-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathledworld.py
239 lines (198 loc) · 7.5 KB
/
ledworld.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
import json
from math import factorial, sqrt
import matplotlib.pyplot as plt
import numpy as np
# http://scipy.github.io/old-wiki/pages/Cookbook/SavitzkyGolay
def savitzky_golay(y, window_size, order, deriv=0, rate=1):
r"""Smooth (and optionally differentiate) data with a Savitzky-Golay filter.
The Savitzky-Golay filter removes high frequency noise from data.
It has the advantage of preserving the original shape and
features of the signal better than other types of filtering
approaches, such as moving averages techniques.
Parameters
----------
y : array_like, shape (N,)
the values of the time history of the signal.
window_size : int
the length of the window. Must be an odd integer number.
order : int
the order of the polynomial used in the filtering.
Must be less then `window_size` - 1.
deriv: int
the order of the derivative to compute (default = 0 means only smoothing)
Returns
-------
ys : ndarray, shape (N)
the smoothed signal (or it's n-th derivative).
Notes
-----
The Savitzky-Golay is a type of low-pass filter, particularly
suited for smoothing noisy data. The main idea behind this
approach is to make for each point a least-square fit with a
polynomial of high order over a odd-sized window centered at
the point.
Examples
--------
t = np.linspace(-4, 4, 500)
y = np.exp( -t**2 ) + np.random.normal(0, 0.05, t.shape)
ysg = savitzky_golay(y, window_size=31, order=4)
import matplotlib.pyplot as plt
plt.plot(t, y, label='Noisy signal')
plt.plot(t, np.exp(-t**2), 'k', lw=1.5, label='Original signal')
plt.plot(t, ysg, 'r', label='Filtered signal')
plt.legend()
plt.show()
References
----------
.. [1] A. Savitzky, M. J. E. Golay, Smoothing and Differentiation of
Data by Simplified Least Squares Procedures. Analytical
Chemistry, 1964, 36 (8), pp 1627-1639.
.. [2] Numerical Recipes 3rd Edition: The Art of Scientific Computing
W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery
Cambridge University Press ISBN-13: 9780521880688
"""
try:
window_size = np.abs(np.int(window_size))
order = np.abs(np.int(order))
except ValueError:
raise ValueError("window_size and order have to be of type int")
if window_size % 2 != 1 or window_size < 1:
raise TypeError("window_size size must be a positive odd number")
if window_size < order + 2:
raise TypeError("window_size is too small for the polynomials order")
order_range = range(order + 1)
half_window = (window_size - 1) // 2
# precompute coefficients
b = np.mat([[k ** i for i in order_range] for k in range(-half_window, half_window + 1)])
m = np.linalg.pinv(b).A[deriv] * rate ** deriv * factorial(deriv)
# pad the signal at the extremes with
# values taken from the signal itself
firstvals = y[0] - np.abs(y[1:half_window + 1][::-1] - y[0])
lastvals = y[-1] + np.abs(y[-half_window - 1:-1][::-1] - y[-1])
y = np.concatenate((firstvals, y, lastvals))
return np.convolve(m[::-1], y, mode='valid')
class Led:
def __init__(self, id, x, y):
self.id = id
self.x = x
self.y = y
def get_xy(self):
return np.array([self.x, self.y])
def to_json(self):
return {
"id": self.id,
"x": self.x,
"y": self.y
}
@staticmethod
def from_json(json):
id = json["id"]
x = json["x"]
y = json["y"]
return Led(id, x, y)
class LedWorld:
def __init__(self):
self.leds = {}
def add_led(self, led: Led):
self.leds[led.id] = led
def size(self, includeNan=True):
"""
for LEDs 0..299 this will return 300
:param includeNan:
:return:
"""
if includeNan:
return max(self.leds.keys()) + 1
else:
return len(self.leds)
def plot(self):
ixys = self.to_np(False)
fig, ax = plt.subplots()
fig.set_size_inches(10, 10)
ax.plot(ixys[1, :], ixys[2, :])
ax.invert_yaxis()
# for i in range(len(ixys[0,:])):
# ax.annotate(ixys[0,i], (ixys[1,i], ixys[2,i]))
fig.show()
return fig
def to_np(self, includeNan=True):
res = np.empty((3, self.size(includeNan)), float)
if includeNan:
res[:] = np.nan
for led in sorted(self.leds.values(), key=lambda l: l.id):
res[0, led.id] = led.id
res[1, led.id] = led.x
res[2, led.id] = led.y
else:
for id, led in enumerate(sorted(self.leds.values(), key=lambda l: l.id)):
res[0, id] = led.id
res[1, id] = led.x
res[2, id] = led.y
return res
def fill_missing_leds(self):
locs = np.arange(self.size())
xys = self.to_np(False)
ii = xys[0, :]
xs = xys[1, :]
ys = xys[2, :]
resx = np.interp(locs, ii, xs, period=self.size())
resy = np.interp(locs, ii, ys, period=self.size())
for i in range(self.size()):
if not i in self.leds.keys():
self.add_led(Led(i, resx[i], resy[i]))
def emplace_np(self, np):
for i in range(len(np[0, :])):
id = np[0, i]
x = np[1, i]
y = np[2, i]
self.leds[id].x = x
self.leds[id].y = y
def smoothen(self):
xys = self.to_np(False)
ii = xys[0, :]
xs = xys[1, :]
ys = xys[2, :]
xs2 = savitzky_golay(xs, 21, 3)
ys2 = savitzky_golay(ys, 21, 3)
xys[1, :] = xs2
xys[2, :] = ys2
self.emplace_np(xys)
def to_metric(self, physical_led_dist=5/300):
# get numpy array
ledworld_np = self.to_np()
max_dist_per_led = 0
for i in range(1, len(ledworld_np[0])):
# calculate section characteristics
section_led_count = ledworld_np[0][i] - ledworld_np[0][i - 1]
section_x_diff = ledworld_np[1][i] - ledworld_np[1][i - 1]
section_y_diff = ledworld_np[2][i] - ledworld_np[2][i - 1]
section_len = sqrt(pow(section_x_diff, 2) + pow(section_y_diff, 2))
# calculate local distance per led
dist_per_led = section_len / section_led_count
# compare & set max distance per led accordingly
max_dist_per_led = max(dist_per_led, max_dist_per_led)
# calculate correction factors
y_max = max(ledworld_np[2])
factor = physical_led_dist / max_dist_per_led
# apply correction factors
ledworld_np[1] = ledworld_np[1] * factor
ledworld_np[2] = (y_max - ledworld_np[2]) * factor
self.emplace_np(ledworld_np)
def to_json(self):
res = [led.to_json() for led in sorted(self.leds.values(), key=lambda l: l.id)]
return json.dumps(res, indent=2)
def to_json_file(self, filename):
def string_to_file(string, file):
with open(file, "w") as text_file:
print(string, file=text_file)
string_to_file(self.to_json(), filename)
@staticmethod
def from_json_file(filename):
def string_from_file(filename):
with open(filename, "r") as text_file:
return text_file.read()
world = LedWorld()
leds = json.loads(string_from_file(filename))
for led in leds:
world.add_led(Led.from_json(led))
return world