-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdistinct.prime - Copy.py
55 lines (40 loc) · 1.26 KB
/
distinct.prime - Copy.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
from import math
# Function to generate all prime
# numbers less than n
def SieveOfEratosthenes(n, isPrime) :
# Initialize all entries of boolean
# array as true. A value in isPrime[i]
# will finally be false if i is Not a
# prime, else true bool isPrime[n+1];
isPrime[0], isPrime[1] = False, False
for i in range(2, n + 1) :
isPrime[i] = True
for p in range(2, int(sqrt(n)) + 1) :
# If isPrime[p] is not changed,
# then it is a prime
if isPrime[p] == True :
for i in range(p * 2, n + 1, p) :
isPrime[i] = False
# Function to print a prime pair
# with given product
def findPrimePair(n) :
flag = 0
# Generating primes using Sieve
isPrime = [False] * (n + 1)
SieveOfEratosthenes(n, isPrime)
# Traversing all numbers to
# find first pair
for i in range(2, n) :
x = int(n / i)
if (isPrime[i] & isPrime[x] and
x != i and x * i == n) :
print(i, x)
flag = 1
break
if not flag :
print("No such pair found")
# Driver code
if __name__ == "__main__" :
# Function calling
n = 39;
findPrimePair(n)