-
Notifications
You must be signed in to change notification settings - Fork 88
/
gmm.py
483 lines (378 loc) · 17.8 KB
/
gmm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
import torch
import numpy as np
from math import pi
from scipy.special import logsumexp
from utils import calculate_matmul, calculate_matmul_n_times
class GaussianMixture(torch.nn.Module):
"""
Fits a mixture of k=1,..,K Gaussians to the input data (K is supplied via n_components).
Input tensors are expected to be flat with dimensions (n: number of samples, d: number of features).
The model then extends them to (n, 1, d).
The model parametrization (mu, sigma) is stored as (1, k, d),
probabilities are shaped (n, k, 1) if they relate to an individual sample,
or (1, k, 1) if they assign membership probabilities to one of the mixture components.
"""
def __init__(self, n_components, n_features, covariance_type="full", eps=1.e-6, init_params="kmeans", mu_init=None, var_init=None):
"""
Initializes the model and brings all tensors into their required shape.
The class expects data to be fed as a flat tensor in (n, d).
The class owns:
x: torch.Tensor (n, 1, d)
mu: torch.Tensor (1, k, d)
var: torch.Tensor (1, k, d) or (1, k, d, d)
pi: torch.Tensor (1, k, 1)
covariance_type: str
eps: float
init_params: str
log_likelihood: float
n_components: int
n_features: int
args:
n_components: int
n_features: int
options:
mu_init: torch.Tensor (1, k, d)
var_init: torch.Tensor (1, k, d) or (1, k, d, d)
covariance_type: str
eps: float
init_params: str
"""
super(GaussianMixture, self).__init__()
self.n_components = n_components
self.n_features = n_features
self.mu_init = mu_init
self.var_init = var_init
self.eps = eps
self.log_likelihood = -np.inf
self.covariance_type = covariance_type
self.init_params = init_params
assert self.covariance_type in ["full", "diag"]
assert self.init_params in ["kmeans", "random"]
self._init_params()
def _init_params(self):
if self.mu_init is not None:
assert self.mu_init.size() == (1, self.n_components, self.n_features), "Input mu_init does not have required tensor dimensions (1, %i, %i)" % (self.n_components, self.n_features)
# (1, k, d)
self.mu = torch.nn.Parameter(self.mu_init, requires_grad=False)
else:
self.mu = torch.nn.Parameter(torch.randn(1, self.n_components, self.n_features), requires_grad=False)
if self.covariance_type == "diag":
if self.var_init is not None:
# (1, k, d)
assert self.var_init.size() == (1, self.n_components, self.n_features), "Input var_init does not have required tensor dimensions (1, %i, %i)" % (self.n_components, self.n_features)
self.var = torch.nn.Parameter(self.var_init, requires_grad=False)
else:
self.var = torch.nn.Parameter(torch.ones(1, self.n_components, self.n_features), requires_grad=False)
elif self.covariance_type == "full":
if self.var_init is not None:
# (1, k, d, d)
assert self.var_init.size() == (1, self.n_components, self.n_features, self.n_features), "Input var_init does not have required tensor dimensions (1, %i, %i, %i)" % (self.n_components, self.n_features, self.n_features)
self.var = torch.nn.Parameter(self.var_init, requires_grad=False)
else:
self.var = torch.nn.Parameter(
torch.eye(self.n_features).reshape(1, 1, self.n_features, self.n_features).repeat(1, self.n_components, 1, 1),
requires_grad=False
)
# (1, k, 1)
self.pi = torch.nn.Parameter(torch.Tensor(1, self.n_components, 1), requires_grad=False).fill_(1. / self.n_components)
self.params_fitted = False
def check_size(self, x):
if len(x.size()) == 2:
# (n, d) --> (n, 1, d)
x = x.unsqueeze(1)
return x
def bic(self, x):
"""
Bayesian information criterion for a batch of samples.
args:
x: torch.Tensor (n, d) or (n, 1, d)
returns:
bic: float
"""
x = self.check_size(x)
n = x.shape[0]
# Free parameters for covariance, means and mixture components
free_params = self.n_features * self.n_components + self.n_features + self.n_components - 1
bic = -2. * self.__score(x, as_average=False).mean() * n + free_params * np.log(n)
return bic
def fit(self, x, delta=1e-3, n_iter=100, warm_start=False):
"""
Fits model to the data.
args:
x: torch.Tensor (n, d) or (n, k, d)
options:
delta: float
n_iter: int
warm_start: bool
"""
if not warm_start and self.params_fitted:
self._init_params()
x = self.check_size(x)
if self.init_params == "kmeans" and self.mu_init is None:
mu = self.get_kmeans_mu(x, n_centers=self.n_components)
self.mu.data = mu
i = 0
j = np.inf
while (i <= n_iter) and (j >= delta):
log_likelihood_old = self.log_likelihood
mu_old = self.mu
var_old = self.var
self.__em(x)
self.log_likelihood = self.__score(x)
if torch.isinf(self.log_likelihood.abs()) or torch.isnan(self.log_likelihood):
device = self.mu.device
# When the log-likelihood assumes unbound values, reinitialize model
self.__init__(self.n_components,
self.n_features,
covariance_type=self.covariance_type,
mu_init=self.mu_init,
var_init=self.var_init,
eps=self.eps)
for p in self.parameters():
p.data = p.data.to(device)
if self.init_params == "kmeans":
self.mu.data, = self.get_kmeans_mu(x, n_centers=self.n_components)
i += 1
j = self.log_likelihood - log_likelihood_old
if j <= delta:
# When score decreases, revert to old parameters
self.__update_mu(mu_old)
self.__update_var(var_old)
self.params_fitted = True
def predict(self, x, probs=False):
"""
Assigns input data to one of the mixture components by evaluating the likelihood under each.
If probs=True returns normalized probabilities of class membership.
args:
x: torch.Tensor (n, d) or (n, 1, d)
probs: bool
returns:
p_k: torch.Tensor (n, k)
(or)
y: torch.LongTensor (n)
"""
x = self.check_size(x)
weighted_log_prob = self._estimate_log_prob(x) + torch.log(self.pi)
if probs:
p_k = torch.exp(weighted_log_prob)
return torch.squeeze(p_k / (p_k.sum(1, keepdim=True)))
else:
return torch.squeeze(torch.max(weighted_log_prob, 1)[1].type(torch.LongTensor))
def predict_proba(self, x):
"""
Returns normalized probabilities of class membership.
args:
x: torch.Tensor (n, d) or (n, 1, d)
returns:
y: torch.LongTensor (n)
"""
return self.predict(x, probs=True)
def sample(self, n):
"""
Samples from the model.
args:
n: int
returns:
x: torch.Tensor (n, d)
y: torch.Tensor (n)
"""
counts = torch.distributions.multinomial.Multinomial(total_count=n, probs=self.pi.squeeze()).sample()
x = torch.empty(0, device=counts.device)
y = torch.cat([torch.full([int(sample)], j, device=counts.device) for j, sample in enumerate(counts)])
# Only iterate over components with non-zero counts
for k in np.arange(self.n_components)[counts > 0]:
if self.covariance_type == "diag":
x_k = self.mu[0, k] + torch.randn(int(counts[k]), self.n_features, device=x.device) * torch.sqrt(self.var[0, k])
elif self.covariance_type == "full":
d_k = torch.distributions.multivariate_normal.MultivariateNormal(self.mu[0, k], self.var[0, k])
x_k = torch.stack([d_k.sample() for _ in range(int(counts[k]))])
x = torch.cat((x, x_k), dim=0)
return x, y
def score_samples(self, x):
"""
Computes log-likelihood of samples under the current model.
args:
x: torch.Tensor (n, d) or (n, 1, d)
returns:
score: torch.LongTensor (n)
"""
x = self.check_size(x)
score = self.__score(x, as_average=False)
return score
def _estimate_log_prob(self, x):
"""
Returns a tensor with dimensions (n, k, 1), which indicates the log-likelihood that samples belong to the k-th Gaussian.
args:
x: torch.Tensor (n, d) or (n, 1, d)
returns:
log_prob: torch.Tensor (n, k, 1)
"""
x = self.check_size(x)
if self.covariance_type == "full":
mu = self.mu
var = self.var
precision = torch.inverse(var)
d = x.shape[-1]
log_2pi = d * np.log(2. * pi)
log_det = self._calculate_log_det(precision)
x_mu_T = (x - mu).unsqueeze(-2)
x_mu = (x - mu).unsqueeze(-1)
x_mu_T_precision = calculate_matmul_n_times(self.n_components, x_mu_T, precision)
x_mu_T_precision_x_mu = calculate_matmul(x_mu_T_precision, x_mu)
return -.5 * (log_2pi - log_det + x_mu_T_precision_x_mu)
elif self.covariance_type == "diag":
mu = self.mu
prec = torch.rsqrt(self.var)
log_p = torch.sum((mu * mu + x * x - 2 * x * mu) * prec, dim=2, keepdim=True)
log_det = torch.sum(torch.log(prec), dim=2, keepdim=True)
return -.5 * (self.n_features * np.log(2. * pi) + log_p - log_det)
def _calculate_log_det(self, var):
"""
Calculate log determinant in log space, to prevent overflow errors.
args:
var: torch.Tensor (1, k, d, d)
"""
log_det = torch.empty(size=(self.n_components,)).to(var.device)
for k in range(self.n_components):
log_det[k] = 2 * torch.log(torch.diagonal(torch.linalg.cholesky(var[0,k]))).sum()
return log_det.unsqueeze(-1)
def _e_step(self, x):
"""
Computes log-responses that indicate the (logarithmic) posterior belief (sometimes called responsibilities) that a data point was generated by one of the k mixture components.
Also returns the mean of the mean of the logarithms of the probabilities (as is done in sklearn).
This is the so-called expectation step of the EM-algorithm.
args:
x: torch.Tensor (n, d) or (n, 1, d)
returns:
log_prob_norm: torch.Tensor (1)
log_resp: torch.Tensor (n, k, 1)
"""
x = self.check_size(x)
weighted_log_prob = self._estimate_log_prob(x) + torch.log(self.pi)
log_prob_norm = torch.logsumexp(weighted_log_prob, dim=1, keepdim=True)
log_resp = weighted_log_prob - log_prob_norm
return torch.mean(log_prob_norm), log_resp
def _m_step(self, x, log_resp):
"""
From the log-probabilities, computes new parameters pi, mu, var (that maximize the log-likelihood). This is the maximization step of the EM-algorithm.
args:
x: torch.Tensor (n, d) or (n, 1, d)
log_resp: torch.Tensor (n, k, 1)
returns:
pi: torch.Tensor (1, k, 1)
mu: torch.Tensor (1, k, d)
var: torch.Tensor (1, k, d)
"""
x = self.check_size(x)
resp = torch.exp(log_resp)
pi = torch.sum(resp, dim=0, keepdim=True) + self.eps
mu = torch.sum(resp * x, dim=0, keepdim=True) / pi
if self.covariance_type == "full":
eps = (torch.eye(self.n_features) * self.eps).to(x.device)
var = torch.sum((x - mu).unsqueeze(-1).matmul((x - mu).unsqueeze(-2)) * resp.unsqueeze(-1), dim=0,
keepdim=True) / torch.sum(resp, dim=0, keepdim=True).unsqueeze(-1) + eps
elif self.covariance_type == "diag":
x2 = (resp * x * x).sum(0, keepdim=True) / pi
mu2 = mu * mu
xmu = (resp * mu * x).sum(0, keepdim=True) / pi
var = x2 - 2 * xmu + mu2 + self.eps
pi = pi / x.shape[0]
return pi, mu, var
def __em(self, x):
"""
Performs one iteration of the expectation-maximization algorithm by calling the respective subroutines.
args:
x: torch.Tensor (n, 1, d)
"""
_, log_resp = self._e_step(x)
pi, mu, var = self._m_step(x, log_resp)
self.__update_pi(pi)
self.__update_mu(mu)
self.__update_var(var)
def __score(self, x, as_average=True):
"""
Computes the log-likelihood of the data under the model.
args:
x: torch.Tensor (n, 1, d)
sum_data: bool
returns:
score: torch.Tensor (1)
(or)
per_sample_score: torch.Tensor (n)
"""
weighted_log_prob = self._estimate_log_prob(x) + torch.log(self.pi)
per_sample_score = torch.logsumexp(weighted_log_prob, dim=1)
if as_average:
return per_sample_score.mean()
else:
return torch.squeeze(per_sample_score)
def __update_mu(self, mu):
"""
Updates mean to the provided value.
args:
mu: torch.FloatTensor
"""
assert mu.size() in [(self.n_components, self.n_features), (1, self.n_components, self.n_features)], "Input mu does not have required tensor dimensions (%i, %i) or (1, %i, %i)" % (self.n_components, self.n_features, self.n_components, self.n_features)
if mu.size() == (self.n_components, self.n_features):
self.mu = mu.unsqueeze(0)
elif mu.size() == (1, self.n_components, self.n_features):
self.mu.data = mu
def __update_var(self, var):
"""
Updates variance to the provided value.
args:
var: torch.FloatTensor
"""
if self.covariance_type == "full":
assert var.size() in [(self.n_components, self.n_features, self.n_features), (1, self.n_components, self.n_features, self.n_features)], "Input var does not have required tensor dimensions (%i, %i, %i) or (1, %i, %i, %i)" % (self.n_components, self.n_features, self.n_features, self.n_components, self.n_features, self.n_features)
if var.size() == (self.n_components, self.n_features, self.n_features):
self.var = var.unsqueeze(0)
elif var.size() == (1, self.n_components, self.n_features, self.n_features):
self.var.data = var
elif self.covariance_type == "diag":
assert var.size() in [(self.n_components, self.n_features), (1, self.n_components, self.n_features)], "Input var does not have required tensor dimensions (%i, %i) or (1, %i, %i)" % (self.n_components, self.n_features, self.n_components, self.n_features)
if var.size() == (self.n_components, self.n_features):
self.var = var.unsqueeze(0)
elif var.size() == (1, self.n_components, self.n_features):
self.var.data = var
def __update_pi(self, pi):
"""
Updates pi to the provided value.
args:
pi: torch.FloatTensor
"""
assert pi.size() in [(1, self.n_components, 1)], "Input pi does not have required tensor dimensions (%i, %i, %i)" % (1, self.n_components, 1)
self.pi.data = pi
def get_kmeans_mu(self, x, n_centers, init_times=50, min_delta=1e-3):
"""
Find an initial value for the mean. Requires a threshold min_delta for the k-means algorithm to stop iterating.
The algorithm is repeated init_times often, after which the best centerpoint is returned.
args:
x: torch.FloatTensor (n, d) or (n, 1, d)
init_times: init
min_delta: int
"""
if len(x.size()) == 3:
x = x.squeeze(1)
x_min, x_max = x.min(), x.max()
x = (x - x_min) / (x_max - x_min)
min_cost = np.inf
for i in range(init_times):
tmp_center = x[np.random.choice(np.arange(x.shape[0]), size=n_centers, replace=False), ...]
l2_dis = torch.norm((x.unsqueeze(1).repeat(1, n_centers, 1) - tmp_center), p=2, dim=2)
l2_cls = torch.argmin(l2_dis, dim=1)
cost = 0
for c in range(n_centers):
cost += torch.norm(x[l2_cls == c] - tmp_center[c], p=2, dim=1).mean()
if cost < min_cost:
min_cost = cost
center = tmp_center
delta = np.inf
while delta > min_delta:
l2_dis = torch.norm((x.unsqueeze(1).repeat(1, n_centers, 1) - center), p=2, dim=2)
l2_cls = torch.argmin(l2_dis, dim=1)
center_old = center.clone()
for c in range(n_centers):
center[c] = x[l2_cls == c].mean(dim=0)
delta = torch.norm((center_old - center), dim=1).max()
return (center.unsqueeze(0)*(x_max - x_min) + x_min)