forked from ottokart/punctuator2
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patherror_calculator.py
134 lines (101 loc) · 5.48 KB
/
error_calculator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
# coding: utf-8
"""
Computes and prints the overall classification error and precision, recall, F-score over punctuations.
"""
from __future__ import print_function
from numpy import nan
import data
import sys
from io import open
MAPPING = {}#{"!EXCLAMATIONMARK": ".PERIOD", "?QUESTIONMARK": ".PERIOD", ":COLON": ".PERIOD", ";SEMICOLON": ".PERIOD"} # Can be used to estimate 2-class performance for example
def compute_error(target_paths, predicted_paths):
counter = 0
total_correct = 0
correct = 0.
substitutions = 0.
deletions = 0.
insertions = 0.
true_positives = {}
false_positives = {}
false_negatives = {}
for target_path, predicted_path in zip(target_paths, predicted_paths):
target_punctuation = " "
predicted_punctuation = " "
t_i = 0
p_i = 0
with open(target_path, 'r', encoding='utf-8') as target, open(predicted_path, 'r', encoding='utf-8') as predicted:
target_stream = target.read().split()
predicted_stream = predicted.read().split()
while True:
if data.PUNCTUATION_MAPPING.get(target_stream[t_i], target_stream[t_i]) in data.PUNCTUATION_VOCABULARY:
while data.PUNCTUATION_MAPPING.get(target_stream[t_i], target_stream[t_i]) in data.PUNCTUATION_VOCABULARY: # skip multiple consecutive punctuations
target_punctuation = data.PUNCTUATION_MAPPING.get(target_stream[t_i], target_stream[t_i])
target_punctuation = MAPPING.get(target_punctuation, target_punctuation)
t_i += 1
else:
target_punctuation = " "
if predicted_stream[p_i] in data.PUNCTUATION_VOCABULARY:
predicted_punctuation = MAPPING.get(predicted_stream[p_i], predicted_stream[p_i])
p_i += 1
else:
predicted_punctuation = " "
is_correct = target_punctuation == predicted_punctuation
counter += 1
total_correct += is_correct
if predicted_punctuation == " " and target_punctuation != " ":
deletions += 1
elif predicted_punctuation != " " and target_punctuation == " ":
insertions += 1
elif predicted_punctuation != " " and target_punctuation != " " and predicted_punctuation == target_punctuation:
correct += 1
elif predicted_punctuation != " " and target_punctuation != " " and predicted_punctuation != target_punctuation:
substitutions += 1
true_positives[target_punctuation] = true_positives.get(target_punctuation, 0.) + float(is_correct)
false_positives[predicted_punctuation] = false_positives.get(predicted_punctuation, 0.) + float(not is_correct)
false_negatives[target_punctuation] = false_negatives.get(target_punctuation, 0.) + float(not is_correct)
assert target_stream[t_i] == predicted_stream[p_i] or predicted_stream[p_i] == "<unk>", \
("File: %s \n" + \
"Error: %s (%s) != %s (%s) \n" + \
"Target context: %s \n" + \
"Predicted context: %s") % \
(target_path,
target_stream[t_i], t_i, predicted_stream[p_i], p_i,
" ".join(target_stream[t_i-2:t_i+2]),
" ".join(predicted_stream[p_i-2:p_i+2]))
t_i += 1
p_i += 1
if t_i >= len(target_stream)-1 and p_i >= len(predicted_stream)-1:
break
overall_tp = 0.0
overall_fp = 0.0
overall_fn = 0.0
print("-"*46)
print("{:<16} {:<9} {:<9} {:<9}".format('PUNCTUATION','PRECISION','RECALL','F-SCORE'))
for p in data.PUNCTUATION_VOCABULARY:
if p == data.SPACE:
continue
overall_tp += true_positives.get(p,0.)
overall_fp += false_positives.get(p,0.)
overall_fn += false_negatives.get(p,0.)
punctuation = p
precision = (true_positives.get(p,0.) / (true_positives.get(p,0.) + false_positives[p])) if p in false_positives else nan
recall = (true_positives.get(p,0.) / (true_positives.get(p,0.) + false_negatives[p])) if p in false_negatives else nan
f_score = (2. * precision * recall / (precision + recall)) if (precision + recall) > 0 else nan
print(u"{:<16} {:<9} {:<9} {:<9}".format(punctuation, round(precision,3)*100, round(recall,3)*100, round(f_score,3)*100).encode('utf-8'))
print("-"*46)
pre = overall_tp/(overall_tp+overall_fp) if overall_fp else nan
rec = overall_tp/(overall_tp+overall_fn) if overall_fn else nan
f1 = (2.*pre*rec)/(pre+rec) if (pre + rec) else nan
print("{:<16} {:<9} {:<9} {:<9}".format("Overall", round(pre,3)*100, round(rec,3)*100, round(f1,3)*100))
print("Err: %s%%" % round((100.0 - float(total_correct) / float(counter-1) * 100.0), 2))
print("SER: %s%%" % round((substitutions + deletions + insertions) / (correct + substitutions + deletions) * 100, 1))
if __name__ == "__main__":
if len(sys.argv) > 1:
target_path = sys.argv[1]
else:
sys.exit("Ground truth file path argument missing")
if len(sys.argv) > 2:
predicted_path = sys.argv[2]
else:
sys.exit("Model predictions file path argument missing")
compute_error([target_path], [predicted_path])