-
Notifications
You must be signed in to change notification settings - Fork 5
/
index.qmd
38 lines (22 loc) · 5.44 KB
/
index.qmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
---
comments: false
---
## Préface {.unnumbered}
Ce guide porte sur l'analyse de données d'enquêtes avec le logiciel [**R**](https://www.r-project.org/), un logiciel libre de statistiques et de traitement de données. Les exemples présentés ici relèvent principalement du champs des sciences sociales quantitatives et des sciences de la santé. Ils peuvent néanmoins s'appliquer à d'autre champs disciplinaires. Comme tout ouvrage, ce guide ne peut être exhaustif.
Ce guide présente comment réaliser des analyses statistiques et diverses opérations courantes (comme la manipulation de données ou la production de graphiques) avec **R**. Il ne s'agit pas d'un cours de statistiques : les différents chapitres présupposent donc que vous avez déjà une connaissance des différentes techniques présentées. Si vous souhaitez des précisions théoriques / méthodologiques à propos d'un certain type d'analyses, nous vous conseillons d'utiliser votre moteur de recherche préféré. En effet, on trouve sur internet de très nombreux supports de cours (sans compter les nombreux ouvrages spécialisés disponibles en librairie).
De même, il ne s'agit pas d'une introduction ou d'un guide pour les utilisatrices et utilisateurs débutant·es. Si vous découvrez **R**, nous vous conseillons la lecture de l'*Introduction à R et au tidyverse* de Julien Barnier (<https://juba.github.io/tidyverse/>). Néanmoins, quelques rappels sur les bases du langage sont fournis dans la section *Bases du langage*. Une bonne compréhension de ces dernières, bien qu'un peu ardue de prime abord, permet de comprendre le sens des commandes que l'on utilise et de pleinement exploiter la puissance que **R** offre en matière de manipulation de données.
**R** disposent de nombreuses extensions ou packages (plus de 16 000) et il existe souvent plusieurs manières de procéder pour arriver au même résultat. En particulier, en matière de manipulation de données, on oppose[^index-1] souvent *base R* qui repose sur les fonctions disponibles en standard dans **R**, la majorité étant fournies dans les packages `{base}`, `{utils}` ou encore `{stats}`, qui sont toujours chargés par défaut, et le `{tidyverse}` qui est une collection de packages comprenant, entre autres, `{dplyr}`, `{tibble}`, `{tidyr}`, `{forcats}` ou encore `{ggplot2}`. Il y a un débat ouvert, parfois passionné, sur le fait de privilégier l'une ou l'autre approche, et les avantages et inconvénients de chacune dépendent de nombreux facteurs, comme la lisibilité du code ou bien les performances en temps de calcul. Dans ce guide, nous avons adopté un point de vue pragmatique et utiliserons, le plus souvent mais pas exclusivement, les fonctions du `{tidyverse}`, de même que nous avons privilégié d'autres packages, comme `{gtsummary}` ou `{ggstats}` par exemple pour la statistique descriptive. Cela ne signifie pas, pour chaque point abordé, qu'il s'agit de l'unique manière de procéder. Dans certains cas, il s'agit simplement de préférences personnelles.
[^index-1]: Une comparaison des deux syntaxes est illustrée par une [vignette dédiée de dplyr](https://dplyr.tidyverse.org/articles/base.html).
Bien qu'il en reprenne de nombreux contenus, ce guide ne se substitue pas au site [analyse-R](https://larmarange.github.io/analyse-R/). Il s'agit plutôt d'une version complémentaire qui a vocation à être plus structurée et parfois plus sélective dans les contenus présentés.
En complément, on pourra également se référer aux [webin-R](https://larmarange.github.io/webin-R/), une série de vidéos avec partage d'écran, librement accessibles sur YouTube : <https://www.youtube.com/c/webinR>.
```{r}
#| echo: false
R_version <- R.Version()[["version.string"]]
```
Cette version du guide a utilisé *`{r} R_version`*. Ce document est généré avec [quarto](https://quarto.org/) et le code source est disponible sur [GitHub](https://github.com/larmarange/guide-R). Pour toute suggestion ou correction, vous pouvez ouvrir un [ticket GitHub](https://github.com/larmarange/guide-R/issues). Pour d'autres questions, vous pouvez utiliser les forums de discussion disponibles en bas de chaque page sur la version web du guide. Ce document est régulièrement mis à jour. La dernière version est consultable sur <https://larmarange.github.io/guide-R/>.
## Remerciements {.unnumbered}
Ce document a bénéficié de différents apports provenant notamment de l'[*Introduction à R*](https://github.com/juba/intro-r) et de l'[*Introduction à R et au tidyverse*](https://juba.github.io/tidyverse/) de Julien Barnier et d'[analyse-R : introduction à l'analyse d'enquêtes avec R et RStudio](https://larmarange.github.io/analyse-R/). Certains chapitres se sont appuyés sur l'ouvrage de référence [*R for data science*](https://r4ds.hadley.nz/) par Hadley Wickham, Mine Çetinkaya-Rundel et Garret Grolemund, ou encore sur les [notes de cours](https://egallic.fr/Enseignement/R/Book/) d'Ewan Gallic.
Merci donc à Julien Barnier, Julien Biaudet, François Briatte, Milan Bouchet-Valat, Mine Çetinkaya-Rundel, Ewen Gallic, Frédérique Giraud, Joël Gombin, Garret Grolemund, Mayeul Kauffmann, Christophe Lalanne, Nicolas Robette et Hadley Wickham.
## Licence {.unnumbered}
Ce document est mis à disposition selon les termes de la [Licence Creative Commons Attribution - Pas d'Utilisation Commerciale - Partage dans les Mêmes Conditions 4.0 International](http://creativecommons.org/licenses/by-nc-sa/4.0/).
![](ressources/by-nc-sa.png){width="160"}