-
Notifications
You must be signed in to change notification settings - Fork 0
/
reduce_memory.py
48 lines (40 loc) · 2.05 KB
/
reduce_memory.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
import numpy as np
import pandas as pd
from pandas.api.types import is_numeric_dtype
from pandas.core.base import PandasObject
data_int = pd.read_csv('/kaggle/input/icr-integer-data/train_integerized.csv')
def reduce_memory(df, threshold_str = 0.5):
start_mem = df.memory_usage().sum() / 1024**2
print(f'Memory usage of dataframe is {start_mem:.2f} MB')
for col in df.columns:
col_type = df[col].dtype
if col_type != 'object' and col_type != 'category':
c_min = df[col].min()
c_max = df[col].max()
if str(col_type)[:3] == 'int':
if c_min > np.iinfo(np.int8).min and c_max < np.iinfo(np.int8).max:
df[col] = df[col].astype(np.int8)
elif c_min > np.iinfo(np.int16).min and c_max < np.iinfo(np.int16).max:
df[col] = df[col].astype(np.int16)
elif c_min > np.iinfo(np.int32).min and c_max < np.iinfo(np.int32).max:
df[col] = df[col].astype(np.int32)
elif c_min > np.iinfo(np.int64).min and c_max < np.iinfo(np.int64).max:
df[col] = df[col].astype(np.int64)
else:
if c_min > np.finfo(np.float16).min and c_max < np.finfo(np.float16).max:
df[col] = df[col].astype(np.float16)
elif c_min > np.finfo(np.float32).min and c_max < np.finfo(np.float32).max:
df[col] = df[col].astype(np.float32)
else:
df[col] = df[col].astype(np.float64)
elif col_type == 'object':
num_unique_values = len(df[col].unique())
num_total_values = len(df[col])
if num_unique_values / num_total_values < threshold_str:
df[col] = df[col].astype('category')
end_mem = df.memory_usage().sum() / 1024**2
print(f'Memory usage after optimization is: {end_mem:.2f} MB')
print(f'Decreased by {100 * (start_mem - end_mem) / start_mem:.1f}%')
return df
PandasObject.reduce_memory = reduce_memory
data_int = data_int.reduce_memory()