diff --git a/SphereEversion/Global/Gromov.lean b/SphereEversion/Global/Gromov.lean index 788aed17..6bcd2a92 100644 --- a/SphereEversion/Global/Gromov.lean +++ b/SphereEversion/Global/Gromov.lean @@ -98,16 +98,16 @@ theorem RelMfld.Ample.satisfiesHPrinciple' (hRample : R.Ample) (hRopen : IsOpen intro m rcases hε m with ⟨φ, ψ, ⟨e, rfl⟩, hφψ⟩ have : φ '' ball e 1 ∈ 𝓝 (φ e) := by - rw [← φ.openEmbedding.map_nhds_eq] + rw [← φ.isOpenEmbedding.map_nhds_eq] exact image_mem_map (ball_mem_nhds e zero_lt_one) use φ '' (ball e 1), this; clear this intro K₁ hK₁ K₀ K₀K₁ K₀_cpct K₁_cpct C f C_closed P₀f fC have K₁φ : K₁ ⊆ range φ := SurjOn.subset_range hK₁ have K₀φ : K₀ ⊆ range φ := K₀K₁.trans interior_subset |>.trans K₁φ replace K₀_cpct : IsCompact (φ ⁻¹' K₀) := - φ.openEmbedding.toIsInducing.isCompact_preimage' K₀_cpct K₀φ + φ.isOpenEmbedding.toIsInducing.isCompact_preimage' K₀_cpct K₀φ replace K₁_cpct : IsCompact (φ ⁻¹' K₁) := - φ.openEmbedding.toIsInducing.isCompact_preimage' K₁_cpct K₁φ + φ.isOpenEmbedding.toIsInducing.isCompact_preimage' K₁_cpct K₁φ have K₀K₁' : φ ⁻¹' K₀ ⊆ interior (φ ⁻¹' K₁) := by rw [← φ.isOpenMap.preimage_interior_eq_interior_preimage φ.continuous] gcongr diff --git a/SphereEversion/Global/LocalizedConstruction.lean b/SphereEversion/Global/LocalizedConstruction.lean index 01ffad50..1656e7a4 100644 --- a/SphereEversion/Global/LocalizedConstruction.lean +++ b/SphereEversion/Global/LocalizedConstruction.lean @@ -54,7 +54,7 @@ theorem OpenSmoothEmbedding.improve_formalSol (φ : OpenSmoothEmbedding 𝓘(ℝ have h𝓕C : ∀ᶠ x : EM near L.C, 𝓕.IsHolonomicAt x := by rw [eventually_nhdsSet_iff_forall] at hFC ⊢ intro e he - rw [φ.inducing.nhds_eq_comap, eventually_comap] + rw [φ.isInducing.nhds_eq_comap, eventually_comap] apply (hFC _ he).mono rintro x hx e rfl exact F.isHolonomicLocalize p hFφψ e hx diff --git a/SphereEversion/Global/SmoothEmbedding.lean b/SphereEversion/Global/SmoothEmbedding.lean index d8e1024b..a2f5f287 100644 --- a/SphereEversion/Global/SmoothEmbedding.lean +++ b/SphereEversion/Global/SmoothEmbedding.lean @@ -128,11 +128,11 @@ end open Filter -theorem openEmbedding : IsOpenEmbedding f := +theorem isOpenEmbedding : IsOpenEmbedding f := isOpenEmbedding_of_continuous_injective_open f.continuous f.injective f.isOpenMap -theorem inducing : IsInducing f := - f.openEmbedding.toIsInducing +theorem isInducing : IsInducing f := + f.isOpenEmbedding.toIsInducing theorem forall_near' {P : M → Prop} {A : Set M'} (h : ∀ᶠ m near f ⁻¹' A, P m) : ∀ᶠ m' near A ∩ range f, ∀ m, m' = f m → P m := by