forked from julesripoll/dqn-pong-breakout
-
Notifications
You must be signed in to change notification settings - Fork 0
/
train_agent.py
69 lines (57 loc) · 2.26 KB
/
train_agent.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
import argparse
import os
import gym
from agents.dqn import DQNAgent
from agents.double_dqn import DoubleDQNAgent
from utils.utils import play_game
if __name__ == '__main__':
env = gym.make('MinAtar/Breakout-v1')
env.reset()
parser = argparse.ArgumentParser()
parser.add_argument('--agent', type=str, default='ddqn', help='Agent choice : DQN/DDQN')
parser.add_argument('--gamma', type=float, default=0.99, help='Gamma')
parser.add_argument('--lr', type=float, default=1e-3, help='Learning rate')
parser.add_argument('--batch_size', type=int, default=32, help='Batch size')
parser.add_argument('--epsilon_min', type=float, default=0.01, help='Minimum of epsilon')
parser.add_argument('--epsilon_decay', type=float, default=0.999, help='Decay of epsilon')
parser.add_argument('--memory_size', type=int, default=100_000, help='Memory size')
parser.add_argument('--max_steps', type=int, default=5000, help='Number of steps of training')
parser.add_argument('--play_game', type=bool, default=False, help='Play a game after the training')
args = parser.parse_args()
agent_type = args.agent
gamma = args.gamma
lr = args.lr
batch_size = args.batch_size
epsilon_min = args.epsilon_min
epsilon_decay = args.epsilon_decay
memory_size = args.memory_size
max_steps = args.max_steps
play_a_game = args.play_game
saving_dir = './networks_weights/'
if agent_type == 'dqn':
agent = DQNAgent(
env,
gamma=gamma,
lr=lr,
batch_size=batch_size,
epsilon_min=epsilon_min,
epsilon_decay=epsilon_decay,
memory_size=memory_size,
checkpoint_directory=saving_dir,
)
else:
agent = DoubleDQNAgent(
env,
gamma=gamma,
lr=lr,
batch_size=batch_size,
epsilon_min=epsilon_min,
epsilon_decay=epsilon_decay,
memory_size=memory_size,
checkpoint_directory=saving_dir,
)
agent.train(max_steps)
agent_path = os.path.join(saving_dir, agent_type + '.zip')
agent.save(agent_path, override=True, save_memory=True)
if play_a_game:
play_game(env, agent, path=f"./games/{agent_type}-agent-game.gif")