-
Notifications
You must be signed in to change notification settings - Fork 0
/
ekv.py
751 lines (639 loc) · 25.2 KB
/
ekv.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
# -*- coding: iso-8859-1 -*-
# ekv.py
# Partial implementation of the EKV 3.0 MOS transistor model
# Copyright 2010 Giuseppe Venturini
#
# The EKV model was developed by Matthias Bucher, Christophe Lallement,
# Christian Enz, Fabien Théodoloz, François Krummenacher at the Electronics
# Laboratories, Swiss Federal Institute of Technology (EPFL),
# Lausanne, Switzerland.
# This implementation is based upon:
# 1. Matthias Bucher, Christian Enz, François Krummenacher, Jean-M. Sallese,
# Christophe Lallement and Alain-S. Porret,
# The EKV 3.0 Compact MOS Transistor Model: Accounting for Deep-Submicron
# Aspects, <http://www.nsti.org/publications/MSM/2002/pdf/346.pdf>
# 2. EKV 2.6 Technical report, <http://legwww.epfl.ch/ekv/pdf/ekv_v262.pdf>.
#
# This file is part of the ahkab simulator.
#
# Ahkab is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, version 2 of the License.
#
# Ahkab is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License v2
# along with ahkab. If not, see <http://www.gnu.org/licenses/>.
"""
The EKV model was developed by Matthias Bucher, Christophe Lallement,
Christian Enz, Fabien Théodoloz, François Krummenacher at the Electronics
Laboratories, Swiss Federal Institute of Technology (EPFL),
Lausanne, Switzerland. The Tecnical Report upon which this implementation
is based is available here:
<http://legwww.epfl.ch/ekv/pdf/ekv_v262.pdf>.
This module defines two classes:
ekv_device
ekv_mos_model
Features:
- EKV model implementation, computation of charges, potentials,
reverse and forward currents, slope factor and normalization factors,
- Calculation of trans-conductances based on the charge approach.
- N/P MOS symmetry
- Rudimentary temperature effects.
The Missing Features:
- Channel length modulation
- Reverse Short Channel Effect (RSCE)
- Complex mobility degradation is missing
- Transcapacitances
- Quasistatic implementation
"""
import constants, options, utilities, printing
import math
# DEFAULT VALUES FOR 500n CH LENGTH
COX_DEFAULT = .7e-3
VTO_DEFAULT = .5
GAMMA_DEFAULT = 1
PHI_DEFAULT = .7
KP_DEFAULT = 50e-6
UCRIT_DEFAULT = 2e6
LAMBDA_DEFAULT = .5
XJ_DEFAULT = .1e-6
TCV_DEFAULT = 1e-3
BEX_DEFAULT = -1.5
ISMALL_GUESS_MIN = 1e-10
class ekv_device:
INIT_IFRN_GUESS = 1
def __init__(self, nd, ng, ns, nb, W, L, model, M=1, N=1):
""" EKV device
Parameters:
nd: drain node
ng: gate node
ns: source node
nb: bulk node
L: element width [m]
W: element length [m]
M: multiplier (n. of shunt devices)
N: series mult. (n. of series devices)
model: pass an instance of ekv_mos_model
Selected methods:
- get_output_ports() -> (nd, ns)
- get_drive_ports() -> (nd, nb), (ng, nb), (ns, nb)
"""
self.ng = ng
self.nb = nb
self.n1 = nd
self.n2 = ns
self.ports = ((self.n1, self.nb), (self.ng, self.nb), (self.n2, self.nb))
class dev_class: pass # empty class to hold device parameters
self.device = dev_class()
self.device.L = float(L) #channel length -
self.device.W = float(W) #channel width -
self.device.M = int(M) #parallel multiple device number
self.device.N = int(N) #series multiple device number
self.ekv_model = model
self.opdict = {}
self.opdict.update({'state':(float('nan'), float('nan'), float('nan'))})
self.opdict.update({'ifn':self.INIT_IFRN_GUESS})
self.opdict.update({'irn':self.INIT_IFRN_GUESS})
self.opdict.update({'ip_abs_err':self.ekv_model.get_ip_abs_err(self.device)})
self.letter_id = 'M'
self.is_nonlinear = True
self.is_symbolic = True
self.dc_guess = [self.ekv_model.VTO*(0.1)*self.ekv_model.NPMOS, self.ekv_model.VTO*(1.1)*self.ekv_model.NPMOS, 0]
devcheck, reason = self.ekv_model._device_check(self.device)
if not devcheck:
raise Exception, reason + " out of boundaries."
def get_drive_ports(self, op):
"""Returns a tuple of tuples of ports nodes, as:
(port0, port1, port2...)
Where each port is in the form:
port0 = (nplus, nminus)
"""
return self.ports #d,g,s
def get_output_ports(self):
return ((self.n1, self.n2),)
def __str__(self):
mos_type = self._get_mos_type()
rep = " " + self.ekv_model.name + " w="+ str(self.device.W) + " l=" + \
str(self.device.L) + " M="+ str(self.device.M) + " N=" + \
str(self.device.N)
return rep
def _get_mos_type(self):
"""Returns N or P (capitalized)
"""
mtype = 'N' if self.ekv_model.NPMOS == 1 else 'P'
return mtype
def i(self, op_index, ports_v, time=0):
"""Returns the current flowing in the element with the voltages
applied as specified in the ports_v vector.
ports_v: [voltage_across_port0, voltage_across_port1, ...]
time: the simulation time at which the evaluation is performed.
It has no effect here. Set it to None during DC analysis.
"""
ret, j1, j2 = self.ekv_model.get_ids(self.device, ports_v, \
self.opdict)
return ret
def update_status_dictionary(self, ports_v):
if self.opdict is None:
self.opdict = {}
if not (self.opdict['state'] == ports_v[0] and self.opdict.has_key('gmd')) or \
not (self.opdict['state'] == ports_v[0] and self.opdict.has_key('gmg')) or \
not (self.opdict['state'] == ports_v[0] and self.opdict.has_key('gms')) or \
not (self.opdict['state'] == ports_v[0] and self.opdict.has_key('Ids')):
self.opdict['state'] == ports_v[0]
self.opdict['gmd'] = self.g(0, ports_v[0], 0)
self.opdict['gmg'] = self.g(0, ports_v[0], 1)
self.opdict['gms'] = self.g(0, ports_v[0], 2)
self.opdict['Ids'] = self.i(0, ports_v[0])
gmd = self.opdict['gmd']
gmg = self.opdict['gmg']
gms = self.opdict['gms']
ids = self.opdict['Ids']
if ids == 0:
TEF = float('nan')
else:
TEF = abs(gms*constants.Vth()/ids)
self.opdict['TEF'] = TEF
def print_op_info(self, ports_v):
arr = self.get_op_info(ports_v)
print arr,
def get_op_info(self, ports_v):
"""Operating point info, for design/verification. """
mos_type = self._get_mos_type()
self.update_status_dictionary(ports_v)
sat_status = "SATURATION" if self.opdict['SAT'] else "LINEAR"
if self.opdict["WMSI"] == 0:
wmsi_status = "WEAK INVERSION"
if self.opdict["WMSI"] == 1:
wmsi_status = "MODERATE INVERSION"
if self.opdict["WMSI"] == 2:
wmsi_status = "STRONG INVERSION"
arr = [["M"+self.descr, mos_type.upper()+" ch",wmsi_status, "", "", sat_status, "", "", "", "", "",""],]
arr.append(["beta", "[A/V^2]:", self.opdict['beta'], "Weff", "[m]:", str(self.opdict['Weff'])+" ("+str(self.device.W)+")", "Leff", "[m]:", str(self.opdict['Leff'])+ " ("+str(self.device.L)+")", "M/N:", "", str(self.device.M)+"/"+str(self.device.N)])
arr.append(["Vdb", "[V]:", float(ports_v[0][0]), "Vgb", "[V]:", float(ports_v[0][1]), "Vsb", "[V]:", float(ports_v[0][2]), "Vp", "[V]:", self.opdict['Vp'],])
arr.append([ "VTH", "[V]:", self.opdict['VTH'], "VOD", "[V]:", self.opdict['VOD'], "nq: ", "",self.opdict['nq'], "VA", "[V]:", str(self.opdict['Ids']/self.opdict['gmd'])])
arr.append(["Ids", "[A]:", self.opdict['Ids'], "nv: ", "",self.opdict['nv'], "Ispec", "[A]:", self.opdict["Ispec"], "TEF:", "", str(self.opdict['TEF']),])
arr.append(["gmg", "[S]:", self.opdict['gmg'], "gms", "[S]:", self.opdict['gms'], "rob", "[Ohm]:", 1/self.opdict['gmd'], "", "", ""])
arr.append(["if:", "", self.opdict['ifn'],"ir:", "", self.opdict['irn'], "Qf", "[C/m^2]:", self.opdict["qf"], "Qr", "[C/m^2]:", self.opdict["qr"],])
#arr.append([ "", "", "", "", "", ""])
return printing.table_setup(arr)
def g(self, op_index, ports_v, port_index, time=0):
"""Returns the differential (trans)conductance rs the port specified by port_index
when the element has the voltages specified in ports_v across its ports,
at (simulation) time.
ports_v: a list in the form: [voltage_across_port0, voltage_across_port1, ...]
port_index: an integer, 0 <= port_index < len(self.get_ports())
time: the simulation time at which the evaluation is performed. Set it to
None during DC analysis.
"""
assert op_index == 0
assert port_index < 3
if port_index == 0:
g = self.ekv_model.get_gmd(self.device, ports_v, self.opdict)
elif port_index == 1:
g = self.ekv_model.get_gmg(self.device, ports_v, self.opdict)
if port_index == 2:
g = self.ekv_model.get_gms(self.device, ports_v, self.opdict)
if op_index == 0 and g == 0:
if port_index == 2:
sign = -1
else:
sign = +1
g = sign*options.gmin*2
#print type(g), g
if op_index == 0 and port_index == 0:
self.opdict.update({'gmd':g})
elif op_index == 0 and port_index == 1:
self.opdict.update({'gmg':g})
elif op_index == 0 and port_index == 2:
self.opdict.update({'gms':g})
return g
def get_value_function(self, identifier):
def get_value(self):
return self.opdict[identifier]
return get_value
class scaling_holder: pass # will hold the scaling factors
class ekv_mos_model:
def __init__(self, name=None, TYPE='n', TNOM=None, COX=None, \
GAMMA=None, NSUB=None, PHI=None, VTO=None, KP=None, \
XJ=None, LAMBDA=None, \
TOX=None, VFB=None, U0=None, TCV=None, BEX=None):
self.scaling = scaling_holder()
self.name = "model_ekv0" if name is None else name
Vth = constants.Vth()
self.TNOM = float(TNOM) if TNOM is not None else constants.Tref
#print "TYPE IS:" + TYPE
self.NPMOS = 1 if TYPE == 'n' else -1
# optional parameters (no defaults)
self.TOX = float(TOX) if TOX is not None else None
self.NSUB = float(NSUB) if NSUB is not None else None
self.VFB = self.NPMOS*float(VFB) if VFB is not None else None
self.U0 = float(U0) if U0 is not None else None
# crucial parameters
if COX is not None:
self.COX = float(COX)
elif TOX is not None:
self.COX = constants.si.eox/TOX
else:
self.COX = COX_DEFAULT
if GAMMA is not None:
self.GAMMA = float(GAMMA)
elif NSUB is not None:
self.GAMMA = math.sqrt(2*constants.e*constants.si.esi*NSUB*10**6/self.COX)
else:
self.GAMMA = GAMMA_DEFAULT
if PHI is not None:
self.PHI = float(PHI)
elif NSUB is not None:
self.PHI = 2*constants.Vth(self.TNOM)*math.log(NSUB*10**6/constants.si.ni(self.TNOM))
else:
self.PHI = PHI_DEFAULT
if VTO is not None:
self.VTO = self.NPMOS*float(VTO)
if self.VTO < 0:
print "(W): model %s has internal negative VTO (%f V)." % (self.name, self.VTO)
elif VFB is not None:
self.VTO = VFB + PHI + GAMMA*PHI #inv here??
else:
self.VTO = self.NPMOS*VTO_DEFAULT
if KP is not None:
self.KP = float(KP)
elif U0 is not None:
self.KP = (U0*10**-4)*self.COX
else:
self.KP = KP_DEFAULT
self.LAMBDA = LAMBDA if LAMBDA is not None else LAMBDA_DEFAULT
self.XJ = XJ if XJ is not None else XJ_DEFAULT
self.UCRIT = UCRIT_DEFAULT
# Intrinsic model temperature parameters
self.TCV = self.NPMOS*float(TCV) if TCV is not None else self.NPMOS*TCV_DEFAULT
self.BEX = float(BEX) if BEX is not None else BEX_DEFAULT
self.set_device_temperature(constants.T)
#Setup switches
self.SATLIM = math.exp(4)
self.WMSI_factor = 10
self.NR_damp_factor = options.nl_voltages_lock_factor
sc, sc_reason = self._self_check()
if not sc:
raise Exception, sc_reason + " out of range"
def set_device_temperature(self, T):
"""Change the temperature of the device. VTO, KP and PHI get updated.
"""
self.TEMP = T
self.VTO = self.VTO - self.TCV*(T-self.TNOM)
self.KP = self.KP*(T/self.TNOM)**self.BEX
self.PHI = self.PHI * T/self.TNOM + 3*constants.Vth(self.TNOM)*math.log(T/self.TNOM) \
- constants.si.Eg(self.TNOM)*T/self.TNOM + constants.si.Eg(T)
def get_device_temperature(self):
"""Returns the temperature of the device - in K.
"""
return self.TEMP
def print_model(self):
"""All the internal parameters of the model get printed out,
for visual inspection. Notice some can be set to None
(ie not available) if they were not provided in the netlist
or some not provided are calculated from the others.
"""
arr = []
TYPE = 'N' if self.NPMOS == 1 else "P"
arr.append([self.name, "", "", TYPE+" MOS", "EKV MODEL", "", "", "", "", "", "", ""])
arr.append(["KP", "[A/V^2]", self.KP, "VTO", "[V]:", self.VTO, "TOX", "[m]", self.TOX, "COX", "[F/m^2]:", self.COX])
arr.append(["PHI", "[V]:", self.PHI, "GAMMA", "sqrt(V)", self.GAMMA, "NSUB", "[cm^-3]", self.NSUB, "VFB", "[V]:", self.VFB])
arr.append(["U0", "[cm^2/(V*s)]:", self.U0, "TCV", "[V/K]", self.TCV, "BEX", "", self.BEX, "", "", ""])
arr.append(["INTERNAL", "", "", "SAT LIMIT", "", self.SATLIM, "W/M/S INV FACTOR", "", self.WMSI_factor, "", "", ""])
printing.table_print(arr)
def get_voltages(self, vd, vg, vs):
"""Performs the VD <-> VS swap if needed.
Returns:
(VD, VG, VS) after the swap
CS, an integer which equals to:
+1 if no swap was necessary,
-1 if VD and VS have been swapped.
"""
# vd / vs swap
vd = vd*self.NPMOS
vg = vg*self.NPMOS
vs = vs*self.NPMOS
if vs > vd:
vd_new = vs
vs_new = vd
cs = -1
else:
vd_new = vd
vs_new = vs
cs = +1
return ((float(vd_new), float(vg), float(vs_new)), cs)
def get_ip_abs_err(self, device):
"""Absolute error to be enforced in the calculation of the normalized currents.
"""
return options.iea / (2*constants.Vth(self.TEMP)**2*self.KP*device.M*device.W/device.L)
def setup_scaling(self, nq, device):
"""Calculates and stores in self.scaling the following factors:
Ut, the thermal voltage,
Is, the specific current,
Gs, the specific transconductance,
Qs, the specific charge.
"""
self.scaling.Ut = constants.Vth()
self.scaling.Is = 2 * nq * self.scaling.Ut**2 * self.KP * device.W/device.L
self.scaling.Gs = 2 * nq * self.scaling.Ut * self.KP * device.W/device.L
self.scaling.Qs = 2 * nq * self.scaling.Ut * self.COX
return
def get_vp_nv_nq(self, VG):
"""Calculates and returns:
VP, the pinch-off voltage,
nv, the slope factor,
nq, the charge linearization factor.
"""
VGeff = VG - self.VTO + self.PHI + self.GAMMA*math.sqrt(self.PHI)
if VGeff > 0 and VG - self.VTO + (math.sqrt(self.PHI)+self.GAMMA/2)**2 > 0:
VP = VG - self.VTO - self.GAMMA*(math.sqrt(VG -self.VTO +(math.sqrt(self.PHI)+self.GAMMA/2)**2) -(math.sqrt(self.PHI)+self.GAMMA/2))
if math.isnan(VP): VP = 0 # the argument of sqrt ^^ went negative
else:
VP = -self.PHI
#print "VG", VG, "VGeff", VGeff, "VP", VP, self.GAMMA, self.PHI, math.sqrt(VG -self.VTO +(math.sqrt(self.PHI)+self.GAMMA/2)**2), VG -self.VTO +(math.sqrt(self.PHI)+self.GAMMA/2)**2
nq = 1 + .5 * self.GAMMA / math.sqrt(self.PHI + .5*VP)
nv = 1 + .5 * self.GAMMA / math.sqrt(self.PHI + VP + 1e-12)
return VP, nv, nq
def get_ids(self, device, (vd, vg, vs), opdict=None, debug=False):
"""Returns:
IDS, the drain-to-source current (de-normalized),
qs, the (scaled) charge at the source,
qr, the (scaled) charge at the drain.
"""
if debug: print "=== Current for vd:", vd, "vg:", vg, "vs:", vs
ip_abs_err = self.get_ip_abs_err(device) if opdict['ip_abs_err'] is None else opdict['ip_abs_err']
(VD, VG, VS), CS_FACTOR = self.get_voltages(vd, vg, vs)
#Weff, Leff = self.get_eff_wl(device.W, device.L)
VP, nv, nq = self.get_vp_nv_nq(VG)
self.setup_scaling(nq, device)
vp = VP/self.scaling.Ut
vs = VS/self.scaling.Ut
vd = VD/self.scaling.Ut
if debug: print "Scaled voltages: vd:", vd, "vp:", vp, "vs:", vs
v_ifn = vp - vs
ifn = self.get_ismall(v_ifn, opdict['ip_abs_err'], max(opdict['ifn'], ISMALL_GUESS_MIN), debug=debug)
if False:
Leff = device.L
v_irn = vp - vd
else:
Leff, v_irn = self.get_leq_virp(device, (vd, vg, vs), VP, device.L, ifn)
irn = self.get_ismall(v_irn, opdict['ip_abs_err'], max(opdict['irn'], ISMALL_GUESS_MIN), debug=debug)
if debug:
print "vd:", vd, "vg:",VG/self.scaling.Ut, "vs:", vs, "vds:", vd-vs
print "v_ifn:", v_ifn, "v_irn:",v_irn
print "ifn:", ifn, "irn:",irn
print "ip_abs_err:", ip_abs_err
print "Vth:", self.scaling.Ut
print "nv", nv, "Is", self.scaling.Is
print "Weff:", device.W, "Leff:", Leff
print "NPMOS:", self.NPMOS, "CS_FACTOR", CS_FACTOR
qf = self.ismall2qsmall(ifn)
qr = self.ismall2qsmall(irn)
Ids = CS_FACTOR*self.NPMOS * device.L/Leff * device.M * self.scaling.Is * (ifn - irn)
vd_real = vd if CS_FACTOR == 1 else vs
vs_real = vs if CS_FACTOR == 1 else vd
opdict.update({'state':(vd_real*self.NPMOS, vg*self.NPMOS, vs_real*self.NPMOS)})
opdict.update({'Ids':Ids, "Weff":device.W, "Leff":Leff, 'Vp':VP})
opdict.update({'ifn':ifn, "irn":irn, "nv":nv, "nq":nq, 'beta':.5*self.KP*device.W/Leff, 'Ispec':self.scaling.Is})
opdict.update({'VTH':self.VTO, "VOD":self.NPMOS*nv*(VP-VS), 'SAT':ifn>irn*self.SATLIM})
opdict.update({'qf':qf*self.scaling.Qs, 'qr':qr*self.scaling.Qs})
if max(ifn, irn) > self.WMSI_factor:
WMSI = 2
elif max(ifn, irn) < 1/self.WMSI_factor:
WMSI = 0
else:
WMSI = 1
opdict.update({'WMSI':WMSI})
if debug: print "current:", Ids
return Ids, qf, qr
def get_leq_virp(self, device, (vd, vg, vs), Vp, Leff, ifn):
#if ifn > 0 and Vp - constants.Vth()*vd > 0:
assert vd >= vs
Vc = self.UCRIT * device.N * Leff
Vdss = Vc * (math.sqrt(.25 + constants.Vth()/Vc*math.sqrt(ifn)) - .5) # eq. 46
# Drain-to-source saturation voltage for reverse normalized current, eq. 47
Vdssp = Vc * (math.sqrt(.25 +constants.Vth()/Vc *(math.sqrt(ifn) - .75*math.log(ifn))) - .5) + \
constants.Vth()*(math.log(.5 * Vc/constants.Vth()) - .6)
# channel length modulation
vser_1 = math.sqrt(ifn) - Vdss/constants.Vth()
#if vser_1 < 0:
# vser_1 = 0
Vds = (vd - vs)*.5*constants.Vth()
delta_v = 4*constants.Vth()*math.sqrt(self.LAMBDA*vser_1 + 1.0/64) # eq. 48
Vip = math.sqrt(Vdss**2 + delta_v**2) - math.sqrt((Vds - Vdss)**2 + delta_v**2) #eq 50
Lc = math.sqrt(constants.si.esi*self.XJ/self.COX) #eq. 51
delta_l = self.LAMBDA * Lc * math.log(1 + (Vds - Vip)/(Lc*self.UCRIT)) #eq. 52
# Equivalent channel length including channel-length modulation and velocity saturation
Lp = device.N*Leff - delta_l + (Vds + Vip)/self.UCRIT #eq. 53
Lmin = device.N*Leff/10.0 #eq. 54
Leq = .5*(Lp + math.sqrt(Lp**2 + Lmin**2)) #eq. 55
assert not math.isnan(Vdssp)
assert not math.isnan(delta_v)
v_irp = (Vp - Vds - vs*constants.Vth() - math.sqrt(Vdssp**2 + delta_v**2) + math.sqrt((Vds-Vdssp)**2+delta_v**2))/constants.Vth()
#else:
# v_irp = Vp/constants.Vth() - vd
# Leq = Leff
return Leq, v_irp
def get_gms(self, device, (vd, vg, vs), opdict=None, debug=False):
"""Returns the source-bulk transconductance or d(IDS)/d(VS-VB)."""
(j1, j2, j3), CS_FACTOR = self.get_voltages(vd, vg, vs)
Ids, qf, qr = self.get_ids(device, (vd, vg, vs), opdict, debug)
if CS_FACTOR == +1:
gms = -1.0*self.scaling.Gs*qf
elif CS_FACTOR == -1:
gms = -self.scaling.Gs*qr
return gms
def get_gmd(self, device, (vd, vg, vs), opdict=None, debug=False):
"""Returns the drain-bulk transconductance or d(IDS)/d(VD-VB)."""
(j1, j2, j3), CS_FACTOR = self.get_voltages(vd, vg, vs)
Ids, qf, qr = self.get_ids(device, (vd, vg, vs), opdict, debug)
if CS_FACTOR == +1:
gmd = self.scaling.Gs*qr
elif CS_FACTOR == -1:
gmd = self.scaling.Gs*qf
return gmd
def get_gmg(self, device, (vd, vg, vs), opdict=None, debug=False):
"""Returns the gate-bulk transconductance or d(IDS)/d(VG-VB)."""
VP, nv, nq = self.get_vp_nv_nq(float(vg))
Ids, qf, qr = self.get_ids(device, (vd, vg, vs), opdict, debug)
(j1, j2, j3), CS_FACTOR = self.get_voltages(vd, vg, vs)
gmg = CS_FACTOR*self.scaling.Gs*(qf-qr)/nv
return gmg
def get_ismall(self, vsmall, ip_abs_err, iguess=None, debug=False):
"""Solves the problem: given v, find i such that:
v = ln(q) + 2q
q = sqrt(.25 + i) - .5
A damped Newton algorithm is used inside.
"""
# starting guess for Newton's Method.
if iguess is None:
iguess = 1
# sanity checks
if math.isnan(vsmall):
raise Exception, \
"Attempted to calculate a current corresponding to a NaN voltage."
if not ip_abs_err > 0:
raise Exception, \
"The normalized current absolute error has been set to a negative value."
#if vsmall < 0:
# return 0.0
check = False
ismall = iguess
if debug: iter_c = 0
while True:
if debug: iter_c = iter_c + 1
vsmall_iter, numeric_problem_v = self.get_vsmall(ismall)
dvdi, numeric_problem_i = self.get_dvsmall_dismall(ismall)
deltai = (vsmall - vsmall_iter)/dvdi
numeric_problem = numeric_problem_i or numeric_problem_v
if debug:
print "Numeric problem:", numeric_problem
print "ABS: deltai < ip_abs_err", deltai, "<", ip_abs_err, ":", abs(deltai) < ip_abs_err
print "REL: deltai < ismall*options.ier", deltai, "<", ismall*options.ier, abs(deltai) < ismall*options.ier
print deltai, ismall
# absolute and relative value convergence checks.
if ((abs(deltai) < ip_abs_err or numeric_problem) and abs(deltai) < ismall*options.ier) or \
(abs(deltai) < ip_abs_err*1e-6 or numeric_problem):
# To make the algorithm more robust,
# the convergence check has to be passed twice in a row
# to reach convergence.
if not check:
check = True
else:
break
else:
check = False
# convergence was not reached, update ismall
if math.isnan(ismall):
print "Ismall is NaN!!"
exit()
if ismall == 0:
# this is a sign we went below the machine resolution
# it makes no sense to iterate there as quantization errors
# prevent reaching a meaningful result.
break
else:
# Damped Newton with domain restriction: ismall >= 0.
ratio = deltai/ismall
if ratio > self.NR_damp_factor:
# Do not allow a change in ismall bigger than self.NR_damp_factor
# in a single iteration
ismall = self.NR_damp_factor*ismall
elif ratio <= -1:
# this would give a negative ismall
ismall = 0.1*ismall
else:
ismall = ismall + deltai
if debug:
print str(iter_c) + " iterations."
return ismall
def get_vsmall(self, ismall, verbose=3):
"""Returns v according to the equations:
q = sqrt(.25 + i) - .5
v = ln(q) + 2q
"""
if abs(ismall) < utilities.EPS:
ismall = utilities.EPS # otherwise we get log(0)
if verbose == 6:
print "EKV: Machine precision limited the resolution on i. (i<EPS)"
numeric_problem = True
else:
numeric_problem = False
vsmall = math.log(math.sqrt(.25 + ismall) - 0.5) + 2*math.sqrt(.25 + ismall) - 1.0
return vsmall, numeric_problem
def get_dvsmall_dismall(self, ismall, verbose=3):
"""The Newton algorithm in get_ismall(...) requires the evaluation of the
first derivative of the fixed point function:
dv/di = 1.0/(sqrt(.25+i)-.5) * .5/sqrt(.25 + i) + 1/sqrt(.25 + i)
This is provided by this module.
"""
if abs(ismall) < utilities.EPS:
ismall = utilities.EPS
numeric_problem = True
if verbose == 6:
print "EKV: Machine precision limited the resolution on dv/di in the NR iteration. (i<EPS)"
else:
numeric_problem = False
dvdi = 1.0/(math.sqrt(.25+ismall)-.5) * .5/math.sqrt(.25 + ismall) + 1.0/math.sqrt(.25 + ismall)
return dvdi, numeric_problem
def ismall2qsmall(self, ismall, verbose=0):
""" i(f,r) -> q(f,r)
Convert a source/drain scaled current to the corresponding normalized charge."""
if verbose == 6: #ismall is lower than EPS, errors here are usually not important
print "EKV: Machine precision limited the resolution on q(s,d). (i<EPS)"
qsmall = math.sqrt(.25 + ismall) - .5
return qsmall
def qsmall2ismall(self, qsmall):
""" q(f,r) -> i(f,r)
Convert a source/drain scaled charge to the corresponding normalized current."""
ismall = qsmall**2 + qsmall
return ismall
def _self_check(self):
"""Performs sanity check on the model parameters."""
ret = True, ""
if self.NSUB is not None and self.NSUB < 0:
ret = (False, "NSUB "+str(self.NSUB))
elif self.U0 is not None and not self.U0 > 0:
ret = (False, "UO "+str(self.U0))
elif not self.GAMMA > 0:
ret = (False, "GAMMA "+str(self.GAMMA))
elif not self.PHI > 0.1:
ret = (False, "PHI "+str(self.PHI))
return ret
def _device_check(self, adev):
"""Performs sanity check on the device parameters."""
if not adev.L > 0:
ret = (False, "L")
elif not adev.W > 0:
ret = (False, "W")
elif not adev.N > 0:
ret = (False, "N")
elif not adev.M > 0:
ret = (False, "M")
else:
ret = (True, "")
return ret
if __name__ == '__main__':
# Tests
import matplotlib.pyplot as plt
ekv_m = ekv_mos_model(TYPE='n', KP=50e-6, VTO=.4)
ma = ekv_device(1, 2, 3, 4, W=10e-6,L=1e-6, model=ekv_m)
ma.descr = "1"
# OP test
vd = 0
vg = 1
vs = 0
ma.print_op_info(((vd, vg, vs),))
ekv_m.print_model()
# gmUt/Ids test
import mosq
msq = mosq.mosq(1, 2, 3, kp=50e-6, w=10e-6, l=1e-6, vt=.4, lambd=0, mos_type='n')
data0 = []
data1 = []
data2 = []
data3 = []
vd = 2.5
if True:
vs = 1
for Vhel in range(1,2500):
print ".",
vg = Vhel/1000.0
ma.update_status_dictionary(((vd, vg, 0),))
data0.append(ma.opdict['Ids'])
#print "Current for vd", vd, "vg", vg, "vs", vs
data1.append(ma.opdict['TEF'])
isq = msq.i((vd, vg, vs),)
gmsq = msq.g((vd, vg, vs),0)
if isq > 0:
data2.append(gmsq/isq*constants.Vth())
else:
data2.append(float('nan'))
data3.append(isq)
plt.semilogx(data0, data1, data3, data2)
plt.title('Transconductance efficiency factor')
plt.legend(['(GM*UT)/ID'])
plt.show()