-
Notifications
You must be signed in to change notification settings - Fork 24
/
Copy pathtrain.py
194 lines (151 loc) · 6.5 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
"""Module providing Trainer class for deeplabv3plus"""
import os
import tensorflow as tf
import wandb
from wandb.keras import WandbCallback
from deeplabv3plus.datasets import GenericDataLoader
from deeplabv3plus.model import DeeplabV3Plus
class Trainer:
"""Class for managing DeeplabV3+ model training.
Args:
config:
python dictionary containing training configuration for
DeeplabV3Plus
"""
def __init__(self, config):
self.config = config
self._assert_config()
# Train Dataset
train_dataloader = GenericDataLoader(self.config[
'train_dataset_config'])
self.train_data_length = len(train_dataloader)
print('[+] Data points in train dataset: {}'.format(
self.train_data_length))
self.train_dataset = train_dataloader.get_dataset()
print('Train Dataset:', self.train_dataset)
# Validation Dataset
val_dataloader = GenericDataLoader(self.config[
'val_dataset_config'])
self.val_data_length = len(val_dataloader)
print('Data points in train dataset: {}'.format(
self.val_data_length))
self.val_dataset = val_dataloader.get_dataset()
print('Val Dataset:', self.val_dataset)
self._model = None
self._wandb_initialized = False
@property
def model(self):
"""Property returning model being trained."""
if self._model is not None:
return self._model
with self.config['strategy'].scope():
self._model = DeeplabV3Plus(
num_classes=self.config['num_classes'],
backbone=self.config['backbone']
)
self._model.compile(
optimizer=tf.keras.optimizers.Adam(
learning_rate=self.config['learning_rate']
),
loss=tf.keras.losses.SparseCategoricalCrossentropy(),
metrics=['accuracy']
)
return self._model
@staticmethod
def _assert_dataset_config(dataset_config):
assert 'images' in dataset_config and \
isinstance(dataset_config['images'], list)
assert 'labels' in dataset_config and \
isinstance(dataset_config['labels'], list)
assert 'height' in dataset_config and \
isinstance(dataset_config['height'], int)
assert 'width' in dataset_config and \
isinstance(dataset_config['width'], int)
assert 'batch_size' in dataset_config and \
isinstance(dataset_config['batch_size'], int)
def _assert_config(self):
assert 'project_name' in self.config and \
isinstance(self.config['project_name'], str)
assert 'experiment_name' in self.config and \
isinstance(self.config['experiment_name'], str)
assert 'train_dataset_config' in self.config
Trainer._assert_dataset_config(self.config['train_dataset_config'])
assert 'val_dataset_config' in self.config
Trainer._assert_dataset_config(self.config['val_dataset_config'])
assert 'strategy' in self.config and \
isinstance(self.config['strategy'], tf.distribute.Strategy)
assert 'num_classes' in self.config and \
isinstance(self.config['num_classes'], int)
assert 'backbone' in self.config and \
isinstance(self.config['backbone'], str)
assert 'learning_rate' in self.config and \
isinstance(self.config['learning_rate'], float)
assert 'checkpoint_dir' in self.config and \
isinstance(self.config['checkpoint_dir'], str)
assert 'checkpoint_file_prefix' in self.config and \
isinstance(self.config['checkpoint_file_prefix'], str)
assert 'epochs' in self.config and \
isinstance(self.config['epochs'], int)
def connect_wandb(self):
"""Connects Trainer to wandb.
Runs wandb.init() with the given wandb_api_key, project_name and
experiment_name.
"""
if 'wandb_api_key' not in self.config:
return
os.environ['WANDB_API_KEY'] = self.config['wandb_api_key']
wandb.init(
project=self.config['project_name'],
name=self.config['experiment_name']
)
self._wandb_initialized = True
def _get_checkpoint_filename_format(self):
if self.config['checkpoint_dir'] == 'wandb://':
if 'wandb_api_key' not in self.config:
raise ValueError("Invalid configuration, wandb_api_key not "
"provided!")
if not self._wandb_initialized:
raise ValueError("Wandb not intialized, "
"checkpoint_filename_format is unusable.")
return os.path.join(wandb.run.dir,
self.config['checkpoint_file_prefix'] +
"{epoch}")
return os.path.join(self.config['checkpoint_dir'],
self.config['checkpoint_file_prefix'] +
"{epoch}")
def _get_logger_callback(self):
if 'wandb_api_key' not in self.config:
return tf.keras.callbacks.TensorBoard()
try:
return WandbCallback(save_weights_only=True, save_model=False)
except wandb.Error as error:
if 'wandb_api_key' in self.config:
raise error # rethrow
print("[-] Defaulting to TensorBoard logging...")
return tf.keras.callbacks.TensorBoard()
def train(self):
"""Trainer entry point.
Attempts to connect to wandb before starting training. Runs .fit() on
loaded model.
"""
if not self._wandb_initialized:
self.connect_wandb()
callbacks = [
tf.keras.callbacks.ModelCheckpoint(
filepath=self._get_checkpoint_filename_format(),
monitor='val_loss',
save_best_only=True,
mode='min',
save_weights_only=True
),
self._get_logger_callback()
]
history = self.model.fit(
self.train_dataset, validation_data=self.val_dataset,
steps_per_epoch=self.train_data_length //
self.config['train_dataset_config']['batch_size'],
validation_steps=self.val_data_length //
self.config['val_dataset_config']['batch_size'],
epochs=self.config['epochs'], callbacks=callbacks
)
return history