-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_syn.py
281 lines (234 loc) · 12.3 KB
/
train_syn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
import os
import sys
import time
import argparse
import numpy as np
from numpy import linalg
import matplotlib.pyplot as plt
from matplotlib.patches import Circle, Arc
import torch
import torch.nn.functional as nfunc
from torch.utils.data import TensorDataset, DataLoader
from six.moves import cPickle
from torch.utils.tensorboard import SummaryWriter
from models.NPN_MLP import NPNMLP
parser = argparse.ArgumentParser(description='PyTorch NPNs Synthetic Training')
parser.add_argument('--lr', default=0.001, type=float, help='learning rate')
parser.add_argument('--batch_size', default=32, type=int, help='batch size')
# parser.add_argument('--k', default=7, type=float, help='k')
# parser.add_argument('--mode', default='sparse', type=str, help='training mode: expand or sparse')
# parser.add_argument('--init_size', default=(100, 80), type=int, nargs='+',help='initial size of the MLP (1,2 layer)')
# parser.add_argument('--stage1', default=500, type=int, help='the end epoch of stage 1')
# parser.add_argument('--stage2', default=1000, type=int, help='the end epoch of stage 2')
# parser.add_argument('--lambas', default=(0.35, 14), nargs='+', type=float, help='l0 regularization strength')
parser.add_argument('--k', default=1, type=float, help='k')
parser.add_argument('--mode', default='expand', type=str, help='training mode: expand or sparse')
parser.add_argument('--init_size', default=(3, 3), type=int, nargs='+', help='initial size of the MLP (1,2 layer)')
parser.add_argument('--stage1', default=100, type=int, help='the end epoch of stage 1')
parser.add_argument('--stage2', default=1000, type=int, help='the end epoch of stage 2')
parser.add_argument('--lambas', default=(.35, 14), type=float, nargs='+', help='l0 regularization strength')
parser.add_argument('--print_freq', default=200, type=int, help='print freq')
parser.add_argument('--dataset', type=str, default='1', help='syndata-1, syndata-2 (default: 1)')
parser.add_argument('--data-dir', type=str, default='./data', help='default: ./dataset')
parser.add_argument('--iterations', type=int, default=1000, metavar='N', help='number of iterations (default: 1000)')
parser.add_argument('--times', type=int, default=2, metavar='N', help='N experiments (default: 1)')
parser.add_argument('--seed', type=int, default=1, metavar='N', help='random seed (default: 1)')
parser.add_argument('--moment', type=float, default=0.1, help='momentum for SGD (default: 0.1)')
parser.add_argument('--eps', type=float, default=1, help='eps * perturbation (default: 1)')
parser.add_argument('--alpha', type=int, default=4, help='alpha for upper/lower bound, (default: 4)')
parser.add_argument('--dist-norm', type=str, default="inf", help='distance norm{inf, 1, 2}, (default: inf)')
parser.add_argument('--top-k', type=int, default=1, help='top k, 1-9, (default: 1)')
parser.add_argument('--use-h', action='store_true', default=False, help='use output h of hidden layers')
parser.add_argument('--use-logits', action='store_true', default=False, help='use logits, default use prob vectors')
parser.add_argument('--ul-logits', action='store_true', default=False, help='use logits for unlabel data, default use prob vectors')
parser.add_argument('--use-unit', action='store_true', default=False, help='use logits default use prob vectors')
parser.add_argument('--drop', type=float, default=0.5, help='dropout rate, (default: 0.5)')
parser.add_argument('--no-app', action='store_true', default=False, help='not use approximation')
parser.add_argument('--l2-wt', type=float, default=0, help='l2 weight decay, (default: 0)')
parser.add_argument('--threshold', type=float, default=1, help='threshold for margin points selection(default: 1)')
parser.add_argument('--log-dir', type=str, default='', metavar='S', help='tensorboard directory, (default: an absolute path)')
parser.add_argument('--vis', action='store_true', default=False, help='visual by tensor board')
args = parser.parse_args()
args.dir_path = "."
# use some parameters, pid and running time to mark the process
args_dict = vars(args)
run_time = time.strftime('%d%H%M', time.localtime(time.time()))
base_dir = os.path.join(os.environ['HOME'], 'project/runs') if not args.log_dir else args.log_dir
print("args in this experiment:\n%s" % '\n'.join(str(e) for e in sorted(vars(args).items())))
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print('Using ', device)
# define loss function
def criterion(output, target_var):
loss = torch.nn.CrossEntropyLoss().to(device)(output, target_var)
reg_loss = model.regularization()
total_loss = (loss + reg_loss).to(device)
return total_loss
def visualize_contour(epoch, acc, model, d_i, x_data, y_data, basis, val_loader, args, with_lds=False, save_filename='prob_cont'):
line_width = 10
range_x = np.arange(-2.0, 2.1, 0.05)
a_inv = linalg.inv(np.dot(basis, basis.T))
train_x_org = np.dot(x_data, np.dot(basis.T, a_inv))
test_x_org = np.zeros((range_x.shape[0] ** 2, 2))
train_x_1_ind = np.where(y_data == 1)[0]
train_x_0_ind = np.where(y_data == 0)[0]
for t in range(range_x.shape[0]):
for j in range(range_x.shape[0]):
test_x_org[range_x.shape[0] * t + j, 0] = range_x[t]
test_x_org[range_x.shape[0] * t + j, 1] = range_x[j]
test_x = np.dot(test_x_org, basis)
model.eval()
f_p_y_given_x = model(torch.FloatTensor(test_x).to(device))
pred = nfunc.softmax(f_p_y_given_x, dim=1)[:, 1].cpu().detach().numpy()
z = np.zeros((range_x.shape[0], range_x.shape[0]))
for t in range(range_x.shape[0]):
for j in range(range_x.shape[0]):
z[t, j] = pred[range_x.shape[0] * t + j]
y, x = np.meshgrid(range_x, range_x)
font_size = 15
rc = 'r'
bc = 'b'
if d_i == "1":
rescale = 1.0 # /np.sqrt(500)
arc1 = Arc(xy=(0.5 * rescale, -0.25 * rescale), width=2.0 * rescale, height=2.0 * rescale, angle=0, theta1=270,
theta2=180, linewidth=line_width, alpha=0.15, color=rc)
arc2 = Arc(xy=(-0.5 * rescale, +0.25 * rescale), width=2.0 * rescale, height=2.0 * rescale, angle=0, theta1=90,
theta2=360, linewidth=line_width, alpha=0.15, color=bc)
fig = plt.gcf()
fig.gca().add_artist(arc1)
fig.gca().add_artist(arc2)
plt.xticks(fontsize=font_size)
plt.yticks(fontsize=font_size)
else:
rescale = 1.0 # /np.sqrt(500)
circle1 = Circle((0, 0), 1.0 * rescale, color=rc, alpha=0.2, fill=False, linewidth=line_width)
circle2 = Circle((0, 0), 0.15 * rescale, color=bc, alpha=0.2, fill=False, linewidth=line_width)
fig = plt.gcf()
fig.gca().add_artist(circle1)
fig.gca().add_artist(circle2)
plt.xticks(fontsize=font_size)
plt.yticks(fontsize=font_size)
try:
levels = [0.05, 0.2, 0.35, 0.5, 0.65, 0.8, 0.95]
cs = plt.contour(x * rescale, y * rescale, z, 7, cmap='bwr', vmin=0., vmax=1.0, linewidths=8., levels=levels)
cbar = plt.colorbar(cs)
cbar.ax.tick_params(labelsize=font_size)
plt.setp(cs.collections, linewidth=1.0)
plt.contour(x * rescale, y * rescale, z, 1, cmap='binary', vmin=0, vmax=0.5, linewidths=2.0)
plt.xlim([-2. * rescale, 2. * rescale])
plt.ylim([-2. * rescale, 2. * rescale])
plt.xticks([-2.0, -1.0, 0, 1, 2.0], fontsize=font_size)
plt.yticks([-2.0, -1.0, 0, 1, 2.0], fontsize=font_size)
plt.scatter(train_x_org[train_x_1_ind, 0] * rescale, train_x_org[train_x_1_ind, 1] * rescale, s=10, marker='o', c=rc, label='$y=1$')
plt.scatter(train_x_org[train_x_0_ind, 0] * rescale, train_x_org[train_x_0_ind, 1] * rescale, s=10, marker='^', c=bc, label='$y=0$')
plt.title('#{}, Accuracy: {:.2f}%, # of parameters: {}'.format(epoch, acc*100, model.para_num()), fontsize=font_size)
plt.savefig(save_filename + '.png')
plt.savefig(save_filename + '.pdf')
# plt.show(block=False)
plt.close()
except():
print("error")
from time import localtime
current_time = time.strftime('%Y-%m-%d %H:%M:%S', localtime())
with open('%s/syndata_%s.pkl' % (args.data_dir, args.dataset), "rb") as f:
if sys.version_info.major == 3:
dataset = cPickle.load(f, encoding='bytes')
else:
dataset = cPickle.load(f)
x_train = torch.FloatTensor(np.asarray(dataset[0][1][0][0:500]))
t_train = torch.LongTensor(np.asarray(dataset[0][1][1][0:500]))
x_valid = torch.FloatTensor(np.asarray(dataset[0][1][0][500:]))
t_valid = torch.LongTensor(np.asarray(dataset[0][1][1][500:]))
train_loader = DataLoader(TensorDataset(x_train, t_train), 128, False)
val_loader = DataLoader(TensorDataset(x_valid, t_valid), 128, False)
error_rate = 1.0
best_err_rate = 100
best_model = None
avg_error = 0
avg_local_error = 0
local_best_rate = 100
args.dist_norm = int(args.dist_norm) if args.dist_norm != "inf" else np.inf
# tensorboard
writer = SummaryWriter(f'logs/{args.mode}/{time.localtime()}')
# model
model = NPNMLP(init_size=args.init_size, lambas=args.lambas, device=device).to(device)
# optimizer
optimizer = torch.optim.Adam(model.parameters(), args.lr)
# scheduler
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=1000, gamma=0.1)
# loss function
def criterion(output, target):
loss = torch.nn.CrossEntropyLoss().to(device)(output, target)
total_loss = (model.regularization() + loss).to(device)
return total_loss
def train(epoch):
model.train()
train_loss = 0
correct = 0
total = 0
for batch_idx, (input_, target) in enumerate(train_loader):
input_, target = input_.to(device), target.to(device)
optimizer.zero_grad()
outputs = model(input_, target)
loss = criterion(outputs, target)
loss.backward()
optimizer.step()
train_loss += loss.item()
_, predicted = outputs.max(1)
total += target.size(0)
correct += predicted.eq(target).sum().item()
if batch_idx % args.print_freq == 0:
step = epoch * len(train_loader) + batch_idx
writer.add_scalar('train/loss', train_loss / (batch_idx + 1), global_step=step)
writer.add_scalar('train/accuracy', correct / total, global_step=step)
print('[Epoch {}] Train Loss: {:.2f} | Accuracy: {:.2f}%'.format(epoch,
train_loss / (batch_idx + 1), 100. * correct / total))
def val(epoch):
model.eval()
val_loss = 0
correct = 0
total = 0
with torch.no_grad():
for batch_idx, (input_, target) in enumerate(val_loader):
input_, target = input_.to(device), target.to(device)
output = model(input_)
loss = criterion(output, target)
val_loss += loss.item()
_, predicted = output.max(1)
total += target.size(0)
correct += predicted.eq(target).sum().item()
print('[Epoch {}] Validation Loss: {:.2f} | Accuracy: {:.2f}% | # of Paramters: {}'.format(epoch,
val_loss / (batch_idx + 1), 100. * correct / total, model.para_num()))
for (i, num) in enumerate(model.get_activated_neurons()):
writer.add_scalar("val_layer/{}".format(i), num, global_step=epoch)
writer.add_scalar('val/loss', val_loss / (batch_idx + 1), global_step=epoch)
writer.add_scalar('val/accuracy', correct / total, global_step=epoch)
writer.add_scalar("# of parameters", model.para_num(), global_step=epoch)
test_name = "plot/{}/test{}".format(args.mode, str(epoch).zfill(4))
if not os.path.isdir("plot/{}".format(args.mode)):
os.makedirs("plot/{}".format(args.mode))
visualize_contour(epoch, correct / total, model, args.dataset, x_valid, t_valid, dataset[1], val_loader, args,
with_lds=True, save_filename=test_name)
return val_loss / total
prev_loss = 100
for epoch in range(1, 2000):
if epoch == 0:
print('Stage 1')
model.set_k(5000)
if epoch == args.stage1:
print('Stage 2')
if args.mode == 'expand':
model.set_k(args.k)
else:
model.set_k(args.k)
if epoch == args.stage2:
print('Stage 3')
model.set_k(5000)
train(epoch)
val_loss = val(epoch)
scheduler.step(epoch)
writer.add_scalar('k', model.k, global_step=epoch)
if args.stage1 < epoch < args.stage2:
if args.mode == 'expand':
if val_loss < prev_loss:
model.expand(0.1)
prev_loss = val_loss