-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_lenet.py
147 lines (125 loc) · 5.5 KB
/
train_lenet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
import torch
import torchvision
from torch.utils.tensorboard import SummaryWriter
import os
import numpy as np
import random
from models import NPNLeNet5
import argparse
import time
parser = argparse.ArgumentParser(description='PyTorch NPNs MNIST Training')
parser.add_argument('--lr', default=0.001, type=float, help='learning rate')
parser.add_argument('--batch_size', default=128, type=int, help='batch size')
# parser.add_argument('--k', default=7, type=float, help='k')
# parser.add_argument('--mode', default='sparse', type=str, help='training mode: expand or sparse')
# parser.add_argument('--init_size', default=(20, 50, 500), type=int, nargs='+', help='initial size of the LeNet (1,2,3 layer)')
parser.add_argument('--k', default=1, type=float, help='k')
parser.add_argument('--mode', default='expand', type=str, help='training mode: expand or sparse')
parser.add_argument('--init_size', default=(3, 3, 3), type=int, nargs='+', help='initial size of the LeNet (1,2,3 layer)')
parser.add_argument('--lambas', default=(10, 0.5, 0.1, 10), type=int, nargs='+', help='l0 regularization strength')
parser.add_argument('--stage1', default=100, type=int, help='the end epoch of stage 1')
parser.add_argument('--stage2', default=350, type=int, help='the end epoch of stage 2')
parser.add_argument('--print_freq', default=200, type=int, help='print freq')
args = parser.parse_args()
def setup_seed(seed):
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
np.random.seed(seed)
random.seed(seed)
torch.backends.cudnn.deterministic = True
# set seed
torch.backends.cudnn.benchmark = True
setup_seed(1)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print('Using ', device)
# load dataset
transform_data = torchvision.transforms.Compose([torchvision.transforms.ToTensor()])
train_loader = torch.utils.data.DataLoader(
torchvision.datasets.MNIST('./data', train=True, download=True,
transform=transform_data),
batch_size=args.batch_size, shuffle=True, num_workers=1)
val_loader = torch.utils.data.DataLoader(
torchvision.datasets.MNIST('./data', train=False, transform=transform_data),
batch_size=args.batch_size, shuffle=False, num_workers=1)
# tensorboard
writer = SummaryWriter(f'logs/{args.mode}/{time.localtime()}')
# model
model = NPNLeNet5(init_size=args.init_size, lambas=args.lambas, device=device).to(device)
# optimizer
optimizer = torch.optim.Adam(model.parameters(), args.lr)
# scheduler
scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones=[400], gamma=0.1)
# loss function
def criterion(output, target):
loss = torch.nn.CrossEntropyLoss().to(device)(output, target)
total_loss = (model.regularization() + loss).to(device)
return total_loss
def train(epoch):
model.train()
train_loss = 0
correct = 0
total = 0
for batch_idx, (input_, target) in enumerate(train_loader):
input_, target = input_.to(device), target.to(device)
optimizer.zero_grad()
outputs = model(input_, target)
loss = criterion(outputs, target)
loss.backward()
optimizer.step()
train_loss += loss.item()
_, predicted = outputs.max(1)
total += target.size(0)
correct += predicted.eq(target).sum().item()
if batch_idx % args.print_freq == 0:
step = epoch * len(train_loader) + batch_idx
writer.add_scalar('train/loss', train_loss / (batch_idx + 1), global_step=step)
writer.add_scalar('train/accuracy', correct / total, global_step=step)
print('[Epoch {}] Train Loss: {:.2f} | Accuracy: {:.2f}%'.format(epoch,
train_loss / (batch_idx + 1), 100. * correct / total))
def val(epoch):
model.eval()
val_loss = 0
correct = 0
total = 0
with torch.no_grad():
for batch_idx, (input_, target) in enumerate(val_loader):
input_, target = input_.to(device), target.to(device)
output = model(input_)
loss = criterion(output, target)
val_loss += loss.item()
_, predicted = output.max(1)
total += target.size(0)
correct += predicted.eq(target).sum().item()
print('[Epoch {}] Validation Loss: {:.2f} | Accuracy: {:.2f}% | # of Paramters: {}'.format(epoch,
val_loss / (batch_idx + 1), 100. * correct / total, model.para_num()))
for (i, num) in enumerate(model.get_activated_neurons()):
writer.add_scalar("val_layer/{}".format(i), num, global_step=epoch)
writer.add_scalar('val/loss', val_loss / (batch_idx + 1), global_step=epoch)
writer.add_scalar('val/accuracy', correct / total, global_step=epoch)
writer.add_scalar("# of parameters", model.para_num(), global_step=epoch)
return val_loss / total
def main():
prev_loss = 100
for epoch in range(500):
if epoch == 0:
print('Stage 1')
model.set_k(5000)
if epoch == args.stage1:
print('Stage 2')
if args.mode == 'expand':
model.set_k(args.k)
else:
model.set_k(args.k)
if epoch == args.stage2:
print('Stage 3')
model.set_k(5000)
train(epoch)
val_loss = val(epoch)
scheduler.step(epoch)
writer.add_scalar('k', model.k, global_step=epoch)
if args.stage1 < epoch < args.stage2:
if args.mode == 'expand':
if val_loss < prev_loss:
model.expand(0)
prev_loss = val_loss
main()