diff --git a/FltRegular/NumberTheory/AuxLemmas.lean b/FltRegular/NumberTheory/AuxLemmas.lean index f7ac7094..0b1058d1 100644 --- a/FltRegular/NumberTheory/AuxLemmas.lean +++ b/FltRegular/NumberTheory/AuxLemmas.lean @@ -4,6 +4,8 @@ import Mathlib.RingTheory.Valuation.ValuationRing import Mathlib.FieldTheory.Separable import Mathlib.RingTheory.Trace.Defs +import Mathlib + /-! This file contains lemmas that should go somewhere in a file in mathlib. @@ -132,10 +134,6 @@ lemma IsSeparable_of_isLocalization (R S Rₚ Sₚ) [CommRing R] [CommRing S] [F [IsScalarTower R S Sₚ] [IsScalarTower R Rₚ Sₚ] (M : Submonoid R) [IsLocalization M Rₚ] [IsLocalization (Algebra.algebraMapSubmonoid S M) Sₚ] [hRS : Algebra.IsSeparable R S] : Algebra.IsSeparable Rₚ Sₚ := by - have : algebraMap Rₚ Sₚ = IsLocalization.map (T := Algebra.algebraMapSubmonoid S M) Sₚ - (algebraMap R S) (Submonoid.le_comap_map M) := by - apply IsLocalization.ringHom_ext M - simp only [IsLocalization.map_comp, ← IsScalarTower.algebraMap_eq] refine ⟨fun x ↦ ?_⟩ obtain ⟨x, s, rfl⟩ := IsLocalization.mk'_surjective (Algebra.algebraMapSubmonoid S M) x obtain ⟨t, ht, e⟩ := s.prop @@ -145,8 +143,8 @@ lemma IsSeparable_of_isLocalization (R S Rₚ Sₚ) [CommRing R] [CommRing S] [F exact isUnit_of_invertible _ · rw [aeval_def] convert scaleRoots_eval₂_eq_zero _ (r := algebraMap S Sₚ x) _ - · rw [this, IsLocalization.map_mk', _root_.map_one, IsLocalization.mk'_eq_mul_mk'_one, - mul_comm] + · rw [IsLocalization.algebraMap_eq_map_map_submonoid M S, IsLocalization.map_mk', + _root_.map_one, IsLocalization.mk'_eq_mul_mk'_one, mul_comm] congr; ext; exact e.symm · rw [← aeval_def, ← map_aeval_eq_aeval_map, minpoly.aeval, map_zero] rw [← IsScalarTower.algebraMap_eq, ← IsScalarTower.algebraMap_eq]