-
Notifications
You must be signed in to change notification settings - Fork 7
/
main_sim.py
356 lines (309 loc) · 15.3 KB
/
main_sim.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
#!/usr/bin/env python
# Copyright (c) Facebook, Inc. and its affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import argparse
import builtins
import os
import pathlib
import random
import sys
import warnings
import numpy as np
import torch
import torch.nn as nn
import torch.nn.parallel
import torch.backends.cudnn as cudnn
import torch.distributed as dist
import torch.optim
import torch.multiprocessing as mp
import torch.utils.data
import torch.utils.data.distributed
from torchvision import transforms
import torchvision.models as torchvision_models
from torchvision.models import VGG16_Weights
sys.path.insert(0, str(pathlib.Path(__file__).parent.resolve()))
import utils
from utils import extract_features_pca
from models import dino_vits, moco_vits
from data.wikiart import WikiArtD
parser = argparse.ArgumentParser('dynamicDistances-Embedding Generation Module')
parser.add_argument('--dataset', type=str, required=True, help="Name of the dataset",
choices=['wikiart'])
parser.add_argument('--qsplit', default='query', choices=['query', 'database'], type=str, help="The inferences")
parser.add_argument('--data-dir', type=str, default=None,
help='The directory of concerned dataset')
parser.add_argument('--pt_style', default='csd', type=str)
parser.add_argument('-a', '--arch', metavar='ARCH', default='resnet50')
parser.add_argument('-j', '--workers', default=4, type=int, metavar='N',
help='number of data loading workers (default: 32)')
parser.add_argument('-b', '--batch-size', default=64, type=int,
metavar='N',
help='mini-batch size (default: 128), this is the total '
'batch size of all GPUs on all nodes when '
'using Data Parallel or Distributed Data Parallel')
parser.add_argument('--world-size', default=-1, type=int,
help='number of nodes for distributed training')
parser.add_argument('--rank', default=-1, type=int,
help='node rank for distributed training')
parser.add_argument('--dist-url', default='tcp://224.66.41.62:23456', type=str,
help='url used to set up distributed training')
parser.add_argument('--dist-backend', default='nccl', type=str,
help='distributed backend')
parser.add_argument('--seed', default=None, type=int,
help='seed for initializing training. ')
parser.add_argument('--gpu', default=None, type=int,
help='GPU id to use.')
parser.add_argument('--multiprocessing-distributed', action='store_true',
help='Use multi-processing distributed training to launch '
'N processes per node, which has N GPUs. This is the '
'fastest way to use PyTorch for either single node or '
'multi node data parallel training')
parser.add_argument('--multiscale', default=False, type=utils.bool_flag)
# additional configs:
parser.add_argument('--pretrained', default='', type=str,
help='path to moco pretrained checkpoint')
parser.add_argument('--num_loss_chunks', default=1, type=int)
parser.add_argument('--isvit', action='store_true')
parser.add_argument('--layer', default=1, type=int, help="layer from end to create descriptors from.")
parser.add_argument('--feattype', default='normal', type=str, choices=['otprojected', 'weighted', 'concated', 'gram', 'normal'])
parser.add_argument('--projdim', default=256, type=int)
parser.add_argument('-mp', '--model_path', type=str, default=None)
parser.add_argument('--gram_dims', default=1024, type=int)
parser.add_argument('--query_count', default=-1, type=int, help='Number of queries to consider for final evaluation. Works only for domainnet')
parser.add_argument('--embed_dir', default='./embeddings', type=str, help='Directory to save embeddings')
## Additional config for CSD
parser.add_argument('--eval_embed', default='head', choices=['head', 'backbone'], help="Which embed to use for eval")
parser.add_argument('--skip_val', action='store_true')
best_acc1 = 0
def main():
args = parser.parse_args()
if args.seed is not None:
random.seed(args.seed)
torch.manual_seed(args.seed)
cudnn.deterministic = True
warnings.warn('You have chosen to seed training. '
'This will turn on the CUDNN deterministic setting, '
'which can slow down your training considerably! '
'You may see unexpected behavior when restarting '
'from checkpoints.')
# utils.init_distributed_mode(args)
if args.gpu is not None:
warnings.warn('You have chosen a specific GPU. This will completely '
'disable data parallelism.')
if args.dist_url == "env://" and args.world_size == -1:
args.world_size = int(os.environ["WORLD_SIZE"])
args.distributed = args.world_size > 1 or args.multiprocessing_distributed
ngpus_per_node = torch.cuda.device_count()
if args.multiprocessing_distributed:
# Since we have ngpus_per_node processes per node, the total world_size
# needs to be adjusted accordingly
args.world_size = ngpus_per_node * args.world_size
# Use torch.multiprocessing.spawn to launch distributed processes: the
# main_worker process function
mp.spawn(main_worker, nprocs=ngpus_per_node, args=(ngpus_per_node, args))
else:
# Simply call main_worker function
main_worker(args.gpu, ngpus_per_node, args)
def main_worker(gpu, ngpus_per_node, args):
global best_acc1
args.gpu = gpu
# suppress printing if not master
if args.multiprocessing_distributed and args.gpu != 0:
def print_pass(*args):
pass
builtins.print = print_pass
if args.gpu is not None:
print("Use GPU: {} for training".format(args.gpu))
if args.distributed:
if args.dist_url == "env://" and args.rank == -1:
args.rank = int(os.environ["RANK"])
if args.multiprocessing_distributed:
# For multiprocessing distributed training, rank needs to be the
# global rank among all the processes
args.rank = args.rank * ngpus_per_node + gpu
dist.init_process_group(backend=args.dist_backend, init_method=args.dist_url,
world_size=args.world_size, rank=args.rank)
torch.distributed.barrier()
# create model
if args.pt_style == 'dino':
dinomapping = {
'vit_base': 'dino_vitb16',
'vit_base8': 'dino_vitb8', # TODO: this mapping is incorrect. Change it later
}
if args.arch not in dinomapping:
raise NotImplementedError('This model type does not exist/supported for DINO')
model = dino_vits.__dict__[dinomapping[args.arch]](
pretrained=True
)
elif args.pt_style == 'moco':
if args.arch == 'vit_base':
model = moco_vits.__dict__[args.arch]()
pretrained = torch.load('./pretrainedmodels/vit-b-300ep.pth.tar', map_location='cpu')
state_dict = pretrained['state_dict']
for k in list(state_dict.keys()):
# retain only base_encoder up to before the embedding layer
if k.startswith('module.base_encoder'):
# remove prefix
state_dict[k[len("module.base_encoder."):]] = state_dict[k]
# delete renamed or unused k
del state_dict[k]
model.load_state_dict(state_dict, strict=False)
else:
raise NotImplementedError('This model type does not exist/supported for MoCo')
elif args.pt_style == 'clip':
from models import clip
clipmapping = {
'vit_large': 'ViT-L/14',
'vit_base': 'ViT-B/16',
}
if args.arch not in clipmapping:
raise NotImplementedError('This model type does not exist/supported for CLIP')
model, preprocess = clip.load(clipmapping[args.arch])
elif args.pt_style == 'vgg':
model = torchvision_models.vgg16(weights=VGG16_Weights.IMAGENET1K_V1)
elif args.pt_style == 'sscd':
if args.arch == 'resnet50':
model = torch.jit.load("./pretrainedmodels/sscd_disc_mixup.torchscript.pt")
elif args.arch == 'resnet50_disc':
model = torch.jit.load("./pretrainedmodels/sscd_disc_large.torchscript.pt")
else:
NotImplementedError('This model type does not exist/supported for SSCD')
elif args.pt_style.startswith('csd'):
assert args.model_path is not None, "Model path missing for CSD model"
from CSD.model import CSD_CLIP
from CSD.utils import has_batchnorms, convert_state_dict
from CSD.loss_utils import transforms_branch0
args.content_proj_head = "default"
model = CSD_CLIP(args.arch, args.content_proj_head)
if has_batchnorms(model):
model = nn.SyncBatchNorm.convert_sync_batchnorm(model)
checkpoint = torch.load(args.model_path, map_location="cpu")
state_dict = convert_state_dict(checkpoint['model_state_dict'])
msg = model.load_state_dict(state_dict, strict=False)
print(f"=> loaded checkpoint with msg {msg}")
preprocess = transforms_branch0
if not torch.cuda.is_available():
print('using CPU, this will be slow')
elif args.distributed:
# For multiprocessing distributed, DistributedDataParallel constructor
# should always set the single device scope, otherwise,
# DistributedDataParallel will use all available devices.
if args.gpu is not None:
torch.cuda.set_device(args.gpu)
model.cuda(args.gpu)
# When using a single GPU per process and per
# DistributedDataParallel, we need to divide the batch size
# ourselves based on the total number of GPUs we have
args.batch_size = int(args.batch_size / args.world_size)
args.workers = int((args.workers + ngpus_per_node - 1) / ngpus_per_node)
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu])
else:
model.cuda()
# DistributedDataParallel will divide and allocate batch_size to all
# available GPUs if device_ids are not set
model = torch.nn.parallel.DistributedDataParallel(model)
elif args.gpu is not None:
torch.cuda.set_device(args.gpu)
model = model.cuda(args.gpu)
else:
# DataParallel will divide and allocate batch_size to all available GPUs
if args.arch.startswith('alexnet') or args.arch.startswith('vgg'):
model.features = torch.nn.DataParallel(model.features)
model.cuda()
model = torch.nn.DataParallel(model).cuda()
cudnn.benchmark = True
# Data loading code
if args.pt_style == 'clip': # and args.arch == 'resnet50':
ret_transform = preprocess
elif args.pt_style.startswith('csd'):
ret_transform = preprocess
elif args.pt_style in ['dino', 'moco', 'vgg']:
ret_transform = transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
])
else:
ret_transform = transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize([0.5], [0.5]),
])
if args.dataset == 'wikiart':
dataset_query = WikiArtD(args.data_dir, args.qsplit, ret_transform)
dataset_values = WikiArtD(args.data_dir, 'database', ret_transform)
else:
raise NotImplementedError
## creating dataloader
if args.distributed:
sampler = torch.utils.data.distributed.DistributedSampler(dataset_values, shuffle=False)
qsampler = torch.utils.data.distributed.DistributedSampler(dataset_query, shuffle=False)
else:
sampler = None
qsampler = None
data_loader_values = torch.utils.data.DataLoader(
dataset_values,
sampler=sampler,
batch_size=args.batch_size,
num_workers=args.workers,
pin_memory=True,
drop_last=False,
)
data_loader_query = torch.utils.data.DataLoader(
dataset_query,
sampler=qsampler,
batch_size=args.batch_size if args.feattype != 'gram' else 32,
num_workers=args.workers,
pin_memory=True,
drop_last=False,
)
print(f"train: {len(dataset_values)} imgs / query: {len(dataset_query)} imgs")
model.eval()
############################################################################
if not args.multiprocessing_distributed:
utils.init_distributed_mode(args)
if args.rank == 0: # only rank 0 will work from now on
# Step 1: extract features
os.makedirs(args.embed_dir, exist_ok=True)
embsavepath = os.path.join(
args.embed_dir,
f'{args.pt_style}_{args.arch}_{args.dataset}_{args.feattype}',
f'{str(args.layer)}')
if args.feattype == 'gram':
path1, path2 = embsavepath.split('_gram')
embsavepath = '_'.join([path1, 'gram', str(args.gram_dims), args.qsplit, path2])
if os.path.isfile(os.path.join(embsavepath, 'database/embeddings_0.pkl')) or args.skip_val:
valexist = True
else:
valexist = False
if args.feattype == 'gram':
pca_dirs, meanvals = None, None
query_features, pca_dirs = extract_features_pca(args, model, pca_dirs, args.gram_dims, data_loader_query,
False, multiscale=args.multiscale)
if not valexist:
values_features, _ = extract_features_pca(args, model, pca_dirs, args.gram_dims, data_loader_values,
False, multiscale=args.multiscale)
elif args.pt_style.startswith('csd'):
from CSD.utils import extract_features
query_features = extract_features(model, data_loader_query, use_cuda=False, use_fp16=True, eval_embed=args.eval_embed)
if not valexist:
values_features = extract_features(model, data_loader_values, use_cuda=False, use_fp16=True, eval_embed=args.eval_embed)
else:
from utils import extract_features
query_features = extract_features(args, model, data_loader_query, False, multiscale=args.multiscale)
if not valexist:
values_features = extract_features(args, model, data_loader_values, False,
multiscale=args.multiscale)
from search.embeddings import save_chunk
l_query_features = list(np.asarray(query_features.cpu().detach(), dtype=np.float16))
save_chunk(l_query_features, dataset_query.namelist, 0, f'{embsavepath}/{args.qsplit}')
if not valexist:
l_values_features = list(np.asarray(values_features.cpu().detach(), dtype=np.float16))
save_chunk(l_values_features, dataset_values.namelist, 0, f'{embsavepath}/database')
print(f'Embeddings saved to: {embsavepath}')
if __name__ == '__main__':
main()