTCYv{!Ht*?6mnWr&4Dfr58YQ8qf7oC9+>=&g31{b;ghbZY&NJ2nk`P`Lui@ zQ+!5#BLK#KV02qqO8J3{9^7GxbK%jF4M)#C&NrCPCy3s%4%?}C21UY9zM+}}<$f{D zK6R}PDCw7)A|=wfs!+$>#*WV} zs>y_;1Wb!aMu!xTG0eQxEnhT5eqzWII_c*?40QG=?Akqy3GjPz_QB(plOYP`ew592 zG?X_Lzm8B2?w1kTccB+Sk8_OSs`$Yu{ZJJPNRK9D?{h$ndcCInJPxCaf^{iLR~Lu0 zVRDcMwlvptUhIfqmP^s_+@mMwbV%AUj3z*UnjprzbfGMS0)XfxVt*?POAl40kO+iO zX-&~z@(VMZ=Ss8|s$kDolBZBoG{`&{hxjr_#|8dcdK8*-_%lLK zaJ+o=ktltDOw~|p5+vp8b#fi?8vx8I>bQiYQ^klT{3P#_$e8=mc(p#T?l>2N6&GnI zs%oBRga!+Ca|m|a)o0DK(6=Fqo(R8B1snt#1OBnamC6CBWi*>@NF#IQV^2Zs3SFO8 zOp~~Id0UUVOtdiSS71%cT!Cb)ff{BRLYY;J$_+)C7oo9Y8m>hR1M|ukkjs3cQ zJa-tbJ~EW_TjeV#5P>I>Nr3OD=o=Q3qy|!aX?3!!2yLhou^8)<#B z4HK;$V1;B7PKL@hoCd>5;A`r?;rv`8U6R`4(BX`fGpKBSlDO6l=2V!tdfx|p#cGY1 z@RTeiZ-Hvd$#l0gr2j-X`)gen6<5;B06_30wWCqEEJLjFnMfM5%$0!Deo67nJ+tztBZ1jZ+zD+XGxz1SRi)eQ32XG zk{j(BeF8l%8!dQGOSX73op53DTT5k-Dnt>~53=PZ!@8hK-{S^2{xgCATqeV_)`{oV z=s6>JMiX&4p#DKccCjh74O*Y&_IeAg_9IxPzSuqh`CA;oup|&TMI7bZ7Jr~!xKz#P zB&gclZGz~qE~Ck;M+x;c6W4~VyFN`3&;;P^1%C6l`w($Xj1WbO@@BGbWlcqA~uc=74qkaT8AzFMYpqDpL16Sj43ibzbHQ!XB{2rDBiZyVk(LKMv-2 zIsib+lgvCVdZz2*I|75k*SK|isFk{xNNl1OC_mb(g%SR|6|=H4*ID+r0hW2QQ2x`} zI_!@(2JG>fufgU@Bt?}CxuOizc>JT@>bH|z5f{R`Fc~G>8e@>9!gKubeKc>f6awC9 zo`3(l06}*^T=#VIC}P@x*qzWYa3lhhsoivQ=MgB4cAK;~ttnNLf!!%lO}WRbJ)4{M zs<*(7^BW*ibAb5Yy&5Ft*b@g0OBZmP?>~lFUNJ!s70{_YWuXTWuqZS`FKXTdkjdKjIj z>T7Sa%b9}JTsFWDj6o^tk&z2vi=lI=Jtu{t@j$6lHQ0Atnm*ogF;^HVLZ_lizdykA z052bBeiLL$mr71RTbTwJdDgR6wfBg8XmAb8cMRU!j7UmB#3Nwm7{n_9PNB@{l^s9< zl=mah0X`6Dk!>b=a7_S`$58VIEJ>R}?mf=5S{M|_JbbNaL>&d|c#On@u`h4;_dpr8 zMf4cizqMawbIFpH(E4V^ll#)|oj zFhKkM@q#(2eRn@0W+jMv2$9&zZ!c8{UG*jrDHoe@9xDuNGFT40UlOk;J!+(I1Ox_i z?W*MpewBb0=n{Cbn`paJv$3zn!gg?9n84=KCN1V3A7vdatPt8sruC02ieN}^T$YB0 z{MrY)7HV(@4Dbhuma)t-B13?+ge?*(6`Ppb;oce`VtBk8b>j-=n&UBjikUf?jc?Fj zEY{@Db*KC>R#arcxWpd5;(jxnE&h)T5`PjQA@^u(f^6y`2G7XAaj1+z%wTtS+rwqJ zIOF<5pa(!YM5@ijT4JU{zavKpw0+u;0qvoPVbr{mp?Jf>Q+|J}uwA%C#isI>NNgn1 z$8j$Oy??X#w(yDSW#G!4eN@@*phb9yDXLoK5lRqJpT-{jxl*?}bdt5c=;HsBfs~ZI z0nI;N$T*^G5=IWtFwnK^i5CPhw5nnaonAcpE7tGFTnhE5W4xA#@5;m_>{8ijXFNd_ zAAbnIycz+n0RN#YD-*K*AO$cExA;TYMEVKZG}g-lg@c%}FeL?VB*f3$0%e{gWLr;- z*3X*&ViPzI-#N!m`GD5eMi3WAk_#?+vhVQmIOw$34<%y{?K9W+IRCNmNPZx`;-FuA8W{l*OoNs% zQQ|2{<*n?Q^j`-GKoec;eBG=dH)aYt*h0?q!EU=`<)Mb`k-8X~0QsT!Gnuc*sg*Pw zhoKbne*@UHY-pRE{FAXF1%Nt)RN2lKHPnFewJ$T+?P zGI%kTbiHjB)tPxA`OAOuVEyj%BTi>grZ|$Kdg$>KXpzFG+@X{458%AMzy-745!%TE zIAVVAaKojyPY1)j!+m_b0=|OM%Fy47@kKh9+Ma7=5VefOBR$cGch2lditgh5odu>P z1W}Nb8qP<&=VM`>9arWsF+W)bJmUYk`6dvmC?B;_AGpC=n* zY(vn(zC_3+oku+Cxu9u$Leq^qGW$$H^5pxo3h<@@|4acgqB~jC@w6a;~|%{jZV`Q4WG>!tJUiOTNgc%I4Adizon`jDlIjd7xw^l^Kk@ zis7j@03DSRZ$+vAv1lDMN)Of-_pBPW5!yknXaQ>Ni#Ltn#))td8O$l-L)%Kcc12l&`hb$HLb}B-O_cwJ}RNy`Q7n zysh_Fr-Y+5J57=hdyH7&} z_pWyUbN3J;_u>}UFIFo>pmS6Xi6T8J4^fMTtq$Sg=E_>$(X$;0tMK#U)eS;XBS2L= z(E;rldU(U#%<-V!D@5Jhzwl>_QYZ+74T6kep(fDJ-D*3wXKf3SCi|cLBcYIABT-!{ zaX01)Yw#Kw@4l$mQ?ge*hiqjSdaN}htf8)>FCBEy8~0`+5z-7$Is&CS6}YzQ>_oBn zK&PUK;M~s-&!0ghzY35YY=)Q8S?FGI{Y zaD}cD^&oi`@|tZEIxexO##3LXWz~LBQ3P0W4b%lK3f2!_$`23j-)g46Y@ZUbcH?83 z(<4aT7qr4smd+!eS;;nk7R8Js4GPJ8q?$cxw#I$66o^ovRvvhVT0+4Jb)YVZI=%o# ziG08|A6Tk(1Vk*S%H_@D#id~~l1f-*uRNlA0$3c`H0v&CSM&S#g3JZ*tY5kmf2M5K zL50nh~S7b($ACD_*P)Dw0{% z?>Cg~Z~FldFh(;%2pjj4Li=2!u^*xxD8gh>}dmRB;Bl#1Kmcg|jsDP7S zz{49%KlM)9<+VBl%nKlg@BHhhyOPhn`8k$TiNLoX6uhZj@<*(Ig}S1-Q*jKcI}-GV z#^pkxC$d091>(>rInQgdhWkzTP1l}V3olvrpF?^E!u3ylZ-33X=M*uOwZO94k{uFES!_^z?DWSBdn1t|Cv-g6q~mb9}2~x z_h=U5Ev4Z0jx=q9hF2SU1D<`+EC;~b2y6e=vFt8HQ`QIMo5#VH7a843qm-rlGg6|g z1y?g1El0x_RHIFyIr-dUngBi%ho!{_oX)?^R-;Keb|k=`inbNo_Y2GgwZYTPfkga0 zJe8q*-emFy=WlkbgC9lN-W#;>k{u!!42BOpGf>X9HlymGIw)kk*W{?+e|+Ha4%+BdALYQUnTT@HKA2v3q-*sy zM}z)5J}Fo^2ZLSX?>aN6kH#sJaHgYl9)`F>-5(BFFUgDZ`BCZ~u7Z)O>bDb$Z6gZx ziRFx?J&&uN)?9qGe;=F7fP?)MX!u=CsvpVucRx;^wE{A+kbnt7C9}PO7XHCd*(?4Q? zjp5PVbIu5t`uzEGzvWXqs`!s6AMtX&YZa^Uw{|zO!~*<5$c!kGYNyAa%JInr6ExFkAd<5F@P1ivf|^ddJLU zO(1`^`Te3>bsR?Ts-JFw)mN=(AM@H6%`Ye!tQv8InFqv-Co3>&Id0@Wf6b$Ij`_Pc zkR_GS2#qend8G8NE~=RR`K~(p#HDE|=!x#RU3-kjng%uPek&2XSI;+IxAu~{?q!T6 zOUutbtsbufYy2PU2QR||BbTF+c?-bnO^hqSngxc^JU-DVZ3Qj8V6yyD`Bqe?6jil7 z1E}#;2KJ?(kc_-4(T_e32l>n>$HNj*Qsy}@8Y#f9cg9kUBs=}Nd>`(?IDxmOoz9DE z%|3+&SgnJUs44Zdqd%jRgE1rLrj>R+>5l<)4*PhsD@`=yj%d=F+JbegSpKE)s%P74 zyYD%FkMNy+@#*mcd)E84ccn*uJgnTpExdd7pgY;k$qzE+(kWjU5*yV!D0j1&Dtqg` z`1J!t%Annv2&n}iWzV<-yay`y)I$%A_>g!|q3FZ416RO`-$EEMa=db-e9C{G-8VTA zXGz(e?&8ZgM&s9A?y_06bK7VWRW&zVH8}RPE-CBR2Z0s&5;y5A$kz;bRAvr?(yswN zj|#cCb4Es1pEoIgzxZ72eZFL*^%U~m7r^CoTe_=JQxL=Zf`ZZ`ryswgiH}8#j8wv} za3bE?!eb74`JXWKhD_hpJWRn^23;<$J&ic#&#SnZ?2v+}()ZmF{lPTs&JYAn@i*dr zb=&N6TVCkt=^4uU{mW^ze$><(UP`ik|87J1<+`GgO~X{W%_#RC)#(D5ysGU*C! zTIhJ9d>n^R!rr%FICP>FGp={p>9nX9PCFs^0sUnc7)wI*c;WlmEsAEK+O4fEmCb?U zMj4>B;}G`97ZoPyr*$qOjwx|V9re-QlQQY zNdWfp3~)+wb91ro0;cUXXY*iW90?G^Z#spu*YdD3H-FXC>9ka(o6oZA_M9_1daBwi z`tjE561=UYgIm~eu(e#pWv3!HcYvOrWbG_Dje!aA`TRR6$)=>fTFWa6 z^QnB`m?~|Q!g)_X){yo1dN`z14BshM z)59+_h>)LXWn8YZQlhbI=N^JMa^(~=ilAhoTik8x@9ph<4VvYh?dji&zqu_>lx@@} zlF_d1;M$j!Y&~c4-1<$GtY!IAs8^|n87)-t`>91nX989m=3`%utcYxbt5@%Mmia&( zpszAZC#+Q;+EbzkQ>+*~`2h)1$$Z}mA$4-d)DSjVQ0;uVd+X~nQK5BxB5_!$TlcNK z<<2r&3Ez`)lWz;#@yo-!*XSKN#9Z4yw)!BR*BVv5Kdxv}bUjXa9<5x8f{=4XR@U`e zHKY>vylQw3Vx5_jZMNsH|Krxd_}43iorX0FZaJ!}!`8l^K)^^V5xsUTo+zCv>+!BA ztxjxl)F~^;+E87Ef)WZ7QkBTKjyotTk9(4pcOWEs%3_xIiS_mJ2}|vt+XhQ;)EGbi zi+Cc@168GJ=cM8`e(vhgt}_7;7^lZ_xPPNDemfQQ#%Gfc_HgW$UXwrMVWC11RLD{) zJcLM1zI}S5nVj+-l);13zju98%y%Ki%imhrS+pbzLsLN{O3PffP<=Q-KjP!Kt^cKE z!vl;6z0w{m7fA5!!VeEgJFrc5Hm}(J_L=2O$n#(d$ZLYOuf$vny}x?xJ(%%rsJNkQqps>iH0~A(YLG!_RT9(F*=}VBYbum)7u@<1 zW3vD{9nbMyP>&kBUiCR~kQz>kGCY=FOnCCQ;d^6POan=7wf=pd;MhCI@mW_^j%B@W zXlEj(9*ay=c;$G9t$6WxiDj^}ED@Qlmtpe5@+nn;TJT^n<9%wvq zNCpK}mGWMAm=_~;-(v6v<-})OW0#UMTpqRQ*+TjkGf%ZXS_WeUAT{pI;H+%p0Z4if zG|(4^Wlr!wXn}uEf%3w`SEae9%!0){AX<0Y36pqNqn3LtOUI!%7_BrIoWFYhnZ;aH zh9&k4@`C?-ovsSV5&oIhFT<77>Ed{grbd+|S&uim`U;+Y05Xzshu26TkzmhG+CX)u zh!2BAZ=#{Z6pEd>s{7+i_=A6c40g>1PVcRAm((eOx}n70v%y?oSzWwzDGDa4S?K*z zM9gyl84*%aQc8^-h(6#4QeEp7A>Ab(C?ac=ENidiUAc1QD`;F^nE2BD{XUp2h@GEH z1S+|RBqsQo1j+;kaczD5VIX9W1Idt5)YbPDy8c0j?iE0kB&DQoIEM)p8$SeH^3NHD zTluhwCubz(OuCFAh+DdTm`n>lyF1MF_i>Tt;Bkw4vO8w@}0Z}aNj-9#aa~2!Ag|w;&8hdf6@U} z?>}!L8;d9JYd4*j)2>eP}XuK+XHG0OqYKF!txGj zW9};c6x`AqU4dHRy8~awd;w?V3)6>rx*KbB`HQRL)QD{WQgl%Y3~E5 z6TqEh5QG9Nefr3tUa{JyL`&bQ-u>gBa+GV90?sh}dC6FN(D30RZMLN zB-T;pwUwy`OUQr%^lsRD*tai7$}WnJ&H|!EwPINFU>uK#fU6K<$yVGswAeU>M+FP!NCDXdr2_4SR7R-M)w#)0al z9XA$oD^%bW0HziXAPBnV!Z0R&4R~<_k4!$ zB2akEzR}E#NNBlx^7EXC|rUVtR5(&Y_5pMXGJ_;SB%_YY{?YrdbTDex2>-EIQb`~{eH zOs+1USzW#LI{>Nz9mth~P?#O@yz9LG?*&;GS0-8R&ZjbRV^c|g?!i0c9(<Zt>Y>cioRevzyWfXqk8i<1Il-mCO{zyAk z;S5fru7y%?ei(U9*L;pxnqNSSld8YTOG!y>>4nv_1O8aEdgp=r3vC!Os9vd^=Rg?K zF>uhhFYQqbL`|4kME2j5h&=+2b)?2f7?pic=ITP6WdWE(q!ojijgzhRy%$$MuKIG1Q$+y_ zT2~hj3)q-+SoYlc^BR>!;2~Tr(4EADoaQBb9BtS4`zM7&sovHA(v#;+Rp#Br}BRAewwbz5dq+E32|GZ}W(0{H1_}xsK zgXXB;?R^nQ%OUftE}vr#sZN?e+y#(Ev{(AlP={L{yS$&L`Bi}-x3T1pK+4x{Ec+0A zp?ikKUu7`;_^C>E+>qk`lndBPly#=<30zRwb@I)Z+1+xqye#T(1V%)v%Ll%aML(BJ zwpvzRG67)83|Pk@P+v{#l)!8)=7n6gM}L9|6#pvkU)@bv4mX2+Z1jFmHst|(k?>sT z>nfJwPfE4pg1kjJ!a4xC>hJB`$Sg0czjQ`PzuAdkL!U+?KF z4uS{NiNLKjvK-SabMETQo&A0QA1)X3aYva&PP6T0M=mMe5kmN}+&nw@`$JdiOT)#> z#r0)%afrE&uBpR(!F*3zF7zE4O~SRV0j!ztATJbxrFv~ZK`s@+@*3x_ktLBYDdu+q8zEx=ZAb)#$} z={;FWHXv1{&!$s5{kQU{f@f6rEzbw7`o|5%4HQ|=)=#roPF50Qq@tS}*_VDE(G9=4 zxn!Qg4(>ng#Z&;Dz5xpTIm`ju%Bf%0vjx;$?84i>MOk0X#>+qXQyK4r{N#!}N3^Pd zt;#b#t@1jX+?WjZ%FkY4^2T=RUO7kUGdzckr}ELGN1p;X|5?x7z4+2l{!D_IVKAc% z(7ONv=K!)-8=>^?8-O_tb>JZ<3l;o9)PHUh2mlse)?fW(bT(B&1yrT4!3{=rhJ&RLTuSxR6oqwmPU4X2Ae%5xwgjzg=*tq!S$z8cumS$!P zeUYZH1TiacJ&Ip1Js;%E5n~a}5tg=a1X9qY8Q6dSB5VIH7$6b=E&UE?n#mg_2)E8x zXaVXym=QrvwhJ)v*_#*EFji3{5a>>xAXuHd%4bo(=WhsR0jk0~oSyhux}`mmnPY!B27uG+mliOi_G? zoq;||*M@WC`rt8NSq=c~d5}x|BmUF|cybn0i?@=8LjR_j0{Bn5XSJyRew%a_JbAA7 zZ%3odhJen4_5)0R(r_sJr?Xo}?J55JKj*YbxW-Zc?;k#VSU)cE^6xuUPJ@CunO5!& zH}Vrg4FLu+NS<(mBB!gPV_={3#6x5#46eJ5jt(6U?ZtoHzQ;&}n#;R_d<-Re7qLIu zGYL981hNLeBM z<6JFY%Y4~(vtdh_&0S4U!zu8nWoD@;tY_t|)+{!n*pc z=l4C|@8^8q57)E1Bfk^e95=CA02L`D%=+ig(T<@9`&O++2*tpH6hhdCXO26hV5R`% zX~&myMAhUXuI+lALS>j<;c)@tXPL#F?3`e|CQw=&>cq?(v}%A?;rSS7lKNdO*p|T`qXHB;j7>I_}TdPV^Ee4tO$fi#0*4d#=zd8 zj_|9irI6R#ty-elmisr2vV$R*sZ74Zsq*H|A2L)?PAJ1%a0T(}(iSY{17Nm%e+LQy zRM5l*wA8gwiew>{VV|x^)Fsg8Phyii%R`4E_{uk8A=^qAHi1gL*F30sI1Jv5Zn@@K zh7c+rL|`9zY~5<-voy*6e&dUs#1K2#Uzk;c5%a%UrSJh3T)ls^KIClyM}Ga`tl0q# zGuiwT6{dw%bX~4i>bg?)GGIdRobX84(PX{A!k3H-!gsPUcxMf3hw{^#btR!`@W%xZ z(ayz^+YeuCqWPl4LuX!P>*;gbDC^@@(d7-VIf}#x zUc3wD@YQ@%*1=#qdEu_9QpJy1K8tF3chq5V8)>U;03182QLHlOrB2XF{w6%|9M z(((k-&u&??7VkqSgRuOIgn5Ejoa67@jLqrC$smf-{69^axApT*IyOOdqB-0fn|qPh zJjouEfZM}#-#!L`a7Q*KQI-BYH|g>s%iA7i=;_eER@XJ8=#T|wDcqn5b8Aq@trf-J zgW{EX^HYc5voQUKs6vS0NG^IR(Dy)7069h1Ou4ZMkBR^4oTm1>*^BKb8mtRdHwFZcIeZvA#j{lge=$T;^!`|*5?*@96s*eV!-$KIG+(Q^BOp9KHCtE z!n*iD4te+KYmo2fkLVgr&{+ZsNiE7o;qE#QWZ<3ifyw>Gk&};0yxa^L*ASx9-D5M+ zoy3oQ(Ctv}_ngQEPjO$(Gb)7=&BIf{2kxE^QJE^gqxI0SV&js1`=x8n0*@3Ek(}ld z=WK{AqcN3>B)Z)S1XXHFZ9$!G2IEZ%S3{M5ri7B90*Ug4M~5K15C-Mk9v1}CQ{rA?pDyV~Uoz=V^SW-YJ z&o(OQ=vstA9If86mSY2(P~@kL9!QmOHr75Gu@E`aS{Pn~_FE_{z{XeN%Hw(UK&f8EUTy$?qcwiJC@9vzO=HYu+0 zMZ4SwJV(2eN!QajUX3L|e*!v=SkcEHVdNz$?fZ?ta7JBEsnj=Vx}HlrfL(?;x+53^ zm2-GHrje(9>-D#Y$?C0+ Date: Mon, 14 Oct 2024 13:23:56 +0530 Subject: [PATCH 07/11] Update example_usage_of_fetch_scores.md --- cookbook/example_usage_of_fetch_scores.md | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/cookbook/example_usage_of_fetch_scores.md b/cookbook/example_usage_of_fetch_scores.md index 1fcb94710..73abd03c2 100644 --- a/cookbook/example_usage_of_fetch_scores.md +++ b/cookbook/example_usage_of_fetch_scores.md @@ -1008,11 +1008,11 @@ plt.tight_layout() -![png](public/images/cookbook/example_usage_of_fetch_scores_files) +![png](/public/images/cookbook/example_usage_of_fetch_scores_files) -![%7B283F9496-4034-464B-9F93-DEA587D37A5B%7D.png](public/images/cookbook/example_usage_of_fetch_scores_files/example_fetch_scores_langfuse.png) +![%7B283F9496-4034-464B-9F93-DEA587D37A5B%7D.png](/public/images/cookbook/example_usage_of_fetch_scores_files/example_fetch_scores_langfuse.png) ```python From c14b9ac82207c0aab5426c60a8f715a22e4821b5 Mon Sep 17 00:00:00 2001 From: Soham Mhatre Date: Mon, 14 Oct 2024 13:24:57 +0530 Subject: [PATCH 08/11] Update example_usage_of_fetch_scores.md --- cookbook/example_usage_of_fetch_scores.md | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/cookbook/example_usage_of_fetch_scores.md b/cookbook/example_usage_of_fetch_scores.md index 73abd03c2..61423d078 100644 --- a/cookbook/example_usage_of_fetch_scores.md +++ b/cookbook/example_usage_of_fetch_scores.md @@ -1008,7 +1008,7 @@ plt.tight_layout() -![png](/public/images/cookbook/example_usage_of_fetch_scores_files) +![png](/public/images/cookbook/example_usage_of_fetch_scores_files/example_usage_of_fetch_scores_23_0.png) From 32afedf6a9c41330bb4b49392cab4bac59268583 Mon Sep 17 00:00:00 2001 From: Soham Mhatre Date: Mon, 14 Oct 2024 13:27:10 +0530 Subject: [PATCH 09/11] Delete cookbook/example_usage_of_fetch_scores.md --- cookbook/example_usage_of_fetch_scores.md | 1020 --------------------- 1 file changed, 1020 deletions(-) delete mode 100644 cookbook/example_usage_of_fetch_scores.md diff --git a/cookbook/example_usage_of_fetch_scores.md b/cookbook/example_usage_of_fetch_scores.md deleted file mode 100644 index 61423d078..000000000 --- a/cookbook/example_usage_of_fetch_scores.md +++ /dev/null @@ -1,1020 +0,0 @@ -## description: This document focuses on retrieving evaluation results logged in Langfuse using the fetch_scores. category: Examples - ---- - -# Fetching Scores from Langfuse - -Example: Using UpTrain and Ragas for Model Evaluation and Retrieving Metrics from Langfuse -Langfuse makes it easy to log and retrieve model evaluation metrics, helping users analyze and compare various performance measures. In this example, we'll demonstrate how UpTrain and Ragas can be used to evaluate models and retrieve specific evaluation metrics logged into Langfuse using `fetch_scores()` function and verify these metrics extracted by creating comparisons using a correlation matrix. - -**fetch_scores()** provides these arguments - - -- `page` (*Optional[int]*): The page number of the scores to return. Defaults to None. -- `limit` (*Optional[int]*): The maximum number of scores to return. Defaults to None. -- `user_id` (*Optional[str]*): A user identifier. Defaults to None. -- `name` (*Optional[str]*): The name of the scores to return. Defaults to None. -- `from_timestamp` (*Optional[dt.datetime]*): Retrieve only scores with a timestamp on or after this datetime. Defaults to None. -- `to_timestamp` (*Optional[dt.datetime]*): Retrieve only scores with a timestamp before this datetime. Defaults to None. -- `source` (*Optional[ScoreSource]*): The source of the scores. Defaults to None. -- `operator` (*Optional[str]*): The operator of the scores. Defaults to None. -- `value` (*Optional[float]*): The value of the scores. Defaults to None. -- `score_ids` (*Optional[str]*): The score identifier. Defaults to None. -- `config_id` (*Optional[str]*): The configuration identifier. Defaults to None. -- `data_type` (*Optional[ScoreDataType]*): The data type of the scores. Defaults to None. -- `request_options` (*Optional[RequestOptions]*): Additional request options. Defaults to None. - -The returned data contains a list of scores along with associated metadata, which can be useful for evaluating the performance of different models or experiments. If an error occurs during the request, it raises an exception, providing insight into what went wrong. - ---- - -### 1. Setting up the environment - -Importing necessary libraries and setting up enviornment variables - - -```python -!pip install ragas uptrain litellm datasets rouge_score langfuse -``` - - -```python -import os -# get keys for your project from https://cloud.langfuse.com -os.environ["LANGFUSE_PUBLIC_KEY"] = "" -os.environ["LANGFUSE_SECRET_KEY"] = "" -# your openai key -os.environ["OPENAI_API_KEY"] = "" - -# Your host, defaults to https://cloud.langfuse.com -# For US data region, set to "https://us.cloud.langfuse.com" -os.environ["LANGFUSE_HOST"] = "https://us.cloud.langfuse.com" -``` - -### 2. Getting the data - -This section demonstrates how to load and prepare a dataset for evaluation. The "amnesty_qa" dataset is loaded using the `datasets` library, and a subset of 5 evaluation examples is selected for analysis. The selected data is then converted into a pandas DataFrame for convenient handling and processing. - - -```python -from datasets import load_dataset - -amnesty_qa = load_dataset("explodinggradients/amnesty_qa", "english_v2") -amnesty_qa_ragas = amnesty_qa["eval"].select(range(5)) -amnesty_qa_ragas.to_pandas() -``` - - -```python -import pandas as pd -amnesty_qa_df = pd.DataFrame(amnesty_qa["eval"].select(range(5))) -``` - - - - - -

-
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
questionground_truthanswercontexts
0What are the global implications of the USA Su...The global implications of the USA Supreme Cou...The global implications of the USA Supreme Cou...[- In 2022, the USA Supreme Court handed down ...
1Which companies are the main contributors to G...According to the Carbon Majors database, the m...According to the Carbon Majors database, the m...[In recent years, there has been increasing pr...
2Which private companies in the Americas are th...The largest private companies in the Americas ...According to the Carbon Majors database, the l...[The issue of greenhouse gas emissions has bec...
3What action did Amnesty International urge its...Amnesty International urged its supporters to ...Amnesty International urged its supporters to ...[In the case of the Ogoni 9, Amnesty Internati...
4What are the recommendations made by Amnesty I...The recommendations made by Amnesty Internatio...Amnesty International made several recommendat...[In recent years, Amnesty International has fo...
-
-
- -
- - - - - -
- - -
- - - - - -
- -
- - - -
- -
-
- - - - - -```python -amnesty_qa_df['response'] = amnesty_qa_df['answer'] -amnesty_qa_df.rename(columns={'contexts':'context'}, inplace=True) -``` - - - - - -
-
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
questionground_truthanswercontextresponse
0What are the global implications of the USA Su...The global implications of the USA Supreme Cou...The global implications of the USA Supreme Cou...[- In 2022, the USA Supreme Court handed down ...The global implications of the USA Supreme Cou...
1Which companies are the main contributors to G...According to the Carbon Majors database, the m...According to the Carbon Majors database, the m...[In recent years, there has been increasing pr...According to the Carbon Majors database, the m...
2Which private companies in the Americas are th...The largest private companies in the Americas ...According to the Carbon Majors database, the l...[The issue of greenhouse gas emissions has bec...According to the Carbon Majors database, the l...
3What action did Amnesty International urge its...Amnesty International urged its supporters to ...Amnesty International urged its supporters to ...[In the case of the Ogoni 9, Amnesty Internati...Amnesty International urged its supporters to ...
4What are the recommendations made by Amnesty I...The recommendations made by Amnesty Internatio...Amnesty International made several recommendat...[In recent years, Amnesty International has fo...Amnesty International made several recommendat...
-
-
- -
- - - - - -
- - -
- - - - - -
- -
- - - -
- -
-
- - - - -### 3. Evaluation with UpTrain - -This code demonstrates how to evaluate a dataset using UpTrain's `EvalLLM` class. An instance of `EvalLLM` is created using the OpenAI API key. The `evaluate` function assesses the `amnesty_qa_df` DataFrame against three evaluation criteria: context relevance, factual accuracy, and response completeness. The evaluation results are stored in a new DataFrame, which is then printed and optionally saved as a CSV file. Finally, the function is called in the main block to execute the evaluation and store the results. Refer a detailed version [here](https://langfuse.com/guides/cookbook/evaluation_with_uptrain) - - -```python -import os -import json -import pandas as pd -from uptrain import EvalLLM, Evals - -OPENAI_API_KEY = os.getenv('OPENAI_API_KEY') -eval_llm = EvalLLM(openai_api_key=OPENAI_API_KEY) - -def evaluate(): - # Step 5: Evaluate data using UpTrain - results = eval_llm.evaluate( - data=amnesty_qa_df, - checks=[Evals.CONTEXT_RELEVANCE, Evals.FACTUAL_ACCURACY, Evals.RESPONSE_COMPLETENESS] - ) - - # Convert the results to a DataFrame - results_df = pd.DataFrame(results) - - # Print the DataFrame - print(results_df) - - # Optionally, save the DataFrame to a CSV file - results_df.to_csv('evaluation_results.csv', index=False) - - return results_df - -# Call the function and store results in a DataFrame -if __name__ == "__main__": - uptrain_df = evaluate() -``` - - 100%|██████████| 5/5 [00:01<00:00, 3.19it/s] - 100%|██████████| 5/5 [00:02<00:00, 2.01it/s] - 100%|██████████| 5/5 [00:06<00:00, 1.30s/it] - 100%|██████████| 5/5 [00:02<00:00, 2.25it/s] - 2024-10-13 16:50:32.097 | INFO  | uptrain.framework.evalllm:evaluate:376 - Local server not running, start the server to log data and visualize in the dashboard! - - - question \ - 0 What are the global implications of the USA Su... - 1 Which companies are the main contributors to G... - 2 Which private companies in the Americas are th... - 3 What action did Amnesty International urge its... - 4 What are the recommendations made by Amnesty I... - - ground_truth \ - 0 The global implications of the USA Supreme Cou... - 1 According to the Carbon Majors database, the m... - 2 The largest private companies in the Americas ... - 3 Amnesty International urged its supporters to ... - 4 The recommendations made by Amnesty Internatio... - - answer \ - 0 The global implications of the USA Supreme Cou... - 1 According to the Carbon Majors database, the m... - 2 According to the Carbon Majors database, the l... - 3 Amnesty International urged its supporters to ... - 4 Amnesty International made several recommendat... - - context \ - 0 [- In 2022, the USA Supreme Court handed down ... - 1 [In recent years, there has been increasing pr... - 2 [The issue of greenhouse gas emissions has bec... - 3 [In the case of the Ogoni 9, Amnesty Internati... - 4 [In recent years, Amnesty International has fo... - - response score_context_relevance \ - 0 The global implications of the USA Supreme Cou... 1.0 - 1 According to the Carbon Majors database, the m... 1.0 - 2 According to the Carbon Majors database, the l... 1.0 - 3 Amnesty International urged its supporters to ... 1.0 - 4 Amnesty International made several recommendat... 1.0 - - explanation_context_relevance score_factual_accuracy \ - 0 {\n "Reasoning": "The extracted context con... 1.0 - 1 {\n "Reasoning": "The given context provide... 0.6 - 2 {\n "Reasoning": "The extracted context pro... 0.4 - 3 {\n "Reasoning": "The given context contain... 0.8 - 4 {\n "Reasoning": "The extracted context con... 0.6 - - explanation_factual_accuracy \ - 0 {\n "Result": [\n {\n "Fa... - 1 {\n "Result": [\n {\n "Fa... - 2 {\n "Result": [\n {\n "Fa... - 3 {\n "Result": [\n {\n "Fa... - 4 {\n "Result": [\n {\n "Fa... - - score_response_completeness \ - 0 1.0 - 1 1.0 - 2 1.0 - 3 1.0 - 4 1.0 - - explanation_response_completeness - 0 {\n "Reasoning": "The given response is com... - 1 {\n "Reasoning": "The given response is com... - 2 {\n "Reasoning": "The given response is com... - 3 {\n "Reasoning": "The given response is com... - 4 {\n "Reasoning": "The given response is com... - - -### 4. Evaluation with Ragas - -The `evaluate` function is called with the selected evaluation data and a list of metrics, including context precision, faithfulness, and answer relevancy. The results from the evaluation are then converted into a Pandas DataFrame for easier analysis. This approach enables users to assess the quality of model responses based on specific criteria. For more detailed information on evaluating RAG models with Ragas visit [here](https://langfuse.com/guides/cookbook/evaluation_of_rag_with_ragas). - - -```python -import json -from ragas import evaluate -from ragas.metrics import ( - answer_relevancy, - faithfulness, - context_precision, -) - -ragas_result = evaluate( - amnesty_qa["eval"].select(range(5)), - metrics=[ - context_precision, - faithfulness, - answer_relevancy, - ], -) - -ragas_df = ragas_result.to_pandas() -``` - -### 5. Setting Up Langfuse Client - -This code snippet initializes a Langfuse client using the `Langfuse` class. The client is configured with a secret key, public key, and host URL, which are retrieved from the environment variables. This setup allows users to interact with the Langfuse API for logging and analyzing model evaluation metrics seamlessly. - - -```python -from langfuse import Langfuse -langfuse_client = Langfuse( - secret_key=os.environ.get("LANGFUSE_SECRET_KEY"), - public_key=os.environ.get("LANGFUSE_PUBLIC_KEY"), - host = os.environ.get("LANGFUSE_HOST") -) -``` - -### 6. Logging Evaluation Scores to Langfuse - -The functions `log_uptrain_scores_to_langfuse` and `log_ragas_scores_to_langfuse` log evaluation scores from the UpTrain and Ragas frameworks into Langfuse. Each function iterates through its respective DataFrame, extracting relevant score columns and logging them with `langfuse_client.score`, using a unique ID for each entry. - -Scores in Langfuse are objects for storing evaluation metrics, linked to traces and optional observations. Each score can include attributes such as name, value, trace ID, and configuration ID to ensure they comply with a specified schema. This structured approach enables effective analysis of evaluation metrics within the Langfuse platform. - -#### Key Attributes of a Score Object: -- **name**: Name of the score (e.g., user_feedback). -- **value**: Numeric value of the score. -- **traceId**: ID of the related trace. -- **id**: Unique identifier for the score. - -Using scores effectively allows for quick overviews of evaluations, segmentation of traces by quality, and detailed reporting across use cases. Score schemas can be defined to standardize metrics for consistency and comparability in analysis. - - -```python -def log_uptrain_scores_to_langfuse(uptrain_df): - """Log evaluation scores to Langfuse.""" - score_columns = ['score_factual_accuracy', 'score_context_relevance', 'score_response_completeness'] - for index, row in uptrain_df.iterrows(): - for score_name in score_columns: - score_value = row[score_name] - langfuse_client.score(id=f"Uptrain_{index}_{score_name}", value=score_value, name=score_name) -``` - - -```python -def log_ragas_scores_to_langfuse(ragas_df): - score_columns = ['context_precision', 'faithfulness', 'answer_relevancy'] - - for index, row in ragas_df.iterrows(): - for score_name in score_columns: - score_value = row[score_name] - langfuse_client.score(id=f"Ragas_{index}_{score_name}", value=score_value, name=score_name) -``` - - -```python -log_ragas_scores_to_langfuse(ragas_df) -log_uptrain_scores_to_langfuse(uptrain_df) -``` - -### 7. Fetching Scores from Langfuse - -The `fetch_scores_from_langfuse` function retrieves evaluation scores from Langfuse based on the specified score name. It utilizes the `fetch_scores` method from the Langfuse client to obtain a comprehensive list of scores that have been logged in the system. This function is particularly useful for users who want to analyze specific evaluation metrics associated with their models or applications. - -By using the `fetch_scores` method, the function provides flexibility through various optional parameters that allow users to filter the retrieved scores according to their needs. For instance, users can specify pagination options such as the page number and the limit on the number of scores returned, making it easier to handle large datasets without overwhelming the interface. - -In addition to pagination, the function supports filtering scores by criteria like user identifiers, timestamps, and score sources. This means users can fetch scores that were recorded by specific users or during a certain time frame, allowing for a more focused analysis. Users can also filter scores based on their values or specific configurations, ensuring that the retrieved data aligns with the evaluation metrics of interest. - -The result of this function is a `FetchScoresResponse`, which includes not only the list of scores but also metadata about the scores retrieved. This allows users to quickly gain insights into the evaluation metrics relevant to their projects and make informed decisions based on the data. Overall, this function enhances the usability of Langfuse by simplifying the process of accessing and analyzing evaluation scores. - - -```python -def fetch_scores_from_langfuse(score_name): - """Fetch scores from Langfuse based on score name.""" - # Fetch scores for the specified name from Langfuse - scores_fetched = langfuse_client.fetch_scores(name=score_name) - return scores_fetched -``` - - -```python -score_columns = [ 'score_context_relevance', 'score_factual_accuracy', 'score_response_completeness', 'context_precision', 'faithfulness', 'answer_relevancy'] - -scores_df = pd.DataFrame(columns=score_columns) - -for score_name in score_columns: - fetch_scores = fetch_scores_from_langfuse(score_name) - print(fetch_scores.data) - scores_df[score_name] = [score.value for score in fetch_scores.data[::-1]] -``` - - [Score_Numeric(value=1.0, id='Uptrain_4_score_context_relevance', trace_id='95ad7bdd-b93b-4905-a865-938f346871bd', name='score_context_relevance', source=, observation_id=None, timestamp=datetime.datetime(2024, 10, 13, 16, 59, 25, 177000, tzinfo=datetime.timezone.utc), created_at=datetime.datetime(2024, 10, 13, 16, 59, 25, 177000, tzinfo=datetime.timezone.utc), updated_at=datetime.datetime(2024, 10, 13, 16, 59, 25, 177000, tzinfo=datetime.timezone.utc), author_user_id=None, comment=None, config_id=None, data_type='NUMERIC', stringValue=None, trace={'userId': None}, projectId='cm1vkhmj40jxlhaue9mntmwk8'), Score_Numeric(value=1.0, id='Uptrain_3_score_context_relevance', trace_id='f9b43538-77b6-478f-a5d9-c2be3b4cdada', name='score_context_relevance', source=, observation_id=None, timestamp=datetime.datetime(2024, 10, 13, 16, 59, 24, 897000, tzinfo=datetime.timezone.utc), created_at=datetime.datetime(2024, 10, 13, 16, 59, 24, 897000, tzinfo=datetime.timezone.utc), updated_at=datetime.datetime(2024, 10, 13, 16, 59, 24, 897000, tzinfo=datetime.timezone.utc), author_user_id=None, comment=None, config_id=None, data_type='NUMERIC', stringValue=None, trace={'userId': None}, projectId='cm1vkhmj40jxlhaue9mntmwk8'), Score_Numeric(value=1.0, id='Uptrain_2_score_context_relevance', trace_id='02185905-be84-41d9-9b64-b02fb45704f3', name='score_context_relevance', source=, observation_id=None, timestamp=datetime.datetime(2024, 10, 13, 16, 59, 24, 614000, tzinfo=datetime.timezone.utc), created_at=datetime.datetime(2024, 10, 13, 16, 59, 24, 614000, tzinfo=datetime.timezone.utc), updated_at=datetime.datetime(2024, 10, 13, 16, 59, 24, 614000, tzinfo=datetime.timezone.utc), author_user_id=None, comment=None, config_id=None, data_type='NUMERIC', stringValue=None, trace={'userId': None}, projectId='cm1vkhmj40jxlhaue9mntmwk8'), Score_Numeric(value=1.0, id='Uptrain_1_score_context_relevance', trace_id='b68fc2e6-e6a0-489b-becc-5441d9f1dd4e', name='score_context_relevance', source=, observation_id=None, timestamp=datetime.datetime(2024, 10, 13, 16, 59, 24, 326000, tzinfo=datetime.timezone.utc), created_at=datetime.datetime(2024, 10, 13, 16, 59, 24, 326000, tzinfo=datetime.timezone.utc), updated_at=datetime.datetime(2024, 10, 13, 16, 59, 24, 326000, tzinfo=datetime.timezone.utc), author_user_id=None, comment=None, config_id=None, data_type='NUMERIC', stringValue=None, trace={'userId': None}, projectId='cm1vkhmj40jxlhaue9mntmwk8'), Score_Numeric(value=1.0, id='Uptrain_0_score_context_relevance', trace_id='75bd20ac-3a34-4fa0-b74a-0fb7a454bfa1', name='score_context_relevance', source=, observation_id=None, timestamp=datetime.datetime(2024, 10, 13, 16, 59, 24, 46000, tzinfo=datetime.timezone.utc), created_at=datetime.datetime(2024, 10, 13, 16, 59, 24, 46000, tzinfo=datetime.timezone.utc), updated_at=datetime.datetime(2024, 10, 13, 16, 59, 24, 46000, tzinfo=datetime.timezone.utc), author_user_id=None, comment=None, config_id=None, data_type='NUMERIC', stringValue=None, trace={'userId': None}, projectId='cm1vkhmj40jxlhaue9mntmwk8')] - [Score_Numeric(value=0.6, id='Uptrain_4_score_factual_accuracy', trace_id='e5ad0a8e-3c20-4dc8-ba19-1f11f224ebbf', name='score_factual_accuracy', source=, observation_id=None, timestamp=datetime.datetime(2024, 10, 13, 16, 59, 25, 84000, tzinfo=datetime.timezone.utc), created_at=datetime.datetime(2024, 10, 13, 16, 59, 25, 84000, tzinfo=datetime.timezone.utc), updated_at=datetime.datetime(2024, 10, 13, 16, 59, 25, 84000, tzinfo=datetime.timezone.utc), author_user_id=None, comment=None, config_id=None, data_type='NUMERIC', stringValue=None, trace={'userId': None}, projectId='cm1vkhmj40jxlhaue9mntmwk8'), Score_Numeric(value=0.8, id='Uptrain_3_score_factual_accuracy', trace_id='2ed536e7-a583-401c-b3e9-1227985875c1', name='score_factual_accuracy', source=, observation_id=None, timestamp=datetime.datetime(2024, 10, 13, 16, 59, 24, 804000, tzinfo=datetime.timezone.utc), created_at=datetime.datetime(2024, 10, 13, 16, 59, 24, 804000, tzinfo=datetime.timezone.utc), updated_at=datetime.datetime(2024, 10, 13, 16, 59, 24, 804000, tzinfo=datetime.timezone.utc), author_user_id=None, comment=None, config_id=None, data_type='NUMERIC', stringValue=None, trace={'userId': None}, projectId='cm1vkhmj40jxlhaue9mntmwk8'), Score_Numeric(value=0.4, id='Uptrain_2_score_factual_accuracy', trace_id='8552536a-70ae-4678-a789-c0af61d3a436', name='score_factual_accuracy', source=, observation_id=None, timestamp=datetime.datetime(2024, 10, 13, 16, 59, 24, 517000, tzinfo=datetime.timezone.utc), created_at=datetime.datetime(2024, 10, 13, 16, 59, 24, 517000, tzinfo=datetime.timezone.utc), updated_at=datetime.datetime(2024, 10, 13, 16, 59, 24, 517000, tzinfo=datetime.timezone.utc), author_user_id=None, comment=None, config_id=None, data_type='NUMERIC', stringValue=None, trace={'userId': None}, projectId='cm1vkhmj40jxlhaue9mntmwk8'), Score_Numeric(value=0.6, id='Uptrain_1_score_factual_accuracy', trace_id='812d7ae7-f2bf-4251-9784-9ee248b469d7', name='score_factual_accuracy', source=, observation_id=None, timestamp=datetime.datetime(2024, 10, 13, 16, 59, 24, 231000, tzinfo=datetime.timezone.utc), created_at=datetime.datetime(2024, 10, 13, 16, 59, 24, 231000, tzinfo=datetime.timezone.utc), updated_at=datetime.datetime(2024, 10, 13, 16, 59, 24, 231000, tzinfo=datetime.timezone.utc), author_user_id=None, comment=None, config_id=None, data_type='NUMERIC', stringValue=None, trace={'userId': None}, projectId='cm1vkhmj40jxlhaue9mntmwk8'), Score_Numeric(value=1.0, id='Uptrain_0_score_factual_accuracy', trace_id='f4135b5b-d20a-4741-b777-186d37d1fa52', name='score_factual_accuracy', source=, observation_id=None, timestamp=datetime.datetime(2024, 10, 13, 16, 59, 23, 954000, tzinfo=datetime.timezone.utc), created_at=datetime.datetime(2024, 10, 13, 16, 59, 23, 954000, tzinfo=datetime.timezone.utc), updated_at=datetime.datetime(2024, 10, 13, 16, 59, 23, 954000, tzinfo=datetime.timezone.utc), author_user_id=None, comment=None, config_id=None, data_type='NUMERIC', stringValue=None, trace={'userId': None}, projectId='cm1vkhmj40jxlhaue9mntmwk8')] - [Score_Numeric(value=1.0, id='Uptrain_4_score_response_completeness', trace_id='1a54b4e2-3e2c-4235-801b-b56153c8e293', name='score_response_completeness', source=, observation_id=None, timestamp=datetime.datetime(2024, 10, 13, 16, 59, 25, 271000, tzinfo=datetime.timezone.utc), created_at=datetime.datetime(2024, 10, 13, 16, 59, 25, 271000, tzinfo=datetime.timezone.utc), updated_at=datetime.datetime(2024, 10, 13, 16, 59, 25, 271000, tzinfo=datetime.timezone.utc), author_user_id=None, comment=None, config_id=None, data_type='NUMERIC', stringValue=None, trace={'userId': None}, projectId='cm1vkhmj40jxlhaue9mntmwk8'), Score_Numeric(value=1.0, id='Uptrain_3_score_response_completeness', trace_id='ce78dce7-f4bd-45a4-b69c-f31fd6258565', name='score_response_completeness', source=, observation_id=None, timestamp=datetime.datetime(2024, 10, 13, 16, 59, 24, 990000, tzinfo=datetime.timezone.utc), created_at=datetime.datetime(2024, 10, 13, 16, 59, 24, 990000, tzinfo=datetime.timezone.utc), updated_at=datetime.datetime(2024, 10, 13, 16, 59, 24, 990000, tzinfo=datetime.timezone.utc), author_user_id=None, comment=None, config_id=None, data_type='NUMERIC', stringValue=None, trace={'userId': None}, projectId='cm1vkhmj40jxlhaue9mntmwk8'), Score_Numeric(value=1.0, id='Uptrain_2_score_response_completeness', trace_id='103927f0-dd9f-4d94-95d6-a4a6fce3898d', name='score_response_completeness', source=, observation_id=None, timestamp=datetime.datetime(2024, 10, 13, 16, 59, 24, 709000, tzinfo=datetime.timezone.utc), created_at=datetime.datetime(2024, 10, 13, 16, 59, 24, 709000, tzinfo=datetime.timezone.utc), updated_at=datetime.datetime(2024, 10, 13, 16, 59, 24, 709000, tzinfo=datetime.timezone.utc), author_user_id=None, comment=None, config_id=None, data_type='NUMERIC', stringValue=None, trace={'userId': None}, projectId='cm1vkhmj40jxlhaue9mntmwk8'), Score_Numeric(value=1.0, id='Uptrain_1_score_response_completeness', trace_id='6e7ae4f6-aca0-4152-b299-5b1ae06bd7e9', name='score_response_completeness', source=, observation_id=None, timestamp=datetime.datetime(2024, 10, 13, 16, 59, 24, 423000, tzinfo=datetime.timezone.utc), created_at=datetime.datetime(2024, 10, 13, 16, 59, 24, 423000, tzinfo=datetime.timezone.utc), updated_at=datetime.datetime(2024, 10, 13, 16, 59, 24, 423000, tzinfo=datetime.timezone.utc), author_user_id=None, comment=None, config_id=None, data_type='NUMERIC', stringValue=None, trace={'userId': None}, projectId='cm1vkhmj40jxlhaue9mntmwk8'), Score_Numeric(value=1.0, id='Uptrain_0_score_response_completeness', trace_id='3c100175-8e20-4d1f-ab1b-a7e4dc870cac', name='score_response_completeness', source=, observation_id=None, timestamp=datetime.datetime(2024, 10, 13, 16, 59, 24, 138000, tzinfo=datetime.timezone.utc), created_at=datetime.datetime(2024, 10, 13, 16, 59, 24, 138000, tzinfo=datetime.timezone.utc), updated_at=datetime.datetime(2024, 10, 13, 16, 59, 24, 138000, tzinfo=datetime.timezone.utc), author_user_id=None, comment=None, config_id=None, data_type='NUMERIC', stringValue=None, trace={'userId': None}, projectId='cm1vkhmj40jxlhaue9mntmwk8')] - [Score_Numeric(value=0.9999999999666667, id='Ragas_4_context_precision', trace_id='1441c394-fc54-42f3-a798-7ab1b338748c', name='context_precision', source=, observation_id=None, timestamp=datetime.datetime(2024, 10, 13, 16, 59, 25, 207000, tzinfo=datetime.timezone.utc), created_at=datetime.datetime(2024, 10, 13, 16, 59, 25, 207000, tzinfo=datetime.timezone.utc), updated_at=datetime.datetime(2024, 10, 13, 16, 59, 25, 207000, tzinfo=datetime.timezone.utc), author_user_id=None, comment=None, config_id=None, data_type='NUMERIC', stringValue=None, trace={'userId': None}, projectId='cm1vkhmj40jxlhaue9mntmwk8'), Score_Numeric(value=0.99999999995, id='Ragas_3_context_precision', trace_id='a91146c0-09d4-4039-828d-adf308d09dd8', name='context_precision', source=, observation_id=None, timestamp=datetime.datetime(2024, 10, 13, 16, 59, 24, 927000, tzinfo=datetime.timezone.utc), created_at=datetime.datetime(2024, 10, 13, 16, 59, 24, 927000, tzinfo=datetime.timezone.utc), updated_at=datetime.datetime(2024, 10, 13, 16, 59, 24, 927000, tzinfo=datetime.timezone.utc), author_user_id=None, comment=None, config_id=None, data_type='NUMERIC', stringValue=None, trace={'userId': None}, projectId='cm1vkhmj40jxlhaue9mntmwk8'), Score_Numeric(value=0.8333333332916666, id='Ragas_2_context_precision', trace_id='16bf0af8-b988-44d0-a9c5-35a0ffa69ffd', name='context_precision', source=, observation_id=None, timestamp=datetime.datetime(2024, 10, 13, 16, 59, 24, 643000, tzinfo=datetime.timezone.utc), created_at=datetime.datetime(2024, 10, 13, 16, 59, 24, 643000, tzinfo=datetime.timezone.utc), updated_at=datetime.datetime(2024, 10, 13, 16, 59, 24, 643000, tzinfo=datetime.timezone.utc), author_user_id=None, comment=None, config_id=None, data_type='NUMERIC', stringValue=None, trace={'userId': None}, projectId='cm1vkhmj40jxlhaue9mntmwk8'), Score_Numeric(value=0.9999999999666667, id='Ragas_1_context_precision', trace_id='976e6974-f6d7-4ff0-b961-5653ae58e9ef', name='context_precision', source=, observation_id=None, timestamp=datetime.datetime(2024, 10, 13, 16, 59, 24, 310000, tzinfo=datetime.timezone.utc), created_at=datetime.datetime(2024, 10, 13, 16, 59, 24, 310000, tzinfo=datetime.timezone.utc), updated_at=datetime.datetime(2024, 10, 13, 16, 59, 24, 310000, tzinfo=datetime.timezone.utc), author_user_id=None, comment=None, config_id=None, data_type='NUMERIC', stringValue=None, trace={'userId': None}, projectId='cm1vkhmj40jxlhaue9mntmwk8'), Score_Numeric(value=0.9999999999666667, id='Ragas_0_context_precision', trace_id='4e0edb60-c6b1-452d-ae58-ce7449dc3f47', name='context_precision', source=, observation_id=None, timestamp=datetime.datetime(2024, 10, 13, 16, 59, 23, 798000, tzinfo=datetime.timezone.utc), created_at=datetime.datetime(2024, 10, 13, 16, 59, 23, 798000, tzinfo=datetime.timezone.utc), updated_at=datetime.datetime(2024, 10, 13, 16, 59, 23, 798000, tzinfo=datetime.timezone.utc), author_user_id=None, comment=None, config_id=None, data_type='NUMERIC', stringValue=None, trace={'userId': None}, projectId='cm1vkhmj40jxlhaue9mntmwk8')] - [Score_Numeric(value=0.1428571428571428, id='Ragas_4_faithfulness', trace_id='8c3f995f-bc00-4935-90e5-069478987ce3', name='faithfulness', source=, observation_id=None, timestamp=datetime.datetime(2024, 10, 13, 16, 59, 25, 300000, tzinfo=datetime.timezone.utc), created_at=datetime.datetime(2024, 10, 13, 16, 59, 25, 300000, tzinfo=datetime.timezone.utc), updated_at=datetime.datetime(2024, 10, 13, 16, 59, 25, 300000, tzinfo=datetime.timezone.utc), author_user_id=None, comment=None, config_id=None, data_type='NUMERIC', stringValue=None, trace={'userId': None}, projectId='cm1vkhmj40jxlhaue9mntmwk8'), Score_Numeric(value=0.2, id='Ragas_3_faithfulness', trace_id='424fddad-f617-491a-9816-d9642f33d0e6', name='faithfulness', source=, observation_id=None, timestamp=datetime.datetime(2024, 10, 13, 16, 59, 25, 19000, tzinfo=datetime.timezone.utc), created_at=datetime.datetime(2024, 10, 13, 16, 59, 25, 19000, tzinfo=datetime.timezone.utc), updated_at=datetime.datetime(2024, 10, 13, 16, 59, 25, 19000, tzinfo=datetime.timezone.utc), author_user_id=None, comment=None, config_id=None, data_type='NUMERIC', stringValue=None, trace={'userId': None}, projectId='cm1vkhmj40jxlhaue9mntmwk8'), Score_Numeric(value=0.0, id='Ragas_2_faithfulness', trace_id='c7b7e4a1-ab80-4951-ae16-293265970dc3', name='faithfulness', source=, observation_id=None, timestamp=datetime.datetime(2024, 10, 13, 16, 59, 24, 740000, tzinfo=datetime.timezone.utc), created_at=datetime.datetime(2024, 10, 13, 16, 59, 24, 740000, tzinfo=datetime.timezone.utc), updated_at=datetime.datetime(2024, 10, 13, 16, 59, 24, 740000, tzinfo=datetime.timezone.utc), author_user_id=None, comment=None, config_id=None, data_type='NUMERIC', stringValue=None, trace={'userId': None}, projectId='cm1vkhmj40jxlhaue9mntmwk8'), Score_Numeric(value=0.12, id='Ragas_1_faithfulness', trace_id='77a2d6ae-b840-454f-b4e3-52edb8909bcb', name='faithfulness', source=, observation_id=None, timestamp=datetime.datetime(2024, 10, 13, 16, 59, 24, 456000, tzinfo=datetime.timezone.utc), created_at=datetime.datetime(2024, 10, 13, 16, 59, 24, 456000, tzinfo=datetime.timezone.utc), updated_at=datetime.datetime(2024, 10, 13, 16, 59, 24, 456000, tzinfo=datetime.timezone.utc), author_user_id=None, comment=None, config_id=None, data_type='NUMERIC', stringValue=None, trace={'userId': None}, projectId='cm1vkhmj40jxlhaue9mntmwk8'), Score_Numeric(value=1.0, id='Ragas_0_faithfulness', trace_id='8f61a293-836f-4cc9-84f9-996c19c42620', name='faithfulness', source=, observation_id=None, timestamp=datetime.datetime(2024, 10, 13, 16, 59, 23, 894000, tzinfo=datetime.timezone.utc), created_at=datetime.datetime(2024, 10, 13, 16, 59, 23, 894000, tzinfo=datetime.timezone.utc), updated_at=datetime.datetime(2024, 10, 13, 16, 59, 23, 894000, tzinfo=datetime.timezone.utc), author_user_id=None, comment=None, config_id=None, data_type='NUMERIC', stringValue=None, trace={'userId': None}, projectId='cm1vkhmj40jxlhaue9mntmwk8')] - [Score_Numeric(value=0.9891308706741455, id='Ragas_4_answer_relevancy', trace_id='21a3c662-a494-4029-b95a-8fd25f90a8c6', name='answer_relevancy', source=, observation_id=None, timestamp=datetime.datetime(2024, 10, 13, 16, 59, 25, 398000, tzinfo=datetime.timezone.utc), created_at=datetime.datetime(2024, 10, 13, 16, 59, 25, 398000, tzinfo=datetime.timezone.utc), updated_at=datetime.datetime(2024, 10, 13, 16, 59, 25, 398000, tzinfo=datetime.timezone.utc), author_user_id=None, comment=None, config_id=None, data_type='NUMERIC', stringValue=None, trace={'userId': None}, projectId='cm1vkhmj40jxlhaue9mntmwk8'), Score_Numeric(value=0.9795341682836177, id='Ragas_3_answer_relevancy', trace_id='f398dd78-ccdd-423c-9662-92ff548183e7', name='answer_relevancy', source=, observation_id=None, timestamp=datetime.datetime(2024, 10, 13, 16, 59, 25, 114000, tzinfo=datetime.timezone.utc), created_at=datetime.datetime(2024, 10, 13, 16, 59, 25, 114000, tzinfo=datetime.timezone.utc), updated_at=datetime.datetime(2024, 10, 13, 16, 59, 25, 114000, tzinfo=datetime.timezone.utc), author_user_id=None, comment=None, config_id=None, data_type='NUMERIC', stringValue=None, trace={'userId': None}, projectId='cm1vkhmj40jxlhaue9mntmwk8'), Score_Numeric(value=0.9916994382653276, id='Ragas_2_answer_relevancy', trace_id='65d48c73-2fbd-4577-bec9-7a46858e0a6a', name='answer_relevancy', source=, observation_id=None, timestamp=datetime.datetime(2024, 10, 13, 16, 59, 24, 834000, tzinfo=datetime.timezone.utc), created_at=datetime.datetime(2024, 10, 13, 16, 59, 24, 834000, tzinfo=datetime.timezone.utc), updated_at=datetime.datetime(2024, 10, 13, 16, 59, 24, 834000, tzinfo=datetime.timezone.utc), author_user_id=None, comment=None, config_id=None, data_type='NUMERIC', stringValue=None, trace={'userId': None}, projectId='cm1vkhmj40jxlhaue9mntmwk8'), Score_Numeric(value=0.9652149513821247, id='Ragas_1_answer_relevancy', trace_id='116c5ac3-7931-471b-83eb-da6c91725621', name='answer_relevancy', source=, observation_id=None, timestamp=datetime.datetime(2024, 10, 13, 16, 59, 24, 550000, tzinfo=datetime.timezone.utc), created_at=datetime.datetime(2024, 10, 13, 16, 59, 24, 550000, tzinfo=datetime.timezone.utc), updated_at=datetime.datetime(2024, 10, 13, 16, 59, 24, 550000, tzinfo=datetime.timezone.utc), author_user_id=None, comment=None, config_id=None, data_type='NUMERIC', stringValue=None, trace={'userId': None}, projectId='cm1vkhmj40jxlhaue9mntmwk8'), Score_Numeric(value=1.0, id='Ragas_0_answer_relevancy', trace_id='e7642418-7f1f-4c4f-8480-06dd8c276fbd', name='answer_relevancy', source=, observation_id=None, timestamp=datetime.datetime(2024, 10, 13, 16, 59, 24, 59000, tzinfo=datetime.timezone.utc), created_at=datetime.datetime(2024, 10, 13, 16, 59, 24, 59000, tzinfo=datetime.timezone.utc), updated_at=datetime.datetime(2024, 10, 13, 16, 59, 24, 59000, tzinfo=datetime.timezone.utc), author_user_id=None, comment=None, config_id=None, data_type='NUMERIC', stringValue=None, trace={'userId': None}, projectId='cm1vkhmj40jxlhaue9mntmwk8')] - - -### 8. Creating a Correlation Heatmap - -This section illustrates how to visualize the correlation between evaluation scores using a heatmap. The code calculates the correlation matrix for two sets of scores: UpTrain scores (`'score_context_relevance'`, `'score_factual_accuracy'`, and `'score_response_completeness'`) and RAGAS scores (`'context_precision'`, `'faithfulness'`, and `'answer_relevancy'`). - -1. **Calculate the Correlation Matrix**: The `corr()` function computes correlation coefficients between specified score columns in the `scores_df` DataFrame, indicating the strength and direction of relationships. - -2. **Create and Customize the Heatmap**: A heatmap is generated using Matplotlib and Seaborn, displaying correlation coefficients with colors ranging from blue (negative) to red (positive). The layout is adjusted for clarity. - -This visualization helps identify patterns in the evaluation metrics, aiding in the analysis of `fetch_scores()` performance. - - -```python -import matplotlib.pyplot as plt -import seaborn as sns - -corr_matrix = scores_df.corr() - -# Create a heatmap of the correlation matrix -plt.figure(figsize=(10, 8)) -sns.heatmap(corr_matrix, annot=True, vmin=-1, vmax=1, center=0, linewidths=.5, linecolor='white', cmap='crest') -plt.title('Correlation Matrix of Six Scores') -plt.tight_layout() -``` - - - -![png](/public/images/cookbook/example_usage_of_fetch_scores_files/example_usage_of_fetch_scores_23_0.png) - - - -![%7B283F9496-4034-464B-9F93-DEA587D37A5B%7D.png](/public/images/cookbook/example_usage_of_fetch_scores_files/example_fetch_scores_langfuse.png) - - -```python - -``` From 5a37156918431d70f172f6571978b6d2bd0f8d4f Mon Sep 17 00:00:00 2001 From: Soham Mhatre Date: Mon, 14 Oct 2024 13:27:52 +0530 Subject: [PATCH 10/11] Create example_usage_of_fetch_score --- .../docs/scores/example_usage_of_fetch_score | 1020 +++++++++++++++++ 1 file changed, 1020 insertions(+) create mode 100644 pages/docs/scores/example_usage_of_fetch_score diff --git a/pages/docs/scores/example_usage_of_fetch_score b/pages/docs/scores/example_usage_of_fetch_score new file mode 100644 index 000000000..61423d078 --- /dev/null +++ b/pages/docs/scores/example_usage_of_fetch_score @@ -0,0 +1,1020 @@ +## description: This document focuses on retrieving evaluation results logged in Langfuse using the fetch_scores. category: Examples + +--- + +# Fetching Scores from Langfuse + +Example: Using UpTrain and Ragas for Model Evaluation and Retrieving Metrics from Langfuse +Langfuse makes it easy to log and retrieve model evaluation metrics, helping users analyze and compare various performance measures. In this example, we'll demonstrate how UpTrain and Ragas can be used to evaluate models and retrieve specific evaluation metrics logged into Langfuse using `fetch_scores()` function and verify these metrics extracted by creating comparisons using a correlation matrix. + +**fetch_scores()** provides these arguments - + +- `page` (*Optional[int]*): The page number of the scores to return. Defaults to None. +- `limit` (*Optional[int]*): The maximum number of scores to return. Defaults to None. +- `user_id` (*Optional[str]*): A user identifier. Defaults to None. +- `name` (*Optional[str]*): The name of the scores to return. Defaults to None. +- `from_timestamp` (*Optional[dt.datetime]*): Retrieve only scores with a timestamp on or after this datetime. Defaults to None. +- `to_timestamp` (*Optional[dt.datetime]*): Retrieve only scores with a timestamp before this datetime. Defaults to None. +- `source` (*Optional[ScoreSource]*): The source of the scores. Defaults to None. +- `operator` (*Optional[str]*): The operator of the scores. Defaults to None. +- `value` (*Optional[float]*): The value of the scores. Defaults to None. +- `score_ids` (*Optional[str]*): The score identifier. Defaults to None. +- `config_id` (*Optional[str]*): The configuration identifier. Defaults to None. +- `data_type` (*Optional[ScoreDataType]*): The data type of the scores. Defaults to None. +- `request_options` (*Optional[RequestOptions]*): Additional request options. Defaults to None. + +The returned data contains a list of scores along with associated metadata, which can be useful for evaluating the performance of different models or experiments. If an error occurs during the request, it raises an exception, providing insight into what went wrong. + +--- + +### 1. Setting up the environment + +Importing necessary libraries and setting up enviornment variables + + +```python +!pip install ragas uptrain litellm datasets rouge_score langfuse +``` + + +```python +import os +# get keys for your project from https://cloud.langfuse.com +os.environ["LANGFUSE_PUBLIC_KEY"] = "" +os.environ["LANGFUSE_SECRET_KEY"] = "" +# your openai key +os.environ["OPENAI_API_KEY"] = "" + +# Your host, defaults to https://cloud.langfuse.com +# For US data region, set to "https://us.cloud.langfuse.com" +os.environ["LANGFUSE_HOST"] = "https://us.cloud.langfuse.com" +``` + +### 2. Getting the data + +This section demonstrates how to load and prepare a dataset for evaluation. The "amnesty_qa" dataset is loaded using the `datasets` library, and a subset of 5 evaluation examples is selected for analysis. The selected data is then converted into a pandas DataFrame for convenient handling and processing. + + +```python +from datasets import load_dataset + +amnesty_qa = load_dataset("explodinggradients/amnesty_qa", "english_v2") +amnesty_qa_ragas = amnesty_qa["eval"].select(range(5)) +amnesty_qa_ragas.to_pandas() +``` + + +```python +import pandas as pd +amnesty_qa_df = pd.DataFrame(amnesty_qa["eval"].select(range(5))) +``` + + + + + +
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
questionground_truthanswercontexts
0What are the global implications of the USA Su...The global implications of the USA Supreme Cou...The global implications of the USA Supreme Cou...[- In 2022, the USA Supreme Court handed down ...
1Which companies are the main contributors to G...According to the Carbon Majors database, the m...According to the Carbon Majors database, the m...[In recent years, there has been increasing pr...
2Which private companies in the Americas are th...The largest private companies in the Americas ...According to the Carbon Majors database, the l...[The issue of greenhouse gas emissions has bec...
3What action did Amnesty International urge its...Amnesty International urged its supporters to ...Amnesty International urged its supporters to ...[In the case of the Ogoni 9, Amnesty Internati...
4What are the recommendations made by Amnesty I...The recommendations made by Amnesty Internatio...Amnesty International made several recommendat...[In recent years, Amnesty International has fo...
+
+
+ +
+ + + + + +
+ + +
+ + + + + +
+ +
+ + + +
+ +
+
+ + + + + +```python +amnesty_qa_df['response'] = amnesty_qa_df['answer'] +amnesty_qa_df.rename(columns={'contexts':'context'}, inplace=True) +``` + + + + + +
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
questionground_truthanswercontextresponse
0What are the global implications of the USA Su...The global implications of the USA Supreme Cou...The global implications of the USA Supreme Cou...[- In 2022, the USA Supreme Court handed down ...The global implications of the USA Supreme Cou...
1Which companies are the main contributors to G...According to the Carbon Majors database, the m...According to the Carbon Majors database, the m...[In recent years, there has been increasing pr...According to the Carbon Majors database, the m...
2Which private companies in the Americas are th...The largest private companies in the Americas ...According to the Carbon Majors database, the l...[The issue of greenhouse gas emissions has bec...According to the Carbon Majors database, the l...
3What action did Amnesty International urge its...Amnesty International urged its supporters to ...Amnesty International urged its supporters to ...[In the case of the Ogoni 9, Amnesty Internati...Amnesty International urged its supporters to ...
4What are the recommendations made by Amnesty I...The recommendations made by Amnesty Internatio...Amnesty International made several recommendat...[In recent years, Amnesty International has fo...Amnesty International made several recommendat...
+
+
+ +
+ + + + + +
+ + +
+ + + + + +
+ +
+ + + +
+ +
+
+ + + + +### 3. Evaluation with UpTrain + +This code demonstrates how to evaluate a dataset using UpTrain's `EvalLLM` class. An instance of `EvalLLM` is created using the OpenAI API key. The `evaluate` function assesses the `amnesty_qa_df` DataFrame against three evaluation criteria: context relevance, factual accuracy, and response completeness. The evaluation results are stored in a new DataFrame, which is then printed and optionally saved as a CSV file. Finally, the function is called in the main block to execute the evaluation and store the results. Refer a detailed version [here](https://langfuse.com/guides/cookbook/evaluation_with_uptrain) + + +```python +import os +import json +import pandas as pd +from uptrain import EvalLLM, Evals + +OPENAI_API_KEY = os.getenv('OPENAI_API_KEY') +eval_llm = EvalLLM(openai_api_key=OPENAI_API_KEY) + +def evaluate(): + # Step 5: Evaluate data using UpTrain + results = eval_llm.evaluate( + data=amnesty_qa_df, + checks=[Evals.CONTEXT_RELEVANCE, Evals.FACTUAL_ACCURACY, Evals.RESPONSE_COMPLETENESS] + ) + + # Convert the results to a DataFrame + results_df = pd.DataFrame(results) + + # Print the DataFrame + print(results_df) + + # Optionally, save the DataFrame to a CSV file + results_df.to_csv('evaluation_results.csv', index=False) + + return results_df + +# Call the function and store results in a DataFrame +if __name__ == "__main__": + uptrain_df = evaluate() +``` + + 100%|██████████| 5/5 [00:01<00:00, 3.19it/s] + 100%|██████████| 5/5 [00:02<00:00, 2.01it/s] + 100%|██████████| 5/5 [00:06<00:00, 1.30s/it] + 100%|██████████| 5/5 [00:02<00:00, 2.25it/s] + 2024-10-13 16:50:32.097 | INFO  | uptrain.framework.evalllm:evaluate:376 - Local server not running, start the server to log data and visualize in the dashboard! + + + question \ + 0 What are the global implications of the USA Su... + 1 Which companies are the main contributors to G... + 2 Which private companies in the Americas are th... + 3 What action did Amnesty International urge its... + 4 What are the recommendations made by Amnesty I... + + ground_truth \ + 0 The global implications of the USA Supreme Cou... + 1 According to the Carbon Majors database, the m... + 2 The largest private companies in the Americas ... + 3 Amnesty International urged its supporters to ... + 4 The recommendations made by Amnesty Internatio... + + answer \ + 0 The global implications of the USA Supreme Cou... + 1 According to the Carbon Majors database, the m... + 2 According to the Carbon Majors database, the l... + 3 Amnesty International urged its supporters to ... + 4 Amnesty International made several recommendat... + + context \ + 0 [- In 2022, the USA Supreme Court handed down ... + 1 [In recent years, there has been increasing pr... + 2 [The issue of greenhouse gas emissions has bec... + 3 [In the case of the Ogoni 9, Amnesty Internati... + 4 [In recent years, Amnesty International has fo... + + response score_context_relevance \ + 0 The global implications of the USA Supreme Cou... 1.0 + 1 According to the Carbon Majors database, the m... 1.0 + 2 According to the Carbon Majors database, the l... 1.0 + 3 Amnesty International urged its supporters to ... 1.0 + 4 Amnesty International made several recommendat... 1.0 + + explanation_context_relevance score_factual_accuracy \ + 0 {\n "Reasoning": "The extracted context con... 1.0 + 1 {\n "Reasoning": "The given context provide... 0.6 + 2 {\n "Reasoning": "The extracted context pro... 0.4 + 3 {\n "Reasoning": "The given context contain... 0.8 + 4 {\n "Reasoning": "The extracted context con... 0.6 + + explanation_factual_accuracy \ + 0 {\n "Result": [\n {\n "Fa... + 1 {\n "Result": [\n {\n "Fa... + 2 {\n "Result": [\n {\n "Fa... + 3 {\n "Result": [\n {\n "Fa... + 4 {\n "Result": [\n {\n "Fa... + + score_response_completeness \ + 0 1.0 + 1 1.0 + 2 1.0 + 3 1.0 + 4 1.0 + + explanation_response_completeness + 0 {\n "Reasoning": "The given response is com... + 1 {\n "Reasoning": "The given response is com... + 2 {\n "Reasoning": "The given response is com... + 3 {\n "Reasoning": "The given response is com... + 4 {\n "Reasoning": "The given response is com... + + +### 4. Evaluation with Ragas + +The `evaluate` function is called with the selected evaluation data and a list of metrics, including context precision, faithfulness, and answer relevancy. The results from the evaluation are then converted into a Pandas DataFrame for easier analysis. This approach enables users to assess the quality of model responses based on specific criteria. For more detailed information on evaluating RAG models with Ragas visit [here](https://langfuse.com/guides/cookbook/evaluation_of_rag_with_ragas). + + +```python +import json +from ragas import evaluate +from ragas.metrics import ( + answer_relevancy, + faithfulness, + context_precision, +) + +ragas_result = evaluate( + amnesty_qa["eval"].select(range(5)), + metrics=[ + context_precision, + faithfulness, + answer_relevancy, + ], +) + +ragas_df = ragas_result.to_pandas() +``` + +### 5. Setting Up Langfuse Client + +This code snippet initializes a Langfuse client using the `Langfuse` class. The client is configured with a secret key, public key, and host URL, which are retrieved from the environment variables. This setup allows users to interact with the Langfuse API for logging and analyzing model evaluation metrics seamlessly. + + +```python +from langfuse import Langfuse +langfuse_client = Langfuse( + secret_key=os.environ.get("LANGFUSE_SECRET_KEY"), + public_key=os.environ.get("LANGFUSE_PUBLIC_KEY"), + host = os.environ.get("LANGFUSE_HOST") +) +``` + +### 6. Logging Evaluation Scores to Langfuse + +The functions `log_uptrain_scores_to_langfuse` and `log_ragas_scores_to_langfuse` log evaluation scores from the UpTrain and Ragas frameworks into Langfuse. Each function iterates through its respective DataFrame, extracting relevant score columns and logging them with `langfuse_client.score`, using a unique ID for each entry. + +Scores in Langfuse are objects for storing evaluation metrics, linked to traces and optional observations. Each score can include attributes such as name, value, trace ID, and configuration ID to ensure they comply with a specified schema. This structured approach enables effective analysis of evaluation metrics within the Langfuse platform. + +#### Key Attributes of a Score Object: +- **name**: Name of the score (e.g., user_feedback). +- **value**: Numeric value of the score. +- **traceId**: ID of the related trace. +- **id**: Unique identifier for the score. + +Using scores effectively allows for quick overviews of evaluations, segmentation of traces by quality, and detailed reporting across use cases. Score schemas can be defined to standardize metrics for consistency and comparability in analysis. + + +```python +def log_uptrain_scores_to_langfuse(uptrain_df): + """Log evaluation scores to Langfuse.""" + score_columns = ['score_factual_accuracy', 'score_context_relevance', 'score_response_completeness'] + for index, row in uptrain_df.iterrows(): + for score_name in score_columns: + score_value = row[score_name] + langfuse_client.score(id=f"Uptrain_{index}_{score_name}", value=score_value, name=score_name) +``` + + +```python +def log_ragas_scores_to_langfuse(ragas_df): + score_columns = ['context_precision', 'faithfulness', 'answer_relevancy'] + + for index, row in ragas_df.iterrows(): + for score_name in score_columns: + score_value = row[score_name] + langfuse_client.score(id=f"Ragas_{index}_{score_name}", value=score_value, name=score_name) +``` + + +```python +log_ragas_scores_to_langfuse(ragas_df) +log_uptrain_scores_to_langfuse(uptrain_df) +``` + +### 7. Fetching Scores from Langfuse + +The `fetch_scores_from_langfuse` function retrieves evaluation scores from Langfuse based on the specified score name. It utilizes the `fetch_scores` method from the Langfuse client to obtain a comprehensive list of scores that have been logged in the system. This function is particularly useful for users who want to analyze specific evaluation metrics associated with their models or applications. + +By using the `fetch_scores` method, the function provides flexibility through various optional parameters that allow users to filter the retrieved scores according to their needs. For instance, users can specify pagination options such as the page number and the limit on the number of scores returned, making it easier to handle large datasets without overwhelming the interface. + +In addition to pagination, the function supports filtering scores by criteria like user identifiers, timestamps, and score sources. This means users can fetch scores that were recorded by specific users or during a certain time frame, allowing for a more focused analysis. Users can also filter scores based on their values or specific configurations, ensuring that the retrieved data aligns with the evaluation metrics of interest. + +The result of this function is a `FetchScoresResponse`, which includes not only the list of scores but also metadata about the scores retrieved. This allows users to quickly gain insights into the evaluation metrics relevant to their projects and make informed decisions based on the data. Overall, this function enhances the usability of Langfuse by simplifying the process of accessing and analyzing evaluation scores. + + +```python +def fetch_scores_from_langfuse(score_name): + """Fetch scores from Langfuse based on score name.""" + # Fetch scores for the specified name from Langfuse + scores_fetched = langfuse_client.fetch_scores(name=score_name) + return scores_fetched +``` + + +```python +score_columns = [ 'score_context_relevance', 'score_factual_accuracy', 'score_response_completeness', 'context_precision', 'faithfulness', 'answer_relevancy'] + +scores_df = pd.DataFrame(columns=score_columns) + +for score_name in score_columns: + fetch_scores = fetch_scores_from_langfuse(score_name) + print(fetch_scores.data) + scores_df[score_name] = [score.value for score in fetch_scores.data[::-1]] +``` + + [Score_Numeric(value=1.0, id='Uptrain_4_score_context_relevance', trace_id='95ad7bdd-b93b-4905-a865-938f346871bd', name='score_context_relevance', source=, observation_id=None, timestamp=datetime.datetime(2024, 10, 13, 16, 59, 25, 177000, tzinfo=datetime.timezone.utc), created_at=datetime.datetime(2024, 10, 13, 16, 59, 25, 177000, tzinfo=datetime.timezone.utc), updated_at=datetime.datetime(2024, 10, 13, 16, 59, 25, 177000, tzinfo=datetime.timezone.utc), author_user_id=None, comment=None, config_id=None, data_type='NUMERIC', stringValue=None, trace={'userId': None}, projectId='cm1vkhmj40jxlhaue9mntmwk8'), Score_Numeric(value=1.0, id='Uptrain_3_score_context_relevance', trace_id='f9b43538-77b6-478f-a5d9-c2be3b4cdada', name='score_context_relevance', source=, observation_id=None, timestamp=datetime.datetime(2024, 10, 13, 16, 59, 24, 897000, tzinfo=datetime.timezone.utc), created_at=datetime.datetime(2024, 10, 13, 16, 59, 24, 897000, tzinfo=datetime.timezone.utc), updated_at=datetime.datetime(2024, 10, 13, 16, 59, 24, 897000, tzinfo=datetime.timezone.utc), author_user_id=None, comment=None, config_id=None, data_type='NUMERIC', stringValue=None, trace={'userId': None}, projectId='cm1vkhmj40jxlhaue9mntmwk8'), Score_Numeric(value=1.0, id='Uptrain_2_score_context_relevance', trace_id='02185905-be84-41d9-9b64-b02fb45704f3', name='score_context_relevance', source=, observation_id=None, timestamp=datetime.datetime(2024, 10, 13, 16, 59, 24, 614000, tzinfo=datetime.timezone.utc), created_at=datetime.datetime(2024, 10, 13, 16, 59, 24, 614000, tzinfo=datetime.timezone.utc), updated_at=datetime.datetime(2024, 10, 13, 16, 59, 24, 614000, tzinfo=datetime.timezone.utc), author_user_id=None, comment=None, config_id=None, data_type='NUMERIC', stringValue=None, trace={'userId': None}, projectId='cm1vkhmj40jxlhaue9mntmwk8'), Score_Numeric(value=1.0, id='Uptrain_1_score_context_relevance', trace_id='b68fc2e6-e6a0-489b-becc-5441d9f1dd4e', name='score_context_relevance', source=, observation_id=None, timestamp=datetime.datetime(2024, 10, 13, 16, 59, 24, 326000, tzinfo=datetime.timezone.utc), created_at=datetime.datetime(2024, 10, 13, 16, 59, 24, 326000, tzinfo=datetime.timezone.utc), updated_at=datetime.datetime(2024, 10, 13, 16, 59, 24, 326000, tzinfo=datetime.timezone.utc), author_user_id=None, comment=None, config_id=None, data_type='NUMERIC', stringValue=None, trace={'userId': None}, projectId='cm1vkhmj40jxlhaue9mntmwk8'), Score_Numeric(value=1.0, id='Uptrain_0_score_context_relevance', trace_id='75bd20ac-3a34-4fa0-b74a-0fb7a454bfa1', name='score_context_relevance', source=, observation_id=None, timestamp=datetime.datetime(2024, 10, 13, 16, 59, 24, 46000, tzinfo=datetime.timezone.utc), created_at=datetime.datetime(2024, 10, 13, 16, 59, 24, 46000, tzinfo=datetime.timezone.utc), updated_at=datetime.datetime(2024, 10, 13, 16, 59, 24, 46000, tzinfo=datetime.timezone.utc), author_user_id=None, comment=None, config_id=None, data_type='NUMERIC', stringValue=None, trace={'userId': None}, projectId='cm1vkhmj40jxlhaue9mntmwk8')] + [Score_Numeric(value=0.6, id='Uptrain_4_score_factual_accuracy', trace_id='e5ad0a8e-3c20-4dc8-ba19-1f11f224ebbf', name='score_factual_accuracy', source=, observation_id=None, timestamp=datetime.datetime(2024, 10, 13, 16, 59, 25, 84000, tzinfo=datetime.timezone.utc), created_at=datetime.datetime(2024, 10, 13, 16, 59, 25, 84000, tzinfo=datetime.timezone.utc), updated_at=datetime.datetime(2024, 10, 13, 16, 59, 25, 84000, tzinfo=datetime.timezone.utc), author_user_id=None, comment=None, config_id=None, data_type='NUMERIC', stringValue=None, trace={'userId': None}, projectId='cm1vkhmj40jxlhaue9mntmwk8'), Score_Numeric(value=0.8, id='Uptrain_3_score_factual_accuracy', trace_id='2ed536e7-a583-401c-b3e9-1227985875c1', name='score_factual_accuracy', source=, observation_id=None, timestamp=datetime.datetime(2024, 10, 13, 16, 59, 24, 804000, tzinfo=datetime.timezone.utc), created_at=datetime.datetime(2024, 10, 13, 16, 59, 24, 804000, tzinfo=datetime.timezone.utc), updated_at=datetime.datetime(2024, 10, 13, 16, 59, 24, 804000, tzinfo=datetime.timezone.utc), author_user_id=None, comment=None, config_id=None, data_type='NUMERIC', stringValue=None, trace={'userId': None}, projectId='cm1vkhmj40jxlhaue9mntmwk8'), Score_Numeric(value=0.4, id='Uptrain_2_score_factual_accuracy', trace_id='8552536a-70ae-4678-a789-c0af61d3a436', name='score_factual_accuracy', source=, observation_id=None, timestamp=datetime.datetime(2024, 10, 13, 16, 59, 24, 517000, tzinfo=datetime.timezone.utc), created_at=datetime.datetime(2024, 10, 13, 16, 59, 24, 517000, tzinfo=datetime.timezone.utc), updated_at=datetime.datetime(2024, 10, 13, 16, 59, 24, 517000, tzinfo=datetime.timezone.utc), author_user_id=None, comment=None, config_id=None, data_type='NUMERIC', stringValue=None, trace={'userId': None}, projectId='cm1vkhmj40jxlhaue9mntmwk8'), Score_Numeric(value=0.6, id='Uptrain_1_score_factual_accuracy', trace_id='812d7ae7-f2bf-4251-9784-9ee248b469d7', name='score_factual_accuracy', source=, observation_id=None, timestamp=datetime.datetime(2024, 10, 13, 16, 59, 24, 231000, tzinfo=datetime.timezone.utc), created_at=datetime.datetime(2024, 10, 13, 16, 59, 24, 231000, tzinfo=datetime.timezone.utc), updated_at=datetime.datetime(2024, 10, 13, 16, 59, 24, 231000, tzinfo=datetime.timezone.utc), author_user_id=None, comment=None, config_id=None, data_type='NUMERIC', stringValue=None, trace={'userId': None}, projectId='cm1vkhmj40jxlhaue9mntmwk8'), Score_Numeric(value=1.0, id='Uptrain_0_score_factual_accuracy', trace_id='f4135b5b-d20a-4741-b777-186d37d1fa52', name='score_factual_accuracy', source=, observation_id=None, timestamp=datetime.datetime(2024, 10, 13, 16, 59, 23, 954000, tzinfo=datetime.timezone.utc), created_at=datetime.datetime(2024, 10, 13, 16, 59, 23, 954000, tzinfo=datetime.timezone.utc), updated_at=datetime.datetime(2024, 10, 13, 16, 59, 23, 954000, tzinfo=datetime.timezone.utc), author_user_id=None, comment=None, config_id=None, data_type='NUMERIC', stringValue=None, trace={'userId': None}, projectId='cm1vkhmj40jxlhaue9mntmwk8')] + [Score_Numeric(value=1.0, id='Uptrain_4_score_response_completeness', trace_id='1a54b4e2-3e2c-4235-801b-b56153c8e293', name='score_response_completeness', source=, observation_id=None, timestamp=datetime.datetime(2024, 10, 13, 16, 59, 25, 271000, tzinfo=datetime.timezone.utc), created_at=datetime.datetime(2024, 10, 13, 16, 59, 25, 271000, tzinfo=datetime.timezone.utc), updated_at=datetime.datetime(2024, 10, 13, 16, 59, 25, 271000, tzinfo=datetime.timezone.utc), author_user_id=None, comment=None, config_id=None, data_type='NUMERIC', stringValue=None, trace={'userId': None}, projectId='cm1vkhmj40jxlhaue9mntmwk8'), Score_Numeric(value=1.0, id='Uptrain_3_score_response_completeness', trace_id='ce78dce7-f4bd-45a4-b69c-f31fd6258565', name='score_response_completeness', source=, observation_id=None, timestamp=datetime.datetime(2024, 10, 13, 16, 59, 24, 990000, tzinfo=datetime.timezone.utc), created_at=datetime.datetime(2024, 10, 13, 16, 59, 24, 990000, tzinfo=datetime.timezone.utc), updated_at=datetime.datetime(2024, 10, 13, 16, 59, 24, 990000, tzinfo=datetime.timezone.utc), author_user_id=None, comment=None, config_id=None, data_type='NUMERIC', stringValue=None, trace={'userId': None}, projectId='cm1vkhmj40jxlhaue9mntmwk8'), Score_Numeric(value=1.0, id='Uptrain_2_score_response_completeness', trace_id='103927f0-dd9f-4d94-95d6-a4a6fce3898d', name='score_response_completeness', source=, observation_id=None, timestamp=datetime.datetime(2024, 10, 13, 16, 59, 24, 709000, tzinfo=datetime.timezone.utc), created_at=datetime.datetime(2024, 10, 13, 16, 59, 24, 709000, tzinfo=datetime.timezone.utc), updated_at=datetime.datetime(2024, 10, 13, 16, 59, 24, 709000, tzinfo=datetime.timezone.utc), author_user_id=None, comment=None, config_id=None, data_type='NUMERIC', stringValue=None, trace={'userId': None}, projectId='cm1vkhmj40jxlhaue9mntmwk8'), Score_Numeric(value=1.0, id='Uptrain_1_score_response_completeness', trace_id='6e7ae4f6-aca0-4152-b299-5b1ae06bd7e9', name='score_response_completeness', source=, observation_id=None, timestamp=datetime.datetime(2024, 10, 13, 16, 59, 24, 423000, tzinfo=datetime.timezone.utc), created_at=datetime.datetime(2024, 10, 13, 16, 59, 24, 423000, tzinfo=datetime.timezone.utc), updated_at=datetime.datetime(2024, 10, 13, 16, 59, 24, 423000, tzinfo=datetime.timezone.utc), author_user_id=None, comment=None, config_id=None, data_type='NUMERIC', stringValue=None, trace={'userId': None}, projectId='cm1vkhmj40jxlhaue9mntmwk8'), Score_Numeric(value=1.0, id='Uptrain_0_score_response_completeness', trace_id='3c100175-8e20-4d1f-ab1b-a7e4dc870cac', name='score_response_completeness', source=, observation_id=None, timestamp=datetime.datetime(2024, 10, 13, 16, 59, 24, 138000, tzinfo=datetime.timezone.utc), created_at=datetime.datetime(2024, 10, 13, 16, 59, 24, 138000, tzinfo=datetime.timezone.utc), updated_at=datetime.datetime(2024, 10, 13, 16, 59, 24, 138000, tzinfo=datetime.timezone.utc), author_user_id=None, comment=None, config_id=None, data_type='NUMERIC', stringValue=None, trace={'userId': None}, projectId='cm1vkhmj40jxlhaue9mntmwk8')] + [Score_Numeric(value=0.9999999999666667, id='Ragas_4_context_precision', trace_id='1441c394-fc54-42f3-a798-7ab1b338748c', name='context_precision', source=, observation_id=None, timestamp=datetime.datetime(2024, 10, 13, 16, 59, 25, 207000, tzinfo=datetime.timezone.utc), created_at=datetime.datetime(2024, 10, 13, 16, 59, 25, 207000, tzinfo=datetime.timezone.utc), updated_at=datetime.datetime(2024, 10, 13, 16, 59, 25, 207000, tzinfo=datetime.timezone.utc), author_user_id=None, comment=None, config_id=None, data_type='NUMERIC', stringValue=None, trace={'userId': None}, projectId='cm1vkhmj40jxlhaue9mntmwk8'), Score_Numeric(value=0.99999999995, id='Ragas_3_context_precision', trace_id='a91146c0-09d4-4039-828d-adf308d09dd8', name='context_precision', source=, observation_id=None, timestamp=datetime.datetime(2024, 10, 13, 16, 59, 24, 927000, tzinfo=datetime.timezone.utc), created_at=datetime.datetime(2024, 10, 13, 16, 59, 24, 927000, tzinfo=datetime.timezone.utc), updated_at=datetime.datetime(2024, 10, 13, 16, 59, 24, 927000, tzinfo=datetime.timezone.utc), author_user_id=None, comment=None, config_id=None, data_type='NUMERIC', stringValue=None, trace={'userId': None}, projectId='cm1vkhmj40jxlhaue9mntmwk8'), Score_Numeric(value=0.8333333332916666, id='Ragas_2_context_precision', trace_id='16bf0af8-b988-44d0-a9c5-35a0ffa69ffd', name='context_precision', source=, observation_id=None, timestamp=datetime.datetime(2024, 10, 13, 16, 59, 24, 643000, tzinfo=datetime.timezone.utc), created_at=datetime.datetime(2024, 10, 13, 16, 59, 24, 643000, tzinfo=datetime.timezone.utc), updated_at=datetime.datetime(2024, 10, 13, 16, 59, 24, 643000, tzinfo=datetime.timezone.utc), author_user_id=None, comment=None, config_id=None, data_type='NUMERIC', stringValue=None, trace={'userId': None}, projectId='cm1vkhmj40jxlhaue9mntmwk8'), Score_Numeric(value=0.9999999999666667, id='Ragas_1_context_precision', trace_id='976e6974-f6d7-4ff0-b961-5653ae58e9ef', name='context_precision', source=, observation_id=None, timestamp=datetime.datetime(2024, 10, 13, 16, 59, 24, 310000, tzinfo=datetime.timezone.utc), created_at=datetime.datetime(2024, 10, 13, 16, 59, 24, 310000, tzinfo=datetime.timezone.utc), updated_at=datetime.datetime(2024, 10, 13, 16, 59, 24, 310000, tzinfo=datetime.timezone.utc), author_user_id=None, comment=None, config_id=None, data_type='NUMERIC', stringValue=None, trace={'userId': None}, projectId='cm1vkhmj40jxlhaue9mntmwk8'), Score_Numeric(value=0.9999999999666667, id='Ragas_0_context_precision', trace_id='4e0edb60-c6b1-452d-ae58-ce7449dc3f47', name='context_precision', source=, observation_id=None, timestamp=datetime.datetime(2024, 10, 13, 16, 59, 23, 798000, tzinfo=datetime.timezone.utc), created_at=datetime.datetime(2024, 10, 13, 16, 59, 23, 798000, tzinfo=datetime.timezone.utc), updated_at=datetime.datetime(2024, 10, 13, 16, 59, 23, 798000, tzinfo=datetime.timezone.utc), author_user_id=None, comment=None, config_id=None, data_type='NUMERIC', stringValue=None, trace={'userId': None}, projectId='cm1vkhmj40jxlhaue9mntmwk8')] + [Score_Numeric(value=0.1428571428571428, id='Ragas_4_faithfulness', trace_id='8c3f995f-bc00-4935-90e5-069478987ce3', name='faithfulness', source=, observation_id=None, timestamp=datetime.datetime(2024, 10, 13, 16, 59, 25, 300000, tzinfo=datetime.timezone.utc), created_at=datetime.datetime(2024, 10, 13, 16, 59, 25, 300000, tzinfo=datetime.timezone.utc), updated_at=datetime.datetime(2024, 10, 13, 16, 59, 25, 300000, tzinfo=datetime.timezone.utc), author_user_id=None, comment=None, config_id=None, data_type='NUMERIC', stringValue=None, trace={'userId': None}, projectId='cm1vkhmj40jxlhaue9mntmwk8'), Score_Numeric(value=0.2, id='Ragas_3_faithfulness', trace_id='424fddad-f617-491a-9816-d9642f33d0e6', name='faithfulness', source=, observation_id=None, timestamp=datetime.datetime(2024, 10, 13, 16, 59, 25, 19000, tzinfo=datetime.timezone.utc), created_at=datetime.datetime(2024, 10, 13, 16, 59, 25, 19000, tzinfo=datetime.timezone.utc), updated_at=datetime.datetime(2024, 10, 13, 16, 59, 25, 19000, tzinfo=datetime.timezone.utc), author_user_id=None, comment=None, config_id=None, data_type='NUMERIC', stringValue=None, trace={'userId': None}, projectId='cm1vkhmj40jxlhaue9mntmwk8'), Score_Numeric(value=0.0, id='Ragas_2_faithfulness', trace_id='c7b7e4a1-ab80-4951-ae16-293265970dc3', name='faithfulness', source=, observation_id=None, timestamp=datetime.datetime(2024, 10, 13, 16, 59, 24, 740000, tzinfo=datetime.timezone.utc), created_at=datetime.datetime(2024, 10, 13, 16, 59, 24, 740000, tzinfo=datetime.timezone.utc), updated_at=datetime.datetime(2024, 10, 13, 16, 59, 24, 740000, tzinfo=datetime.timezone.utc), author_user_id=None, comment=None, config_id=None, data_type='NUMERIC', stringValue=None, trace={'userId': None}, projectId='cm1vkhmj40jxlhaue9mntmwk8'), Score_Numeric(value=0.12, id='Ragas_1_faithfulness', trace_id='77a2d6ae-b840-454f-b4e3-52edb8909bcb', name='faithfulness', source=, observation_id=None, timestamp=datetime.datetime(2024, 10, 13, 16, 59, 24, 456000, tzinfo=datetime.timezone.utc), created_at=datetime.datetime(2024, 10, 13, 16, 59, 24, 456000, tzinfo=datetime.timezone.utc), updated_at=datetime.datetime(2024, 10, 13, 16, 59, 24, 456000, tzinfo=datetime.timezone.utc), author_user_id=None, comment=None, config_id=None, data_type='NUMERIC', stringValue=None, trace={'userId': None}, projectId='cm1vkhmj40jxlhaue9mntmwk8'), Score_Numeric(value=1.0, id='Ragas_0_faithfulness', trace_id='8f61a293-836f-4cc9-84f9-996c19c42620', name='faithfulness', source=, observation_id=None, timestamp=datetime.datetime(2024, 10, 13, 16, 59, 23, 894000, tzinfo=datetime.timezone.utc), created_at=datetime.datetime(2024, 10, 13, 16, 59, 23, 894000, tzinfo=datetime.timezone.utc), updated_at=datetime.datetime(2024, 10, 13, 16, 59, 23, 894000, tzinfo=datetime.timezone.utc), author_user_id=None, comment=None, config_id=None, data_type='NUMERIC', stringValue=None, trace={'userId': None}, projectId='cm1vkhmj40jxlhaue9mntmwk8')] + [Score_Numeric(value=0.9891308706741455, id='Ragas_4_answer_relevancy', trace_id='21a3c662-a494-4029-b95a-8fd25f90a8c6', name='answer_relevancy', source=, observation_id=None, timestamp=datetime.datetime(2024, 10, 13, 16, 59, 25, 398000, tzinfo=datetime.timezone.utc), created_at=datetime.datetime(2024, 10, 13, 16, 59, 25, 398000, tzinfo=datetime.timezone.utc), updated_at=datetime.datetime(2024, 10, 13, 16, 59, 25, 398000, tzinfo=datetime.timezone.utc), author_user_id=None, comment=None, config_id=None, data_type='NUMERIC', stringValue=None, trace={'userId': None}, projectId='cm1vkhmj40jxlhaue9mntmwk8'), Score_Numeric(value=0.9795341682836177, id='Ragas_3_answer_relevancy', trace_id='f398dd78-ccdd-423c-9662-92ff548183e7', name='answer_relevancy', source=, observation_id=None, timestamp=datetime.datetime(2024, 10, 13, 16, 59, 25, 114000, tzinfo=datetime.timezone.utc), created_at=datetime.datetime(2024, 10, 13, 16, 59, 25, 114000, tzinfo=datetime.timezone.utc), updated_at=datetime.datetime(2024, 10, 13, 16, 59, 25, 114000, tzinfo=datetime.timezone.utc), author_user_id=None, comment=None, config_id=None, data_type='NUMERIC', stringValue=None, trace={'userId': None}, projectId='cm1vkhmj40jxlhaue9mntmwk8'), Score_Numeric(value=0.9916994382653276, id='Ragas_2_answer_relevancy', trace_id='65d48c73-2fbd-4577-bec9-7a46858e0a6a', name='answer_relevancy', source=, observation_id=None, timestamp=datetime.datetime(2024, 10, 13, 16, 59, 24, 834000, tzinfo=datetime.timezone.utc), created_at=datetime.datetime(2024, 10, 13, 16, 59, 24, 834000, tzinfo=datetime.timezone.utc), updated_at=datetime.datetime(2024, 10, 13, 16, 59, 24, 834000, tzinfo=datetime.timezone.utc), author_user_id=None, comment=None, config_id=None, data_type='NUMERIC', stringValue=None, trace={'userId': None}, projectId='cm1vkhmj40jxlhaue9mntmwk8'), Score_Numeric(value=0.9652149513821247, id='Ragas_1_answer_relevancy', trace_id='116c5ac3-7931-471b-83eb-da6c91725621', name='answer_relevancy', source=, observation_id=None, timestamp=datetime.datetime(2024, 10, 13, 16, 59, 24, 550000, tzinfo=datetime.timezone.utc), created_at=datetime.datetime(2024, 10, 13, 16, 59, 24, 550000, tzinfo=datetime.timezone.utc), updated_at=datetime.datetime(2024, 10, 13, 16, 59, 24, 550000, tzinfo=datetime.timezone.utc), author_user_id=None, comment=None, config_id=None, data_type='NUMERIC', stringValue=None, trace={'userId': None}, projectId='cm1vkhmj40jxlhaue9mntmwk8'), Score_Numeric(value=1.0, id='Ragas_0_answer_relevancy', trace_id='e7642418-7f1f-4c4f-8480-06dd8c276fbd', name='answer_relevancy', source=, observation_id=None, timestamp=datetime.datetime(2024, 10, 13, 16, 59, 24, 59000, tzinfo=datetime.timezone.utc), created_at=datetime.datetime(2024, 10, 13, 16, 59, 24, 59000, tzinfo=datetime.timezone.utc), updated_at=datetime.datetime(2024, 10, 13, 16, 59, 24, 59000, tzinfo=datetime.timezone.utc), author_user_id=None, comment=None, config_id=None, data_type='NUMERIC', stringValue=None, trace={'userId': None}, projectId='cm1vkhmj40jxlhaue9mntmwk8')] + + +### 8. Creating a Correlation Heatmap + +This section illustrates how to visualize the correlation between evaluation scores using a heatmap. The code calculates the correlation matrix for two sets of scores: UpTrain scores (`'score_context_relevance'`, `'score_factual_accuracy'`, and `'score_response_completeness'`) and RAGAS scores (`'context_precision'`, `'faithfulness'`, and `'answer_relevancy'`). + +1. **Calculate the Correlation Matrix**: The `corr()` function computes correlation coefficients between specified score columns in the `scores_df` DataFrame, indicating the strength and direction of relationships. + +2. **Create and Customize the Heatmap**: A heatmap is generated using Matplotlib and Seaborn, displaying correlation coefficients with colors ranging from blue (negative) to red (positive). The layout is adjusted for clarity. + +This visualization helps identify patterns in the evaluation metrics, aiding in the analysis of `fetch_scores()` performance. + + +```python +import matplotlib.pyplot as plt +import seaborn as sns + +corr_matrix = scores_df.corr() + +# Create a heatmap of the correlation matrix +plt.figure(figsize=(10, 8)) +sns.heatmap(corr_matrix, annot=True, vmin=-1, vmax=1, center=0, linewidths=.5, linecolor='white', cmap='crest') +plt.title('Correlation Matrix of Six Scores') +plt.tight_layout() +``` + + + +![png](/public/images/cookbook/example_usage_of_fetch_scores_files/example_usage_of_fetch_scores_23_0.png) + + + +![%7B283F9496-4034-464B-9F93-DEA587D37A5B%7D.png](/public/images/cookbook/example_usage_of_fetch_scores_files/example_fetch_scores_langfuse.png) + + +```python + +``` From 02ebc242f05aa872fb1742d8b1514c5dd217a0aa Mon Sep 17 00:00:00 2001 From: Soham Mhatre Date: Mon, 14 Oct 2024 13:28:29 +0530 Subject: [PATCH 11/11] Rename example_usage_of_fetch_score to example_usage_of_fetch_score.md --- ...ample_usage_of_fetch_score => example_usage_of_fetch_score.md} | 0 1 file changed, 0 insertions(+), 0 deletions(-) rename pages/docs/scores/{example_usage_of_fetch_score => example_usage_of_fetch_score.md} (100%) diff --git a/pages/docs/scores/example_usage_of_fetch_score b/pages/docs/scores/example_usage_of_fetch_score.md similarity index 100% rename from pages/docs/scores/example_usage_of_fetch_score rename to pages/docs/scores/example_usage_of_fetch_score.md