-
Notifications
You must be signed in to change notification settings - Fork 0
/
mosq.py
536 lines (460 loc) · 17.9 KB
/
mosq.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
# -*- coding: iso-8859-1 -*-
# mosq.py
# Implementation of the square-law MOS transistor model
# Copyright 2012 Giuseppe Venturini
#
# This file is part of the ahkab simulator.
#
# Ahkab is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, version 2 of the License.
#
# Ahkab is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License v2
# along with ahkab. If not, see <http://www.gnu.org/licenses/>.
"""
This module defines two classes:
mosq_device
mosq_model
This MOS Model follows the Square Law Mos Model:
[Vds > 0 in the following, transistor type: N]
1. No subthreshold conduction.
Vgs < Vt
Id = 0
2. Ohmic region of operation
Vgs > Vt
Vgd > Vt
Id = k w/l ((vgs-vt)vds - vds^2/2)
3. Saturation region of operation
Vgs > Vt
Vgs < Vt
Id = 1/2 k w/l (vgs-vt)^2 * (1 + lambd*(vds-vgs+vt))
"""
import constants, options, utilities, printing
import math
# DEFAULT VALUES FOR 500n CH LENGTH
COX_DEFAULT = .7e-3
VTO_DEFAULT = .5
GAMMA_DEFAULT = 1
PHI_DEFAULT = .7
KP_DEFAULT = 50e-6
LAMBDA_DEFAULT = .5
AVT_DEFAULT = 7.1e-3*1e-6
AKP_DEFAULT = 1.8e-2*1e-6
TCV_DEFAULT = 1e-3
BEX_DEFAULT = -1.5
ISMALL_GUESS_MIN = 1e-10
class mosq_device:
def __init__(self, nd, ng, ns, nb, W, L, model, M=1, N=1):
"""Quadratic Law MOSFET device
Parameters:
nd: drain node
ng: gate node
ns: source node
nb: bulk node
L: element width [m]
W: element length [m]
M: multiplier (n. of shunt devices)
N: series mult. (n. of series devices)
model: pass an instance of mosq_mos_model
Selected methods:
- get_output_ports() -> (nd, ns)
- get_drive_ports() -> (nd, nb), (ng, nb), (ns, nb)
"""
self.ng = ng
self.nb = nb
self.n1 = nd
self.n2 = ns
self.ports = ((self.n1, self.n2), (self.ng, self.n2), (self.nb, self.n2))
class dev_class: pass # empty class to hold device parameters
self.device = dev_class()
self.device.L = float(L) #channel length -
self.device.W = float(W) #channel width -
self.device.M = int(M) #parallel multiple device number
self.device.N = int(N) #series multiple device number
self.device.mckey = None
self.mosq_model = model
self.mc_enabled = False
self.opdict = {}
self.opdict.update({'state':(float('nan'), float('nan'), float('nan'))})
self.letter_id = 'M'
self.is_nonlinear = True
self.is_symbolic = True
self.dc_guess = [self.mosq_model.VTO*(0.4)*self.mosq_model.NPMOS, self.mosq_model.VTO*(1.1)*self.mosq_model.NPMOS, 0]
devcheck, reason = self.mosq_model._device_check(self.device)
if not devcheck:
raise Exception, reason + " out of boundaries."
def get_drive_ports(self, op):
"""Returns a tuple of tuples of ports nodes, as:
(port0, port1, port2...)
Where each port is in the form:
port0 = (nplus, nminus)
"""
return self.ports #d,g,b
def get_output_ports(self):
return ((self.n1, self.n2),)
def __str__(self):
mos_type = self._get_mos_type()
rep = " " + self.mosq_model.name + " w="+ str(self.device.W) + " l=" + \
str(self.device.L) + " M="+ str(self.device.M) + " N=" + \
str(self.device.N)
return rep
def _get_mos_type(self):
"""Returns N or P (capitalized)
"""
mtype = 'N' if self.mosq_model.NPMOS == 1 else 'P'
return mtype
def i(self, op_index, ports_v, time=0):
"""Returns the current flowing in the element with the voltages
applied as specified in the ports_v vector.
ports_v: [voltage_across_port0, voltage_across_port1, ...]
time: the simulation time at which the evaluation is performed.
It has no effect here. Set it to None during DC analysis.
"""
#print ports_v
ret = self.mosq_model.get_ids(self.device, ports_v, self.opdict)
return ret
def update_status_dictionary(self, ports_v):
if self.opdict is None:
self.opdict = {}
if not (self.opdict['state'] == ports_v[0] and self.opdict.has_key('gmd')) or \
not (self.opdict['state'] == ports_v[0] and self.opdict.has_key('gm')) or \
not (self.opdict['state'] == ports_v[0] and self.opdict.has_key('gmb')) or \
not (self.opdict['state'] == ports_v[0] and self.opdict.has_key('Ids')):
self.opdict['state'] == ports_v[0]
self.opdict['gmd'] = self.g(0, ports_v[0], 0)
self.opdict['gm'] = self.g(0, ports_v[0], 1)
self.opdict['gmb'] = self.g(0, ports_v[0], 2)
self.opdict['Ids'] = self.i(0, ports_v[0])
def print_op_info(self, ports_v):
arr = self.get_op_info(ports_v)
print arr,
def get_op_info(self, ports_v):
"""Operating point info, for design/verification. """
mos_type = self._get_mos_type()
self.update_status_dictionary(ports_v)
sat_status = "SATURATION" if self.opdict['SAT'] else "LINEAR"
if not self.opdict["ON"]:
status = "OFF"
else:
status = "ON"
arr = [["M"+self.descr, mos_type.upper()+" ch", status, "", "", sat_status, "", "", "", "", "",""],]
arr.append(["beta", "[A/V^2]:", self.opdict['beta'], "Weff", "[m]:", str(self.opdict['W'])+" ("+str(self.device.W)+")", "L", "[m]:", str(self.opdict['L'])+ " ("+str(self.device.L)+")", "M/N:", "", str(self.device.M)+"/"+str(self.device.N)])
arr.append(["Vds", "[V]:", float(ports_v[0][0]), "Vgs", "[V]:", float(ports_v[0][1]), "Vbs", "[V]:", float(ports_v[0][2]), "", "", ""])
arr.append([ "VTH", "[V]:", self.opdict['VTH'], "VOD", "[V]:", self.opdict['VOD'], "", "","", "VA", "[V]:", str(self.opdict['Ids']/self.opdict['gmd'])])
arr.append(["Ids", "[A]:", self.opdict['Ids'], "", "", "", "", "", "", "", "", ''])
arr.append(["gm", "[S]:", self.opdict['gm'], "gmb", "[S]:", self.opdict['gmb'], "ro", "[Ohm]:", 1/self.opdict['gmd'], "", "", ""])
#arr.append([ "", "", "", "", "", ""])
return printing.table_setup(arr)
def g(self, op_index, ports_v, port_index, time=0):
"""Returns the differential (trans)conductance rs the port specified by port_index
when the element has the voltages specified in ports_v across its ports,
at (simulation) time.
ports_v: a list in the form: [voltage_across_port0, voltage_across_port1, ...]
port_index: an integer, 0 <= port_index < len(self.get_ports())
time: the simulation time at which the evaluation is performed. Set it to
None during DC analysis.
"""
assert op_index == 0
assert port_index < 3
if port_index == 0:
g = self.mosq_model.get_gmd(self.device, ports_v, self.opdict)
elif port_index == 1:
g = self.mosq_model.get_gm(self.device, ports_v, self.opdict)
if port_index == 2:
g = self.mosq_model.get_gmb(self.device, ports_v, self.opdict)
if op_index == 0 and g == 0:
if port_index == 2:
sign = -1
else:
sign = +1
g = sign*options.gmin*2
#print type(g), g
if op_index == 0 and port_index == 0:
self.opdict.update({'gmd':g})
elif op_index == 0 and port_index == 1:
self.opdict.update({'gm':g})
elif op_index == 0 and port_index == 2:
self.opdict.update({'gmb':g})
return g
def get_value_function(self, identifier):
def get_value(self):
return self.opdict[identifier]
return get_value
def get_mc_requirements(self):
return True, 2
def setup_mc(self, status, mckey):
self.mc_enabled = status
if self.mc_enabled:
self.device.mckey = mckey
else:
self.device.mckey = None
class scaling_holder: pass # will hold the scaling factors
class mosq_mos_model:
def __init__(self, name=None, TYPE='n', TNOM=None, COX=None, \
GAMMA=None, NSUB=None, PHI=None, VTO=None, KP=None, \
LAMBDA=None, AKP=None, AVT=None,\
TOX=None, VFB=None, U0=None, TCV=None, BEX=None):
self.scaling = scaling_holder()
self.name = "model_mosq0" if name is None else name
Vth = constants.Vth()
self.TNOM = float(TNOM) if TNOM is not None else constants.Tref
#print "TYPE IS:" + TYPE
self.NPMOS = 1 if TYPE == 'n' else -1
# optional parameters (no defaults)
self.TOX = float(TOX) if TOX is not None else None
self.NSUB = float(NSUB) if NSUB is not None else None
self.VFB = self.NPMOS*float(VFB) if VFB is not None else None
self.U0 = float(U0) if U0 is not None else None
# crucial parameters
if COX is not None:
self.COX = float(COX)
elif TOX is not None:
self.COX = constants.si.eox/TOX
else:
self.COX = COX_DEFAULT
if GAMMA is not None:
self.GAMMA = float(GAMMA)
elif NSUB is not None:
self.GAMMA = math.sqrt(2*constants.e*constants.si.esi*NSUB*10**6/self.COX)
else:
self.GAMMA = GAMMA_DEFAULT
if PHI is not None:
self.PHI = float(PHI)
elif NSUB is not None:
self.PHI = 2*constants.Vth(self.TNOM)*math.log(NSUB*10**6/constants.si.ni(self.TNOM))
else:
self.PHI = PHI_DEFAULT
if VTO is not None:
self.VTO = self.NPMOS*float(VTO)
if self.VTO < 0:
print "(W): model %s has internal negative VTO (%f V)." % (self.name, self.VTO)
elif VFB is not None:
self.VTO = VFB + PHI + GAMMA*PHI #inv here??
else:
self.VTO = self.NPMOS*VTO_DEFAULT
if KP is not None:
self.KP = float(KP)
elif U0 is not None:
self.KP = (U0*10**-4)*self.COX
else:
self.KP = KP_DEFAULT
self.LAMBDA = LAMBDA if LAMBDA is not None else LAMBDA_DEFAULT
# Intrinsic model temperature parameters
self.TCV = self.NPMOS*float(TCV) if TCV is not None else self.NPMOS*TCV_DEFAULT
self.BEX = float(BEX) if BEX is not None else BEX_DEFAULT
# Monte carlo
self.AVT = AVT if AVT is not None else AVT_DEFAULT
self.AKP = AKP if AKP is not None else AKP_DEFAULT
self.set_device_temperature(constants.T)
sc, sc_reason = self._self_check()
if not sc:
raise Exception, sc_reason + " out of range"
def set_device_temperature(self, T):
"""Change the temperature of the device. VTO, KP and PHI get updated.
"""
self.TEMP = T
self.VTO = self.VTO - self.TCV*(T-self.TNOM)
self.KP = self.KP*(T/self.TNOM)**self.BEX
self.PHI = self.PHI * T/self.TNOM + 3*constants.Vth(self.TNOM)*math.log(T/self.TNOM) \
- constants.si.Eg(self.TNOM)*T/self.TNOM + constants.si.Eg(T)
def get_device_temperature(self):
"""Returns the temperature of the device - in K.
"""
return self.TEMP
def print_model(self):
"""All the internal parameters of the model get printed out,
for visual inspection. Notice some can be set to None
(ie not available) if they were not provided in the netlist
or some not provided are calculated from the others.
"""
arr = []
TYPE = 'N' if self.NPMOS == 1 else "P"
arr.append([self.name, "", "", TYPE+" MOS", "SQUARE MODEL", "", "", "", "", "", "", ""])
arr.append(["KP", "[A/V^2]", self.KP, "VTO", "[V]:", self.VTO, "TOX", "[m]", self.TOX, "COX", "[F/m^2]:", self.COX])
arr.append(["PHI", "[V]:", self.PHI, "GAMMA", "sqrt(V)", self.GAMMA, "NSUB", "[cm^-3]", self.NSUB, "VFB", "[V]:", self.VFB])
arr.append(["U0", "[cm^2/(V*s)]:", self.U0, "TCV", "[V/K]", self.TCV, "BEX", "", self.BEX, "", "", ""])
printing.table_print(arr)
def get_voltages(self, vds, vgs, vbs):
"""Performs the D <-> S swap if needed.
Returns:
(VDS, VGS, VBS) after the swap
CS, an integer which equals to:
+1 if no swap was necessary,
-1 if VD and VS have been swapped.
"""
# vd / vs swap
vds = float(vds)
vgs = float(vgs)
vbs = float(vbs)
vds = vds*self.NPMOS
vgs = vgs*self.NPMOS
vbs = vbs*self.NPMOS
if vds < 0:
vds_new = -vds
vgs_new = vgs - vds
vbs_new = vbs - vds
cs = -1
else:
vds_new = vds
vgs_new = vgs
vbs_new = vbs
cs = +1
#print ((float(vds_new), float(vgs_new), float(vbs_new)), cs)
return ((float(vds_new), float(vgs_new), float(vbs_new)), cs)
def get_svt_skp(self, device, debug=False):
if device.mckey and debug:
print "Monte carlo enabled. key:", device.mckey
if device.mckey:
svt = device.mckey[0] * self.AVT / math.sqrt(2*device.W*device.L)
skp = device.mckey[1] * self.AKP / math.sqrt(2*device.W*device.L)
else:
svt, skp = 0, 0
return svt, skp
def get_ids(self, device, (vds, vgs, vbs), opdict=None, debug=False):
"""Returns:
IDS, the drain-to-source current (de-normalized),
qs, the (scaled) charge at the source,
qr, the (scaled) charge at the drain.
"""
if debug:
print "=== Current for vds:", vds, "vgs:", vgs, "vbs:", vbs
(vds, vgs, vbs), CS_FACTOR = self.get_voltages(vds, vgs, vbs)
# monte carlo support
svt, skp = self.get_svt_skp(device, debug=debug)
#print "PHI:", self.PHI, "vbs:", vbs
VT = self.VTO + svt + self.GAMMA*(math.sqrt(-vbs+2*self.PHI) - math.sqrt(2*self.PHI))
if vgs < VT:
ids = options.iea*(vgs/VT+vds/VT)/100
else:
if vds < vgs - VT:
ids = (skp+1)*self.KP*device.W/device.L*((vgs-VT)*vds - .5*vds**2)
else:
ids = (skp+1)*.5*self.KP*device.W/device.L*(vgs-VT)**2*(1+self.LAMBDA*(vds-vgs+VT))
Ids = CS_FACTOR * self.NPMOS* device.M/device.N * ids
vds_real = vds if CS_FACTOR == 1 else -vds
vgs_real = vgs if CS_FACTOR == 1 else vgs-vds
vbs_real = vbs if CS_FACTOR == 1 else vbs-vds
opdict.update({'state':(vds_real*self.NPMOS, vgs_real*self.NPMOS, vbs_real*self.NPMOS)})
opdict.update({'Ids':Ids, "W":device.W, "L":device.L, "ON":1*(vgs>=VT)})
opdict.update({'beta':.5*self.KP*device.W/device.L})
opdict.update({'VTH':VT, "VOD":self.NPMOS*(vgs-VT), 'SAT':vds>vgs-VT})
return Ids
#if debug:
# print "vd:", vd, "vg:",VG/self.scaling.Ut, "vs:", vs, "vds:", vd-vs
# print "v_ifn:", v_ifn, "v_irn:",v_irn
# print "ifn:", ifn, "irn:",irn
# print "ip_abs_err:", ip_abs_err
# print "Vth:", self.scaling.Ut
# print "nv", nv, "Is", self.scaling.Is
# print "Weff:", device.W, "Leff:", Leff
# print "NPMOS:", self.NPMOS, "CS_FACTOR", CS_FACTOR
def get_gmb(self, device, (vds, vgs, vbs), opdict=None, debug=False):
"""Returns the source-bulk transconductance or d(IDS)/d(VS-VB)."""
svt, skp = self.get_svt_skp(device, debug=False)
(vds, vgs, vbs), CS_FACTOR = self.get_voltages(vds, vgs, vbs)
VT = self.VTO + svt + self.GAMMA*(math.sqrt(-vbs+2*self.PHI) - math.sqrt(2*self.PHI))
if CS_FACTOR < 0:
return CS_FACTOR*self.NPMOS*self.get_gmb(device, (vds*self.NPMOS, vgs*self.NPMOS, vbs*self.NPMOS), opdict, debug)
if vgs < VT:
gmb = 0
else:
if vds < vgs - VT:
gmb = self.KP*self.GAMMA*vds*device.W/(2*device.L*(2*self.PHI - vbs)**(1.0/2))
else:
gmb = -0.25*self.KP*self.GAMMA*self.LAMBDA*device.W*\
(-self.GAMMA*(-2**(1.0/2)*self.PHI**(1.0/2) + (2*self.PHI - vbs)**(1.0/2)) + vgs - self.VTO)**2/(device.L*(2*self.PHI - vbs)**(1.0/2)) \
+ 0.5*self.KP*self.GAMMA*device.W*(self.LAMBDA*(self.GAMMA*(-2**(1.0/2)*self.PHI**(1.0/2) + (2*self.PHI - vbs)**(1.0/2)) + vds - vgs + self.VTO) + 1.0)*\
(-self.GAMMA*(-2**(1.0/2)*self.PHI**(1.0/2) + (2*self.PHI - vbs)**(1.0/2)) + vgs - self.VTO)/(device.L*(2*self.PHI - vbs)**(1.0/2))
gmb = self.NPMOS * (1+skp) * gmb * device.M/device.N
return gmb
def get_gmd(self, device, (vds, vgs, vbs), opdict=None, debug=False):
"""Returns the drain-bulk transconductance or d(IDS)/d(VD-VB)."""
svt, skp = self.get_svt_skp(device, debug=False)
(vds, vgs, vbs), CS_FACTOR = self.get_voltages(vds, vgs, vbs)
VT = self.VTO + svt + self.GAMMA*(math.sqrt(-vbs+2*self.PHI) - math.sqrt(2*self.PHI))
if vgs < VT:
gmd = options.iea/VT/100
else:
if vds < vgs - VT:
gmd = self.KP*device.W/device.L*(-self.GAMMA*(-2**(1.0/2)*self.PHI**(1.0/2) + (2*self.PHI - vbs)**(1.0/2)) - 1.0*vds + vgs - self.VTO)
else:
gmd = 0.5*self.KP*self.LAMBDA*device.W/device.L*(-self.GAMMA*(-2**(1.0/2)*self.PHI**(1.0/2) + (2*self.PHI - vbs)**(1.0/2)) + vgs - self.VTO)**2
gmd = (1+skp) * gmd * device.M/device.N
return gmd
def get_gm(self, device, (vds, vgs, vbs), opdict=None, debug=False):
"""Returns the gate-bulk transconductance or d(IDS)/d(VG-VB)."""
svt, skp = self.get_svt_skp(device, debug=False)
(vds, vgs, vbs), CS_FACTOR = self.get_voltages(vds, vgs, vbs)
if CS_FACTOR < 0:
return self.get_gm(device, (vds*self.NPMOS, vgs*self.NPMOS, vbs*self.NPMOS), opdict, debug)
VT = self.VTO + svt + self.GAMMA*(math.sqrt(-vbs+2*self.PHI) - math.sqrt(2*self.PHI))
if vgs < VT:
gm = options.iea/VT/100
else:
if vds < vgs - VT:
gm = self.KP*device.W/device.L*vds
else:
gm = -0.5*self.KP*self.LAMBDA*device.W/device.L*(-self.GAMMA*(-2**(1.0/2)*self.PHI**(1.0/2) + (2*self.PHI - vbs)**(1.0/2)) + vgs - self.VTO)**2 \
+ 0.5*self.KP*device.W/device.L*(self.LAMBDA*(self.GAMMA*(-2**(1.0/2)*self.PHI**(1.0/2) + (2*self.PHI - vbs)**(1.0/2)) + vds - vgs + self.VTO) + 1.0)*\
(-2*self.GAMMA*(-2**(1.0/2)*self.PHI**(1.0/2) + (2*self.PHI - vbs)**(1.0/2)) + 2*vgs - 2*self.VTO)
gm = CS_FACTOR * self.NPMOS * (1+skp) * gm * device.M/device.N
return gm
def _self_check(self):
"""Performs sanity check on the model parameters."""
ret = True, ""
if self.NSUB is not None and self.NSUB < 0:
ret = (False, "NSUB "+str(self.NSUB))
elif self.U0 is not None and not self.U0 > 0:
ret = (False, "UO "+str(self.U0))
elif not self.GAMMA > 0:
ret = (False, "GAMMA "+str(self.GAMMA))
elif not self.PHI > 0.1:
ret = (False, "PHI "+str(self.PHI))
elif self.AVT and self.AVT < 0:
ret = (False, "AVT "+str(self.AVT))
elif self.AKP and self.AKP < 0:
ret = (False, "AKP "+str(self.AKP))
return ret
def _device_check(self, adev):
"""Performs sanity check on the device parameters."""
if not adev.L > 0:
ret = (False, "L")
elif not adev.W > 0:
ret = (False, "W")
elif not adev.N > 0:
ret = (False, "N")
elif not adev.M > 0:
ret = (False, "M")
else:
ret = (True, "")
return ret
if __name__ == '__main__':
# Tests
import matplotlib.pyplot as plt
import numpy
m = mosq_mos_model(TYPE='p', KP=50e-6, VTO=.4)
ma = mosq_device(1, 2, 3, 4, W=10e-6,L=1e-6, model=m)
ma.descr = "1"
# OP test
vds = numpy.arange(0, 100)/100.0*5-2.5
vgs = -.55
vbs = 2
#ma.print_op_info(((vds, vgs, vbs),))
#m.print_model()
i= []
g=[]
for X in vds:
i+=[ma.i(0, (X, vgs, vbs))]
g += [ma.g(0, (X, vgs, vbs), 0)]
plt.figure()
plt.plot(vds, i)
plt.hold(True)
plt.plot(vds, g)
gart = (numpy.array(i[1:]) - numpy.array(i[:-1]))/(vds[1]-vds[0])
plt.plot(vds[1:], gart)
plt.show()