diff --git a/FltRegular/NumberTheory/KummersLemma/KummersLemma.lean b/FltRegular/NumberTheory/KummersLemma/KummersLemma.lean index bb7e25ba..5bf9d363 100644 --- a/FltRegular/NumberTheory/KummersLemma/KummersLemma.lean +++ b/FltRegular/NumberTheory/KummersLemma/KummersLemma.lean @@ -17,7 +17,7 @@ variable {L} [Field L] [Algebra K L] [FiniteDimensional K L] variable [IsSplittingField K L (X ^ (p : ℕ) - C (u : K))] variable (σ : L ≃ₐ[K] L) (hσ : ∀ x, x ∈ Subgroup.zpowers σ) -theorem false_of_zeta_sub_one_pow_dvd_sub_one_of_pow_ne (u : (𝓞 K)ˣ) +theorem not_for_all_zeta_sub_one_pow_dvd_sub_one_of_pow_ne (u : (𝓞 K)ˣ) (hcong : (hζ.unit' - 1 : 𝓞 K) ^ (p : ℕ) ∣ (↑u : 𝓞 K) - 1) : ¬∀ v : K, v ^ (p : ℕ) ≠ u := by intro hu letI := Fact.mk (X_pow_sub_C_irreducible_of_prime hpri.out hu) @@ -75,7 +75,7 @@ theorem eq_pow_prime_of_unit_of_congruent (u : (𝓞 K)ˣ) simpa [ge_iff_le, Int.cast_one, sub_self, nsmul_eq_mul, Nat.cast_mul, PNat.pos, Nat.cast_pred, zero_sub, IsUnit.mul_iff, ne_eq, tsub_eq_zero_iff_le, not_le, dvd_neg, Units.isUnit, and_true, zero_add] using this - have := false_of_zeta_sub_one_pow_dvd_sub_one_of_pow_ne hp hreg hζ _ this + have := not_for_all_zeta_sub_one_pow_dvd_sub_one_of_pow_ne hp hreg hζ _ this simp only [not_forall, not_not] at this obtain ⟨v, hv⟩ := this have hv' : IsIntegral ℤ v := by