-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.py
79 lines (74 loc) · 4.02 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
import torch
from dataloader import DataLoader
from model import GloveMean, DVAE, Evolution, Stance, Verify, Hierarchy
from trainer import Trainer
import argparse
if __name__=="__main__":
## data
parser = argparse.ArgumentParser(description='modeling evolution of message interaction for rumor resolution')
parser.add_argument('--rawdata_file', default="./data/pheme.csv",
help='path of rawdata', type=str)
parser.add_argument('--abbreviation_file', default="./data/abbreviation.json",
help='path of abbreviation json file', type=str)
parser.add_argument('--vocab_size', default=0,
help='vocabulary size (0/10000/...)', type=int)
parser.add_argument('--pretrain_file', default="/remote-home/source/Social/Datasets/embedding/glove/glove.6B.300d.txt",
help='pretrained weight of glove embedding', type=str)
parser.add_argument('--embedding_size', default=300,
help='embedding size', type=int)
## model parameter: sentence representation
parser.add_argument('--sent_size', default=300,
help='size of sentenct', type=int)
## model parameter: dvae
parser.add_argument('--K', default=4,
help='dimension of latent variable', type=int)
parser.add_argument('--M', default=4,
help='quantity of latent variable', type=int)
parser.add_argument('--alpha', default=1,
help='tradeof between expectation and kl divergence', type=int)
parser.add_argument('--temperature', default=10,
help='temperature to control gumbel-softmax', type=int)
parser.add_argument('--inter_size', default=300,
help='size of interaction representation', type=int)
## model parameter: evolution
parser.add_argument('--num_layers', default=1,
help='layer of bilstm', type=int)
parser.add_argument('--hidden_size', default=200,
help='hidden size of BiLSTM', type=int)
parser.add_argument('--dropout', default=0.5,
help='drop out rate of dense layer', type=float)
## experiments
parser.add_argument('--gpu', default=0,
help='serial number of gpu', type=int)
parser.add_argument('--batch_size', default=32,
help='batch size', type=int)
parser.add_argument('--EPOCH', default=60,
help='running epoch', type=int)
parser.add_argument('--EPOCH_min', default=0,
help='running epoch without fine evaluation', type=int)
parser.add_argument('--step_interval', default=1,
help='step interval for evaluation', type=int)
parser.add_argument('--EPOCH_patience', default=40,
help='patience for earlystop', type=int)
parser.add_argument('--lr', default=1e-5,
help='learning rate of other layers', type=float)
parser.add_argument('--lr_stance', default=1e-4,
help='learning rate of stance classification', type=float)
parser.add_argument('--lr_verify', default=1e-5,
help='learning rate of verification', type=float)
parser.add_argument('--l1', default=0.5,
help='loss weight of verification', type=float)
parser.add_argument('--l2', default=0.5,
help='loss weight of stance classification', type=float)
parser.add_argument('--l3', default=0.2,
help='loss weight of dvae', type=float)
## initialize parameters
args = parser.parse_known_args()[0]
## assign device
device = torch.device(f"cuda: {args.gpu}" if torch.cuda.is_available() else "cpu")
## load data
data_loader = DataLoader(args)
data, pretrained_weight = data_loader.load()
## training
trainer = Trainer()
trainer.start(GloveMean, DVAE, Evolution, Stance, Verify, Hierarchy, data, pretrained_weight, args, device)