forked from scipopt/PySCIPOpt
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_cons.py
163 lines (117 loc) · 3.64 KB
/
test_cons.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
from pyscipopt import Model, quicksum
import random
import pytest
def test_getConsNVars():
n_vars = random.randint(100, 1000)
m = Model()
x = {}
for i in range(n_vars):
x[i] = m.addVar("%i" % i)
c = m.addCons(quicksum(x[i] for i in x) <= 10)
assert m.getConsNVars(c) == n_vars
m.optimize()
assert m.getConsNVars(c) == n_vars
def test_getConsVars():
n_vars = random.randint(100, 1000)
m = Model()
x = {}
for i in range(n_vars):
x[i] = m.addVar("%i" % i)
c = m.addCons(quicksum(x[i] for i in x) <= 1)
assert m.getConsVars(c) == [x[i] for i in x]
def test_constraint_option_setting():
m = Model()
x = m.addVar()
c = m.addCons(x >= 3)
for option in [True, False]:
m.setCheck(c, option)
m.setEnforced(c, option)
m.setRemovable(c, option)
m.setInitial(c, option)
assert c.isChecked() == option
assert c.isEnforced() == option
assert c.isRemovable() == option
assert c.isInitial() == option
def test_cons_logical():
m = Model()
x1 = m.addVar(vtype="B")
x2 = m.addVar(vtype="B")
x3 = m.addVar(vtype="B")
x4 = m.addVar(vtype="B")
result1 = m.addVar(vtype="B")
result2 = m.addVar(vtype="B")
m.addCons(x3 == 1 - x1)
m.addCons(x4 == 1 - x2)
# result1 true
m.addConsAnd([x1, x2], result1)
m.addConsOr([x1, x2], result1)
m.addConsXor([x1, x3], True)
# result2 false
m.addConsOr([x3, x4], result2)
m.addConsAnd([x1, x3], result2)
m.addConsXor([x1, x2], False)
m.optimize()
assert m.isEQ(m.getVal(result1), 1)
assert m.isEQ(m.getVal(result2), 0)
def test_SOScons():
m = Model()
x = {}
for i in range(6):
x[i] = m.addVar(vtype="B", obj=-i)
c1 = m.addConsSOS1([x[0]], [1])
c2 = m.addConsSOS2([x[1]], [1])
m.addVarSOS1(c1, x[2], 1)
m.addVarSOS2(c2, x[3], 1)
m.appendVarSOS1(c1, x[4])
m.appendVarSOS2(c2, x[5])
m.optimize()
assert m.isEQ(m.getVal(x[0]), 0)
assert m.isEQ(m.getVal(x[1]), 0)
assert m.isEQ(m.getVal(x[2]), 0)
assert m.isEQ(m.getVal(x[3]), 1)
assert m.isEQ(m.getVal(x[4]), 1)
assert m.isEQ(m.getVal(x[5]), 1)
assert c1.getConshdlrName() == "SOS1"
assert c2.getConshdlrName() == "SOS2"
def test_cons_indicator():
m = Model()
x = m.addVar(lb=0)
binvar = m.addVar(vtype="B", lb=1)
c = m.addConsIndicator(x >= 1, binvar)
slack = m.getSlackVarIndicator(c)
m.optimize()
assert m.isEQ(m.getVal(slack), 0)
assert m.isEQ(m.getVal(binvar), 1)
assert m.isEQ(m.getVal(x), 1)
assert c.getConshdlrName() == "indicator"
@pytest.mark.xfail(reason="addConsIndicator doesn't behave as expected when binary variable is False. See Issue #717.")
def test_cons_indicator_fail():
m = Model()
binvar = m.addVar(vtype="B")
x = m.addVar(vtype="C", lb=1, ub=3)
m.addConsIndicator(x <= 2, binvar)
m.setObjective(x, "maximize")
sol = m.createSol(None)
m.setSolVal(sol, x, 3)
m.setSolVal(sol, binvar, 0)
assert m.checkSol(sol) # solution should be feasible
def test_addConsCardinality():
m = Model()
x = {}
for i in range(5):
x[i] = m.addVar(ub=1, obj=-1)
m.addConsCardinality([x[i] for i in range(5)], 3)
m.optimize()
assert m.isEQ(m.getVal(quicksum(x[i] for i in range(5))), 3)
def test_printCons():
m = Model()
x = m.addVar()
y = m.addVar()
c = m.addCons(x * y <= 5)
m.printCons(c)
@pytest.mark.skip(reason="TODO: test getValsLinear()")
def test_getValsLinear():
assert True
@pytest.mark.skip(reason="TODO: test getRowLinear()")
def test_getRowLinear():
assert True