└── data
└── sets
│── Robo3D
│ │── KITTI-C
│ │ │── beam_missing
│ │ │── crosstalk
│ │ │── ...
│ │ └── wet_ground
│ │── SemanticKITTI-C
│ │── nuScenes-C
│ └── WOD-C
│── KITTI
│── SemanticKITTI
│── nuScenes
└── WOD
To install the KITTI dataset, download the data, annotations, and other files from https://www.cvlibs.net/datasets/kitti/eval_object.php?obj_benchmark=3d. Unpack the compressed file(s) into /data/sets/kitti
and re-organize the data structure. Your folder structure should end up looking like this:
└── kitti
├── ImageSets
│ ├── train.txt
│ └── val.txt
├── training
│ └── calib & velodyne & label_2 & image_2 & (optional: planes) & (optional: depth_2)
└── testing
└── calib & velodyne & image_2
Download the KITTI-C
dataset from the OpenDataLab platform and unpack it.
- Direct download:
- Go to https://opendatalab.com/OpenDataLab/KITTI-C/tree/main/raw.
- Click the
download
button on the right to download the dataset.
- CLI download:
- Install the
openxlab
package. -
pip install openxlab
- Use the following command to download the dataset.
-
openxlab dataset get --dataset-repo OpenDataLab/KITTI-C
- Install the
- Python SDK download:
- Install the
openxlab
package. -
pip install openxlab
- Use the following command to download the dataset.
-
from openxlab.dataset import get get(dataset_repo='OpenDataLab/KITTI-C', target_path='/path/to/local/folder/')
- Install the
Alternatively, you can follow the create
folder for generating corrupted data.
Your folder structure should end up looking like this:
└── KITTI-C
├── fog
│ ├── light
│ │ └── velodyne
│ ├── moderate
│ └── heavy
├── wet_ground
├── snow
├── motion_blur
├── beam_missing
├── crosstalk
├── incomplete_echo
└── cross_sensor
To install the SemanticKITTI dataset, download the data, annotations, and other files from http://semantic-kitti.org/dataset. Unpack the compressed file(s) into /data/sets/semantickitti
and re-organize the data structure. Your folder structure should end up looking like this:
└── semantickitti
└── sequences
├── velodyne <- contains the .bin files; a .bin file contains the points in a point cloud
│ └── 00
│ └── ···
│ └── 21
├── labels <- contains the .label files; a .label file contains the labels of the points in a point cloud
│ └── 00
│ └── ···
│ └── 10
├── calib
│ └── 00
│ └── ···
│ └── 21
└── semantic-kitti.yaml
Download the SemanticKITTI-C
dataset from the OpenDataLab platform and unpack it.
- Direct download:
- Go to https://opendatalab.com/OpenDataLab/SemanticKITTI-C/tree/main/raw.
- Click the
download
button on the right to download the dataset.
- CLI download:
- Install the
openxlab
package. -
pip install openxlab
- Use the following command to download the dataset.
-
openxlab dataset get --dataset-repo OpenDataLab/SemanticKITTI-C
- Install the
- Python SDK download:
- Install the
openxlab
package. -
pip install openxlab
- Use the following command to download the dataset.
-
from openxlab.dataset import get get(dataset_repo='OpenDataLab/SemanticKITTI-C', target_path='/path/to/local/folder/')
- Install the
Alternatively, you can follow the create
folder for generating corrupted data.
Your folder structure should end up looking like this:
└── SemanticKITTI-C
├── fog
│ ├── light
│ │ ├── velodyne
│ │ └── labels
│ ├── moderate
│ └── heavy
├── wet_ground
├── snow
├── motion_blur
├── beam_missing
├── crosstalk
├── incomplete_echo
└── cross_sensor
To install the nuScenes dataset, download the data, annotations, and other files from https://www.nuscenes.org/download. Unpack the compressed file(s) into /data/sets/nuscenes
and your folder structure should end up looking like this:
└── nuscenes
├── Usual nuscenes folders (i.e. samples, sweep)
│
├── lidarseg
│ └── v1.0-{mini, test, trainval} <- contains the .bin files; a .bin file
│ contains the labels of the points in a
│ point cloud (note that v1.0-test does not
│ have any .bin files associated with it)
│
└── v1.0-{mini, test, trainval}
| ├── Usual files (e.g. attribute.json, calibrated_sensor.json etc.)
| ├── lidarseg.json <- contains the mapping of each .bin file to the token
| └── category.json <- contains the categories of the labels (note that the
| category.json from nuScenes v1.0 is overwritten)
|
└── nuscenes_infos_val.pkl
Notably, we follow the data pre-processing in Cylinder3D to prepare the nuscenes_infos_val.pkl
file for the nuScenes validation set. You can find the nuscenes_infos_val.pkl
file from this link.
Download the nuScenes-C
dataset from the OpenDataLab platform and unpack it.
- Direct download:
- Go to https://opendatalab.com/OpenDataLab/nuScenes-C/tree/main/raw/pointcloud.
- Click the
download
button on the right to download the dataset.
- CLI download:
- Install the
openxlab
package. -
pip install openxlab
- Use the following command to download the dataset.
-
openxlab dataset get --dataset-repo OpenDataLab/nuScenes-C
- Install the
- Python SDK download:
- Install the
openxlab
package. -
pip install openxlab
- Use the following command to download the dataset.
-
from openxlab.dataset import get get(dataset_repo='OpenDataLab/nuScenes-C', target_path='/path/to/local/folder/')
- Install the
Alternatively, you can follow the create
folder for generating corrupted data. You will need to download the precomputed snowflake patterns in Link and put it into ./Robo3D/create/nuscenes_c/snow
folder.
Your folder structure should end up looking like this:
└── nuScenes-C
├── fog
│ ├── light
│ │ ├── samples/LIDAR_TOP
│ │ └── lidarseg/v1.0-trainval
│ ├── moderate
│ └── heavy
├── wet_ground
├── snow
├── motion_blur
├── beam_missing
├── crosstalk
├── incomplete_echo
└── cross_sensor
Coming soon.
Coming soon.
Please note that you should cite the corresponding paper(s) once you use these datasets.
@inproceedings{geiger2012kitti,
author = {A. Geiger and P. Lenz and R. Urtasun},
title = {Are we ready for Autonomous Driving? The KITTI Vision Benchmark Suite},
booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
pages = {3354--3361},
year = {2012}
}
@inproceedings{behley2019semantickitti,
author = {J. Behley and M. Garbade and A. Milioto and J. Quenzel and S. Behnke and C. Stachniss and J. Gall},
title = {SemanticKITTI: A Dataset for Semantic Scene Understanding of LiDAR Sequences},
booktitle = {Proceedings of the IEEE/CVF International Conference on Computer Vision},
pages = {9297--9307},
year = {2019}
}
@article{fong2022panopticnuscenes,
author = {W. K. Fong and R. Mohan and J. V. Hurtado and L. Zhou and H. Caesar and O. Beijbom and A. Valada},
title = {Panoptic nuScenes: A Large-Scale Benchmark for LiDAR Panoptic Segmentation and Tracking},
journal = {IEEE Robotics and Automation Letters},
volume = {7},
number = {2},
pages = {3795--3802},
year = {2022}
}
@inproceedings{caesar2020nuscenes,
author = {H. Caesar and V. Bankiti and A. H. Lang and S. Vora and V. E. Liong and Q. Xu and A. Krishnan and Y. Pan and G. Baldan and O. Beijbom},
title = {nuScenes: A Multimodal Dataset for Autonomous Driving},
booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
pages = {11621--11631},
year = {2020}
}
@inproceedings{sun2020waymoopen,
author = {P. Sun and H. Kretzschmar and X. Dotiwalla and A. Chouard and V. Patnaik and P. Tsui and J. Guo and Y. Zhou and Y. Chai and B. Caine and V. Vasudevan and W. Han and J. Ngiam and H. Zhao and A. Timofeev and S. Ettinger and M. Krivokon and A. Gao and A. Joshi and Y. Zhang and J. Shlens and Z. Chen and D. Anguelov},
title = {Scalability in Perception for Autonomous Driving: Waymo Open Dataset},
booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
pages = {2446--2454},
year = {2020}
}