Skip to content

Latest commit

 

History

History
48 lines (34 loc) · 2.05 KB

WaffleIron.md

File metadata and controls

48 lines (34 loc) · 2.05 KB

Robo3D Benchmark

The following metrics are consistently used in our benchmark:

  • Mean Corruption Error (mCE):

    • The Corruption Error (CE) for model $A$ under corruption type $i$ across 3 severity levels is: $\text{CE}_i^{\text{Model}A} = \frac{\sum((1 - \text{mIoU})^{\text{Model}A})}{\sum((1 - \text{mIoU})^{\text{Baseline}})}$.
    • The average CE for model $A$ on all $N$ corruption types, i.e., mCE, is calculated as: $\text{mCE} = \frac{1}{N}\sum\text{CE}_i$.
  • Mean Resilience Rate (mRR):

    • The Resilience Rate (RR) for model $A$ under corruption type $i$ across 3 severity levels is: $\text{RR}_i^{\text{Model}A} = \frac{\sum(\text{mIoU}^{\text{Model}A})}{3\times (\text{clean-mIoU}^{\text{Model}A})} .$
    • The average RR for model $A$ on all $N$ corruption types, i.e., mRR, is calculated as: $\text{mRR} = \frac{1}{N}\sum\text{RR}_i$.

WaffleIron

SemanticKITTI-C

Corruption Light Moderate Heavy Average $\text{CE}_i$ $\text{RR}_i$
Fog 54.57 49.31 32.67 45.52 123.45 68.93
Wet Ground 62.55 59.56 53.54 58.55 90.09 88.66
Snow 49.60 49.41 48.88 49.30 108.52 74.65
Motion Blur 37.61 32.75 28.69 33.02 99.85 50.00
Beam Missing 63.76 59.46 54.63 59.28 93.22 89.76
Crosstalk 26.66 22.02 18.76 22.48 186.08 34.04
Incomplete Echo 62.55 59.56 53.54 58.55 90.96 88.66
Cross-Sensor 63.34 59.77 40.74 54.62 84.11 82.71
  • Summary: $\text{mIoU}_{\text{clean}} =$ 66.04%, $\text{mCE} =$ 109.54%, $\text{mRR} =$ 72.18%.

nuScenes-C

References

@article{puy2023waffleiron,
  title = {Using a Waffle Iron for Automotive Point Cloud Semantic Segmentation},
  author = {Puy, Gilles and Boulch, Alexandre and Marlet, Renaud},
  journal = {arXiv preprint arxiv:2301.10100}
  year = {2023}
}