-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtraining.py
394 lines (327 loc) · 16.4 KB
/
training.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
import copy
import os
import argparse
import datetime
import time
import pandas as pd
import importlib
import torch
import torch.nn as nn
import torch.backends.cudnn as cudnn
import wandb
import numpy as np
from torch.utils.data import DataLoader
from models.wrapper_classes import TimmResNetWrapper, EfficientNetWrapper
from models.model_utils import get_model
from utils.arpl_utils import save_networks, mkdir_if_missing
from core import train, test
from utils.utils import init_experiment, seed_torch, str2bool
from utils.schedulers import get_scheduler
from datasets.open_set_datasets import get_class_splits, get_datasets, create_inat_dataset_funcs, get_dataset_funcs
from config import exp_root
parser = argparse.ArgumentParser("Training")
# Dataset
parser.add_argument('--dataset', type=str, default='cub', help="")
parser.add_argument('--image_size', type=int, default=64)
# optimization
parser.add_argument('--optim', type=str, default=None, help="Which optimizer to use {adam, sgd}")
parser.add_argument('--batch_size', type=int, default=128)
parser.add_argument('--lr', type=float, default=0.1, help="learning rate for model")
parser.add_argument('--weight_decay', type=float, default=1e-4, help="LR regularisation on weights")
parser.add_argument('--max_epoch', type=int, default=100)
parser.add_argument('--scheduler', type=str, default='cosine_warm_restarts')
parser.add_argument("--steps", default=[30, 60, 90], nargs='+', type=int,
help="List of epoch indices at which the learning rate is dropped. Must be increasing.")
parser.add_argument('--temp', type=float, default=1.0, help="temp")
parser.add_argument('--num_restarts', type=int, default=2, help='How many restarts for cosine_warm_restarts schedule')
#parser.add_argument('--num-centers', type=int, default=1)
# model
parser.add_argument('--loss', type=str, default='Softmax')
#parser.add_argument('--weight-pl', type=float, default=0.1, help="weight for center loss")
parser.add_argument('--label_smoothing', type=float, default=None, help="Smoothing constant for label smoothing."
"No smoothing if None or 0")
#parser.add_argument('--beta', type=float, default=0.1, help="weight for entropy loss")
parser.add_argument('--model', type=str, default='timm_resnet50',)
parser.add_argument('--resnet50_pretrain', type=str, default='scratch',
help='Which pretraining to use if --model=timm_resnet50.'
'Options are: {iamgenet_timm,}', metavar='BOOL')
parser.add_argument('--feat_dim', type=int, default=128, help="Feature vector dim, only for classifier32 at the moment")
parser.add_argument('--model_id', type=int, default=0, help="model_id of the ensemble member.")
parser.add_argument('--norm_features', default=False, type=str2bool, help='L2 normalize features', metavar='BOOL')
# aug
parser.add_argument('--transform', type=str, default='rand-augment')
parser.add_argument('--rand_aug_m', type=int, default=None)
parser.add_argument('--rand_aug_n', type=int, default=None)
# misc
parser.add_argument('--num_workers', default=4, type=int)
parser.add_argument('--persistent_workers', default=False, type=str2bool,
help='This allows to maintain the workers Dataset instances alive between epochs. '
'Needed for InatFromTar to keep the cached tar members.', metavar='BOOL')
parser.add_argument('--split_train_val', default=False, type=str2bool, help='Subsample training set to create validation set', metavar='BOOL')
parser.add_argument('--device', default='cuda:0', type=str, help='Which GPU to use')
parser.add_argument('--gpus', default=[0], type=int, nargs='+',
help='device ids assignment (e.g 0 1 2 3)')
parser.add_argument('--nz', type=int, default=100)
parser.add_argument('--ns', type=int, default=1)
parser.add_argument('--eval-freq', type=int, default=1)
parser.add_argument('--print-freq', type=int, default=100)
parser.add_argument('--checkpt_freq', type=int, default=20)
parser.add_argument('--gpu', type=str, default='0')
parser.add_argument('--seed', type=int, default=1)
parser.add_argument('--use-cpu', action='store_true')
parser.add_argument('--eval', action='store_true', help="Eval", default=False)
parser.add_argument('--train_feat_extractor', default=True, type=str2bool,
help='Train feature extractor (only implemented for renset_50_faces)', metavar='BOOL')
parser.add_argument('--split_idx', default=0, type=int, help='0-4 OSR splits for each dataset')
parser.add_argument('--use_softmax_in_eval', default=False, type=str2bool,
help='Do we use softmax or logits for evaluation', metavar='BOOL')
# loss
parser.add_argument('--alpha_max', type=float, default=0.25, help="maximum weight of the reversed gradient in SoftmaxMultilabelGRL")
def get_optimizer(args, params_list):
if args.optim is None:
optimizer = torch.optim.SGD(params_list, lr=args.lr, momentum=0.9, weight_decay=args.weight_decay)
elif args.optim == 'sgd':
optimizer = torch.optim.SGD(params_list, lr=args.lr, momentum=0.9, weight_decay=args.weight_decay)
elif args.optim == 'adam':
optimizer = torch.optim.Adam(params_list, lr=args.lr)
else:
raise NotImplementedError
return optimizer
def get_mean_lr(optimizer):
return torch.mean(torch.Tensor([param_group['lr'] for param_group in optimizer.param_groups])).item()
def main_worker(options, args):
torch.manual_seed(options['seed'])
os.environ['CUDA_VISIBLE_DEVICES'] = options['gpu']
use_gpu = torch.cuda.is_available()
if options['use_cpu']: use_gpu = False
if use_gpu:
print("Currently using GPU: {}".format(options['gpu']))
cudnn.benchmark = False
torch.cuda.manual_seed_all(options['seed'])
else:
print("Currently using CPU")
# -----------------------------
# DATALOADERS
# -----------------------------
dataloaders = options['dataloaders']
# -----------------------------
# MODEL
# -----------------------------
print("Creating model: {}".format(options['model']))
if args.model == 'timm_resnet50':
wrapper_class = TimmResNetWrapper
elif args.model == 'timm_resnet50_norm_features':
wrapper_class = TimmResNetWrapper
args.norm_features = True
elif "resnet" in args.model:
wrapper_class = TimmResNetWrapper
elif "efficientnet" in args.model:
wrapper_class = EfficientNetWrapper
else:
wrapper_class = None
net = get_model(args, wrapper_class=wrapper_class, norm_features=args.norm_features)
feat_dim = args.feat_dim
options.update(
{
'feat_dim': feat_dim,
'use_gpu': use_gpu
}
)
# -----------------------------
# GET LOSS
# -----------------------------
Loss = importlib.import_module('loss.'+options['loss'])
criterion = getattr(Loss, options['loss'])(**options)
# -----------------------------
# PREPARE EXPERIMENT
# -----------------------------
if use_gpu:
net = nn.DataParallel(net).cuda()
criterion = criterion.cuda()
params_list = [{'params': net.parameters()},
{'params': criterion.parameters()}]
# Get base network and criterion
optimizer = get_optimizer(args=args, params_list=params_list)
# -----------------------------
# GET SCHEDULER
# ----------------------------
scheduler = get_scheduler(optimizer, args)
start_time = time.time()
# -----------------------------
# TRAIN
# -----------------------------
for epoch in range(options['max_epoch']):
print("==> Epoch {}/{}".format(epoch+1, options['max_epoch']))
train_loss = train(net, criterion, optimizer, dataloaders['train'], epoch=epoch, **options)
wandb.log({'train_CE': train_loss}, step=epoch)
# VAL
if options['eval_freq'] > 0 and (epoch+1) % options['eval_freq'] == 0 or (epoch+1) == options['max_epoch']:
save_checkpoint = epoch % options['checkpt_freq'] == 0 or epoch == options['max_epoch'] - 1
save_val_test_output = epoch == options['max_epoch'] - 1
print("==> Val", options['loss'])
results_val = test(net, criterion, dataloaders['val'], outloader=None, epoch=epoch,
return_outputs=save_val_test_output, **options)
print("Epoch {}: Acc (%): {:.3f}".format(epoch, results_val['ACC']))
print("==> Test", options['loss'])
results_test = test(net, criterion, dataloaders['test_known'], outloader=dataloaders['test_unknown'],
epoch=epoch, return_outputs=save_val_test_output, **options)
print("Epoch {}: Acc (%): {:.3f}\t AUROC (%): {:.3f}\t OSCR (%): {:.3f}\t AUPR (%): {:.3f}".format(epoch,
results_test['ACC'],
results_test['AUROC'],
results_test['OSCR'],
results_test['AUPR']))
if save_checkpoint:
name = file_name.split('.')[0]+'_{}'.format(epoch)
save_networks(net, args.model_path, name,
options['loss'],
criterion=criterion)
if save_val_test_output:
# save val outputs
mkdir_if_missing(os.path.join(args.model_path, 'val'))
output_filepath = '{}/val/{}_{}.npz'.format(args.model_path, name, options['loss'])
np.savez(file=output_filepath, **results_val.pop('output_dict'))
# save test outputs
mkdir_if_missing(os.path.join(args.model_path, 'test'))
output_filepath = '{}/test/{}_{}.npz'.format(args.model_path, name, options['loss'])
np.savez(file=output_filepath, **results_test.pop('output_dict'))
# ----------------
# LOG
# ----------------
# log to wandb
results_val_log = copy.deepcopy(results_val)
for key in list(results_val_log.keys()):
new_key = "{}_{}".format("val", key)
results_val_log[new_key] = results_val_log.pop(key)
wandb.log(results_val_log, step=epoch)
results_test_log = copy.deepcopy(results_test)
for key in list(results_test_log.keys()):
new_key = "{}_{}".format("test", key)
results_test_log[new_key] = results_test_log.pop(key)
wandb.log(results_test_log, step=epoch)
# -----------------------------
# STEP SCHEDULER
# ----------------------------
if args.scheduler == 'plateau' or args.scheduler == 'warm_restarts_plateau':
scheduler.step(results_val['ACC'], epoch)
elif args.scheduler == 'multi_step':
scheduler.step()
else:
scheduler.step(epoch=epoch)
elapsed = round(time.time() - start_time)
elapsed = str(datetime.timedelta(seconds=elapsed))
print("Finished. Total elapsed time (h:m:s): {}".format(elapsed))
# merge val (closed-set ACC) and test (OSR) metrics
results = copy.deepcopy(results_val_log)
results.update(results_test)
return results
if __name__ == '__main__':
args = parser.parse_args()
args_input = copy.deepcopy(args)
# ------------------------
# Update parameters with default hyperparameters if specified
# ------------------------
args.exp_root = exp_root
args.epochs = args.max_epoch
img_size = args.image_size
results = dict()
for i in range(1):
# ------------------------
# INIT
# ------------------------
if args.feat_dim is None:
args.feat_dim = 128 if args.model == 'classifier32' else 2048
args.train_classes, args.open_set_classes = get_class_splits(args.dataset)
img_size = args.image_size
args.save_name = '{}_{}_{}'.format(args.model, args.seed, args.dataset)
runner_name = os.path.dirname(__file__).split("/")[-2:]
# set args.model_path
if args.loss in ['SoftmaxMultilabelGRL']:
loss_suffix = f"_a{args.alpha_max:.2f}"
else:
loss_suffix = ""
args = init_experiment(args, loss_dir=f"{args.loss}{loss_suffix}", runner_name=runner_name)
# ------------------------
# SEED
# ------------------------
seed_torch(args.seed)
# ------------------------
# DATASETS
# ------------------------
# append inat21 datasets to global datasets dict (overwrite return_multilabel)
args.return_multilabel = args.loss in ["SoftmaxMultilabel", "SoftmaxMultilabelGRL"]
create_inat_dataset_funcs(dataset_funcs_dict=get_dataset_funcs, return_multilabel=args.return_multilabel)
datasets = get_datasets(args.dataset, transform=args.transform, train_classes=args.train_classes,
open_set_classes=args.open_set_classes, balance_open_set_eval=True,
split_train_val=args.split_train_val, image_size=args.image_size, seed=args.seed,
args=args)
# ------------------------
# RANDAUG HYPERPARAM SWEEP
# ------------------------
if args.transform == 'rand-augment':
if args.rand_aug_m is not None:
if args.rand_aug_n is not None:
if hasattr(datasets['train'], 'dataset'):
# If datasets are object of type Subset
datasets['train'].dataset.transform.transforms[0].m = args.rand_aug_m
datasets['train'].dataset.transform.transforms[0].n = args.rand_aug_n
else:
datasets['train'].transform.transforms[0].m = args.rand_aug_m
datasets['train'].transform.transforms[0].n = args.rand_aug_n
# ------------------------
# DATALOADER
# ------------------------
dataloaders = {}
for k, v, in datasets.items():
shuffle = True if k == 'train' else False
dataloaders[k] = DataLoader(v, batch_size=args.batch_size,
shuffle=shuffle, sampler=None, num_workers=args.num_workers,
persistent_workers=args.persistent_workers)
# ------------------------
# SAVE PARAMS
# ------------------------
# set number of output classes
if args.loss in ["SoftmaxMultilabel", "SoftmaxMultilabelGRL"]:
num_output = datasets['train'].dataset.num_multilabel_output
elif "inat" in args.dataset:
num_output = datasets['train'].dataset.num_classes
else:
num_output = len(args.train_classes)
print("num_output: ", num_output)
options = vars(args)
options.update(
{
'item': i,
'known': args.train_classes,
'unknown': args.open_set_classes,
'img_size': img_size,
'dataloaders': dataloaders,
'num_classes': num_output
}
)
file_name = options['dataset'] + '.csv'
print('result path:', os.path.join(args.model_path, file_name))
# init wandb
run = wandb.init(
entity="osr-multi-label",
project="osr-closed-set",
name=f"{options['dataset']}_model{options['model_id']}_lr{options['lr']}_{options['loss']}{loss_suffix}",
config=options,
reinit=True,
mode="online" # set to: "online", "offline", "disabled"
)
# ------------------------
# TRAIN
# ------------------------
res = main_worker(options, args)
# ------------------------
# LOG
# ------------------------
res['unknown'] = args.open_set_classes
res['known'] = args.train_classes
res['ID'] = args.log_dir.split("/")[-1]
results[str(args.split_idx)] = res
df = pd.DataFrame(results)
df.to_csv(os.path.join(args.model_path, file_name), mode='a', header=False)
# update wandb config with new parameters
wandb.config.update(options)
run.finish()