-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrainer.py
375 lines (345 loc) · 18.4 KB
/
trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
import time
import os
import re
import json
import math
from datetime import datetime
import random
import pandas as pd
import numpy as np
import sklearn.metrics
import torch
from torch import nn
from tqdm import tqdm
import sklearn.metrics
import warnings
warnings.filterwarnings("ignore")
import torch
## set seed
def set_seed(seed):
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
np.random.seed(seed)
random.seed(seed)
## early stop
class EarlyStopping:
def __init__(self, save_file, loss_bound=None, patience=5, delta=0):
"""
save_file(str): save file directory
patience(int): How long to wait after last time validation loss improved
delta(float): Minimum change in the monitored quantity to qualify as an improvement.
"""
self.save_file = save_file
self.patience = patience
self.delta = delta
self.counter = 0
self.best_score = None
self.is_stop = False
self.best_epoch = 0
self.best_step = 0
self.loss_bound = loss_bound if loss_bound else np.Inf
self.start = False
def save_checkpoint(self, metric, model):
torch.save(model.state_dict(), self.save_file)
def __call__(self, metric, model, loss, increase=True, epoch=0, step=0):
score = metric
message=""
flag = increase*2-1 # True:+1 False:-1
if loss<self.loss_bound:
self.start = True
if self.start:
if self.best_score is None:
self.best_score = score
self.save_checkpoint(metric, model)
elif flag*score < flag*(self.best_score + self.delta):
self.counter += 1
#message = f"EarlyStop: {self.counter}/{self.patience} max: {self.best_score:.3f}"
message = f" E:{self.counter:3d} m:{self.best_score:.3f}"
if self.counter >= self.patience:
self.is_stop = True
else:
self.best_score = score
self.save_checkpoint(metric, model)
self.counter = 0
self.best_epoch = epoch
self.best_step = step
self.is_stop = False
print(message, end="")
events5 = ['ferguson', 'sydneysiege', 'germanwings', 'ottawashooting', 'charliehebdo']
events9 = ['sydneysiege', 'ottawashooting', 'charliehebdo', 'ferguson', 'germanwings',
'putinmissing', 'gurlitt', 'prince', 'ebola']
## trainer
class Trainer:
def __init__(self):
# 初始化训练环境 创建存储文件夹等
if not os.path.exists("./save"):
os.mkdir("./save")
def _set_ratio_verify(self, data, cids):
# 计算verify任务的比例
temp = data.loc[cids]["verify"]
class_count = temp.value_counts().to_dict()
ratio = [int(class_count.get(i, 0)) for i in range(3)]
ratio_str = "/".join([str(item) for item in ratio])
return ratio, ratio_str
def _set_ratio_stance(self, data, cids):
# 计算stance任务的比例
temp = data[data["cid"].isin(cids)]["stance"]
class_count = temp.value_counts().to_dict()
ratio = [int(class_count.get(i, 0)) for i in range(4)]
ratio_str = "/".join([str(item) for item in ratio])
return ratio, ratio_str
def _resample_cids(self, data, cids1, cids2, mode="max"):
data1 = data.loc[cids1]
class_cids = [data1[data1["verify"]==i]["cid"].tolist() for i in range(3)]
max_cid_num = max([len(item) for item in class_cids])
min_cid_num = min([len(item) for item in class_cids])
random.seed(0)
class_cids_new = [item*(max_cid_num//len(item))+random.sample(item, max_cid_num%len(item)) for item in class_cids]
class_cids_new = [x for y in class_cids_new for x in y] # flatten
return class_cids_new
def _split_batch(self, indexes, b_size, drop_tail): # indexes:[([23,25], [1,1]), ...]
index_len = len(indexes)
if drop_tail:
index_batch = [indexes[i*b_size: min((i+1)*b_size, index_len)] for i in range(index_len//b_size)]
else:
index_batch = [indexes[i*b_size: min((i+1)*b_size, index_len)] for i in range(index_len//b_size+1)]
return index_batch
@staticmethod
def get_batch_data(data, cids, args, device):
cids = list(sorted(cids))
data_temp = data[data["cid"].isin(cids)].sort_values(by=["cid", "time"])
index_dict = {str(item[1]):item[0] for item in enumerate(data_temp["mid"])}
data_temp["parent"] = data_temp["pid"].apply(lambda x:index_dict[x])
data_temp["child"] = data_temp["mid"].apply(lambda x:index_dict[x])
## x input
x = data_temp["content_glove"].tolist()
max_sent_len = max([len(sent) for sent in x])
x = [sent+[0]*(max_sent_len-len(sent)) for sent in x] # padding
x = torch.Tensor(x).long().to(device)
x_mask = (x>0)*1
## other input
cas_sent_num = [data_temp["cid"].value_counts().loc[cid] for cid in cids]
cas_indexes = [data_temp[data_temp["cid"]==cid]["child"].tolist() for cid in cids]
adjacency_list = torch.Tensor(data_temp[["parent", "child"]].values.tolist()).long().to(device)
node_order = torch.Tensor(data_temp["node_order"].tolist()).long().to(device)
edge_order = torch.Tensor(data_temp["edge_order"].tolist()).long().to(device)
yv = torch.Tensor(data_temp["verify"][data_temp["edge_order"]==-1].tolist()).long().to(device)
ys = torch.Tensor(data_temp["stance"].tolist()).long().to(device)
return x, x_mask, adjacency_list, node_order, edge_order, yv, ys
@staticmethod
def convert_y(yt, yp):
# 将one-hot预测的y转换为
yp = np.array(torch.argmax(yp, dim=1).tolist())
yt = np.array(yt.tolist())
return yt, yp
def _eval_save_memory(self, model, data, indexes, args, device, b_size=32):
model.eval()
index_batch = [indexes[i*b_size: min((i+1)*b_size, len(indexes))] for i in range((len(indexes)-1)//b_size+1)]
y1, y2, y3, y4 = [], [], [], []
for step in range(len(index_batch)):
batch_data = self.get_batch_data(data, index_batch[step], args, device)
with torch.no_grad():
y_list, loss_list, z = model(batch_data)
yvp, yvt, ysp, yst = y_list
y1.append(yvt)
y2.append(yvp)
y3.append(yst)
y4.append(ysp)
y1 = torch.cat(tuple(y1))
y2 = torch.cat(tuple(y2))
y3 = torch.cat(tuple(y3))
y4 = torch.cat(tuple(y4))
return y1, y2, y3, y4
def _eval_result(self, y1, y2, loss_func=None): # y1-真实标签 y2-预测的one-hot标签
class_num = y2.shape[1]
loss = loss_func(y2, y1).item() if loss_func else 0
# 转换为np.array
y2 = np.array(torch.argmax(y2, dim=1).tolist())
y1 = np.array(y1.tolist())
# 除去为-1的空值标签
y2 = y2[y1>=0]
y1 = y1[y1>=0]
acc = sklearn.metrics.accuracy_score(y1, y2)
macroF = sklearn.metrics.f1_score(y1, y2, average='macro')
microF = sklearn.metrics.f1_score(y1, y2, average='micro')
classF = sklearn.metrics.f1_score(y1, y2, average=None).tolist()
classP = sklearn.metrics.precision_score(y1, y2, average=None).tolist()
classR = sklearn.metrics.recall_score(y1, y2, average=None).tolist()
ytrue = "/".join([str(np.sum(y1==i)) for i in range(class_num)])
ypred = "/".join([str(np.sum(y2==i)) for i in range(class_num)])
info = {"loss":loss,"acc":acc,"macroF":macroF,"microF":microF,
"classF":classF,"classP":classP,"classR":classR,
"ytrue":ytrue,"ypred":ypred}
return info
def generate_fold(self, data, args):
# 根据任务判断需要的数据来源
folds = []
data_temp = data[data["verify"]>=0]
for test_event in events5:
train_events = [event for event in events5 if event!=test_event]
train_cids = pd.unique(data_temp[data_temp["event"].isin(train_events)]["cid"]).tolist()
random.seed(2020)
random.shuffle(train_cids)
test_cids = pd.unique(data_temp[data_temp["event"]==test_event]["cid"]).tolist()
train_cids = self._resample_cids(data, train_cids, test_cids, mode="max")
cross_cids = test_cids
train_ratiov, cross_ratiov, test_ratiov = tuple([self._set_ratio_verify(data, item)[1]
for item in [train_cids, cross_cids, test_cids]])
train_ratios, cross_ratios, test_ratios = tuple([self._set_ratio_stance(data, item)[1]
for item in [train_cids, cross_cids, test_cids]])
folds.append({"train":(train_events, train_cids, train_ratiov, train_ratios),
"cross":(test_event, cross_cids, cross_ratiov, cross_ratios),
"test":(test_event, test_cids, test_ratiov, test_ratios)})
return folds
def train(self, model, data, train_, cross_, device, args, savefilev, savefiles):
print(f"save at {savefilev} & {savefiles}")
patience = int((((len(train_)-1)//args.batch_size+1)//args.step_interval+1)*args.EPOCH_patience)
earlystopv = EarlyStopping(save_file=savefilev, patience=patience, delta=0.001)
earlystops = EarlyStopping(save_file=savefiles, patience=patience, delta=0.001)
train_info = {}
optimizer = torch.optim.Adam([{"params":model.sent_model.parameters(), "lr":args.lr},
{"params":model.interaction_model.parameters(), "lr":args.lr},
{"params":model.evolution_model.parameters(), "lr":args.lr},
{"params":model.stance.parameters(), "lr":args.lr_stance},
{"params":model.verify.parameters(), "lr":args.lr_verify},])
loss_func = nn.CrossEntropyLoss(ignore_index=-1)
for epoch in range(args.EPOCH):
random.seed(0)
random.shuffle(train_)
train_batch = self._split_batch(train_, args.batch_size, drop_tail=True)
## train
model.train()
for step in range(len(train_batch)):
batch_data = self.get_batch_data(data, train_batch[step], args, device) # (x1, x2, y, w_size, w_num)
y_list, loss_list, z = model(batch_data) # losses: (loss_vae, re_loss, kl)
yvp, yvt, ysp, yst = y_list # 多任务的y
lossv = loss_func(yvp, yvt)
losss = loss_func(ysp, yst)
lossd, loss_vae, loss_kl = loss_list
loss = args.l1*lossv + args.l2*losss + args.l3*lossd
loss.backward()
optimizer.step()
ltrain = [lossv, losss, lossd, loss_vae, loss_kl]
if epoch<args.EPOCH_min:
if step==0:
model.eval()
y1, y2, y3, y4 = self._eval_save_memory(model, data, cross_, args, device) # evaluate save memory
vinfo = self._eval_result(y1, y2, loss_func)
sinfo = self._eval_result(y3, y4, loss_func)
lossv,losss,accv,accs,macroFv,macroFs = vinfo["loss"],sinfo["loss"],vinfo["acc"],sinfo["acc"],vinfo["macroF"],sinfo["macroF"]
#print(f"{epoch:-2d}/{step:2d}|train {ltrain[0]:.3f} {ltrain[1]:.3f} {ltrain[2]:.3f}|cross acc: {accv:.3f} {accs:.3f} maF: {macroFv:.3f} {macroFs:.3f} loss: {lossv:.4f} {losss:.4f}", end="\n")
print(f"{epoch:-2d}/{step:2d}|train {ltrain[0]:.3f} {ltrain[1]:.3f} {ltrain[3]:.3f} {ltrain[4]:.3f}|cross maF: {macroFv:.3f} {macroFs:.3f} loss: {lossv:.4f} {losss:.4f}", end="\n")
model.train()
else:
## evaluate
if step%args.step_interval==0:
model.eval()
y1, y2, y3, y4 = self._eval_save_memory(model, data, cross_, args, device) # evaluate save memory
vinfo = self._eval_result(y1, y2, loss_func)
sinfo = self._eval_result(y3, y4, loss_func)
lossv,losss,accv,accs,macroFv,macroFs = vinfo["loss"],sinfo["loss"],vinfo["acc"],sinfo["acc"],vinfo["macroF"],sinfo["macroF"]
#print(f"{epoch:-2d}/{step:2d}|train {ltrain[0]:.3f} {ltrain[1]:.3f} {ltrain[2]:.3f}|cross acc: {accv:.3f} {accs:.3f} maF: {macroFv:.3f} {macroFs:.3f} loss: {lossv:.4f} {losss:.4f}", end="")
print(f"{epoch:-2d}/{step:2d}|train {ltrain[0]:.3f} {ltrain[1]:.3f} {ltrain[3]:.3f} {ltrain[4]:.3f}|cross maF: {macroFv:.3f} {macroFs:.3f} loss: {lossv:.4f} {losss:.4f}", end="")
model.train()
earlystopv(macroFv, model, lossv, increase=True, epoch=epoch, step=step)
earlystops(macroFs, model, losss, increase=True, epoch=epoch, step=step)
print()
if earlystopv.is_stop and earlystops.is_stop:
print(f"verify ealy stopped at epoch {earlystopv.best_epoch} step {earlystopv.best_step}!")
print(f"stance early stopped at epoch {earlystops.best_epoch} step {earlystops.best_step}!")
break
if earlystopv.is_stop and earlystops.is_stop:
break
train_info = {}
train_info["verify"] = {"epoch":earlystopv.best_epoch, "step":earlystopv.best_step}
train_info["stance"] = {"epoch":earlystops.best_epoch, "step":earlystops.best_step}
return train_info
def _show_table(self, rows):
for row in rows:
for item in row:
if isinstance(item, str) or isinstance(item, int):
print(item, end="\t")
if isinstance(item, float):
print(f"{item:.3f}", end="\t")
print()
def test(self, model, data, test_, device, args, savefilev, savefiles, train_info):
print(f"\ntesting... load model from {savefilev} & {savefiles}")
test_info = {}
statev = torch.load(savefilev)
model.load_state_dict(statev)
model.eval()
y1, y2, y3_, y4_ = self._eval_save_memory(model, data, test_, args, device)
states = torch.load(savefiles)
model.load_state_dict(states)
model.eval()
y1_, y2_, y3, y4 = self._eval_save_memory(model, data, test_, args, device)
vinfo = self._eval_result(y1, y2)
vinfo.update(train_info["verify"])
test_info["verify"] = vinfo
sinfo = self._eval_result(y3, y4)
sinfo.update(train_info["stance"])
test_info["stance"] = sinfo
rows = [["task", "acc","macroF","classF"]]
rows.append(["verify", vinfo["acc"], vinfo["macroF"]]+vinfo["classF"])
rows.append(["stance", sinfo["acc"], sinfo["macroF"]]+sinfo["classF"])
self._show_table(rows)
return test_info
def show_info(self, events, info_lists, fields):
for task in ["verify", "stance"]:
print(f"=== {task} ===")
info_list = [item[task] for item in info_lists]
temp = [info_list[0][field] for field in fields]
temp = [len(item) if isinstance(item, list) else 1 for item in temp]
title = "\t".join(["test"]+[fields[i]+"\t"*(temp[i]-1) for i in range(len(fields))])
print(f"\n{title}")
values = []
for info in info_list:
temp = []
for field in fields:
if isinstance(info[field], list):
temp.extend(info[field])
else:
temp.append(info[field])
values.append(temp)
values_avg = [[values[i][j] for i in range(len(values))] for j in range(len(values[0]))]
values_avg = [f"{np.mean(item):.3f}" if not isinstance(item[0], str) else "-" for item in values_avg]
for i in range(len(events)):
value = values[i]
print("\t".join([events[i]]+[f"{item:.3f}" if isinstance(item, float) else str(item) for item in value]))
print("\t".join(["Avg-"]+[item for item in values_avg]))
def start(self, sent, inter, evolution, stance, verify, hierarchy, data, pretrained_weight, args, device, fold_num=None):
time_start = datetime.now()
# 生成fold包含的index
print("*** spliting folds")
folds = self.generate_fold(data, args) # [{"train":(fold_name, cids_list)},...]
# 对不同fold的数据进行训练
events, results = [], []
print("\n*** training")
folds = folds if fold_num is None else folds[fold_num:fold_num+1]
for fold in folds:
events.append(fold["test"][0][:5])
time_start_fold = datetime.now().strftime("%Y%m%d-%H%M%S")
savefilev = f"./save/{time_start_fold}_verify.pkl"
savefiles = f"./save/{time_start_fold}_stance.pkl"
# 显示数据比例
print(f"\n--- \ntest on {fold['test'][0]}({fold['test'][2]}, {fold['test'][3]})")
print(f"train ({fold['train'][2]}, {fold['train'][3]})")
# 获取train cross test涉及的cid
train_, cross_, test_ = tuple([fold[set_name][1] for set_name in ["train", "cross", "test"]])
# 初始化模型信息
set_seed(0)
model = hierarchy(sent, inter, evolution, stance, verify, args, pretrained_weight)
model.to(device)
# 训练
train_info = self.train(model, data, train_, cross_, device, args, savefilev, savefiles)
# 测试
test_info = self.test(model, data, test_, device, args, savefilev, savefiles, train_info)
results.append(test_info)
show_fields = ["epoch","step","acc","macroF","classF","ytrue","ypred"]
self.show_info(events, results, show_fields)
time_end = datetime.now()
print("\nstart at ", time_start)
print("end at ", time_end)
return None