From 5b8d72c3dd5f398f0613ec115cbd7485f2929ebb Mon Sep 17 00:00:00 2001 From: Ruben Van de Velde <65514131+Ruben-VandeVelde@users.noreply.github.com> Date: Thu, 7 Dec 2023 22:00:51 +0100 Subject: [PATCH] Golf --- FltRegular/CaseI/Statement.lean | 10 ++++------ 1 file changed, 4 insertions(+), 6 deletions(-) diff --git a/FltRegular/CaseI/Statement.lean b/FltRegular/CaseI/Statement.lean index d9b5f38a..3268b83f 100644 --- a/FltRegular/CaseI/Statement.lean +++ b/FltRegular/CaseI/Statement.lean @@ -19,14 +19,12 @@ namespace CaseI /-- Statement of case I with additional assumptions. -/ def SlightlyEasier : Prop := - ∀ ⦃a b c : ℤ⦄ {p : ℕ} [hpri : Fact p.Prime] (_ : @IsRegularPrime p hpri) (_ : 5 ≤ p) - (_ : ({a, b, c} : Finset ℤ).gcd id = 1) (_ : ¬a ≡ b [ZMOD p]) (_ : ¬↑p ∣ a * b * c), - a ^ p + b ^ p ≠ c ^ p + ∀ ⦃a b c : ℤ⦄ {p : ℕ} [Fact p.Prime], IsRegularPrime p → 5 ≤ p → + ({a, b, c} : Finset ℤ).gcd id = 1 → ¬a ≡ b [ZMOD p] → ¬↑p ∣ a * b * c → a ^ p + b ^ p ≠ c ^ p /-- Statement of case I. -/ def Statement : Prop := - ∀ ⦃a b c : ℤ⦄ {p : ℕ} [hpri : Fact p.Prime] (_ : @IsRegularPrime p hpri) - (_ : ¬↑p ∣ a * b * c), a ^ p + b ^ p ≠ c ^ p + ∀ ⦃a b c : ℤ⦄ {p : ℕ} [Fact p.Prime], IsRegularPrime p → ¬↑p ∣ a * b * c → a ^ p + b ^ p ≠ c ^ p theorem may_assume : SlightlyEasier → Statement := by intro Heasy @@ -47,7 +45,7 @@ theorem may_assume : SlightlyEasier → Statement := by have hp5 : 5 ≤ p := by by_contra! habs have : p ∈ Finset.Ioo 2 5 := - (Finset.mem_Ioo).2 ⟨Nat.lt_of_le_of_ne hpri.out.two_le hodd.symm, by linarith⟩ + (Finset.mem_Ioo).2 ⟨Nat.lt_of_le_of_ne hpri.out.two_le hodd.symm, by linarith⟩ fin_cases this · exact MayAssume.p_ne_three hprod H rfl · rw [show 2 + 1 + 1 = 2 * 2 from rfl] at hpri