Skip to content

Latest commit

 

History

History
62 lines (45 loc) · 2.66 KB

CENet.md

File metadata and controls

62 lines (45 loc) · 2.66 KB

Robo3D Benchmark

The following metrics are consistently used in our benchmark:

  • Mean Corruption Error (mCE):

    • The Corruption Error (CE) for model $A$ under corruption type $i$ across 3 severity levels is: $\text{CE}_i^{\text{Model}A} = \frac{\sum((1 - \text{mIoU})^{\text{Model}A})}{\sum((1 - \text{mIoU})^{\text{Baseline}})}$.
    • The average CE for model $A$ on all $N$ corruption types, i.e., mCE, is calculated as: $\text{mCE} = \frac{1}{N}\sum\text{CE}_i$.
  • Mean Resilience Rate (mRR):

    • The Resilience Rate (RR) for model $A$ under corruption type $i$ across 3 severity levels is: $\text{RR}_i^{\text{Model}A} = \frac{\sum(\text{mIoU}^{\text{Model}A})}{3\times (\text{clean-mIoU}^{\text{Model}A})} .$
    • The average RR for model $A$ on all $N$ corruption types, i.e., mRR, is calculated as: $\text{mRR} = \frac{1}{N}\sum\text{RR}_i$.

CENet

SemanticKITTI-C

Corruption Light Moderate Heavy Average $\text{CE}_i$ $\text{RR}_i$
Fog 45.80 44.84 37.47 42.70 129.84 68.27
Wet Ground 60.67 56.35 54.99 57.34 92.72 91.67
Snow 55.53 53.85 51.55 53.64 99.23 85.76
Motion Blur 56.92 52.87 48.35 52.71 70.50 84.27
Beam Missing 61.40 56.67 49.28 55.78 101.24 89.18
Crosstalk 48.81 45.43 41.87 45.37 131.13 72.53
Incomplete Echo 57.77 54.25 48.19 53.40 102.26 85.37
Cross-Sensor 58.16 51.34 28.01 45.84 100.39 73.29
  • Summary: $\text{mIoU}_{\text{clean}} =$ 62.55%, $\text{mCE} =$ 103.41%, $\text{mRR} =$ 81.29%.

nuScenes-C

Corruption Light Moderate Heavy Average $\text{CE}_i$ $\text{RR}_i$
Fog 68.49 67.98 64.56 67.01
Wet Ground 71.51 70.23 67.86 69.87
Snow
Motion Blur 63.99 58.75 52.18 58.31
Beam Missing 58.57 49.11 42.23 49.97
Crosstalk
Incomplete Echo 56.53 52.99 50.40 53.31
Cross-Sensor
  • Summary: $\text{mIoU}_{\text{clean}} =$ 73.28%, $\text{mCE} =$ %, $\text{mRR} =$ %.

References

@inproceedings{cheng2022cenet,
  title = {CENet: Toward Concise and Efficient Lidar Semantic Segmentation for Autonomous Driving},
  author = {Cheng, Hui-Xian and Han, Xian-Feng and Xiao, Guo-Qiang},
  booktitle = {IEEE International Conference on Multimedia and Expo},
  year = {2022},
}