forked from gkakogeorgiou/spot
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_spot.py
446 lines (368 loc) · 22.8 KB
/
train_spot.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
import math
import copy
import os
import os.path
import argparse
from tqdm import tqdm
from datetime import datetime
import torch
from torch.optim import Adam
import torch.nn.functional as F
from torch.utils.data import DataLoader
from torch.nn.utils import clip_grad_norm_
from torch.utils.tensorboard import SummaryWriter
import torchvision.utils as vutils
# from torchviz import make_dot
from typing import List
from spot import SPOT
from ms_spot import MSSPOT
from datasets import PascalVOC, COCO2017, MOVi
from ocl_metrics import UnsupervisedMaskIoUMetric, ARIMetric
from utils_spot import inv_normalize, cosine_scheduler, visualize, bool_flag, load_pretrained_encoder, reduce_dataset, check_for_nan_inf
import models_vit
# Set available devices here, do NOT use GPU 0 on node 20
device_ids =[3]
os.environ["CUDA_VISIBLE_DEVICES"]=", ".join(str(device_id) for device_id in device_ids)
def get_args_parser():
parser = argparse.ArgumentParser('SPOT', add_help=False)
parser.add_argument('--num_workers', type=int, default=4)
parser.add_argument('--seed', type=int, default=0)
parser.add_argument('--batch_size', type=int, default=64)
parser.add_argument('--epochs', type=int, default=100)
parser.add_argument('--patience', type=int, default=4)
parser.add_argument('--clip', type=float, default=0.3)
parser.add_argument('--image_size', type=int, default=224)
parser.add_argument('--val_image_size', type=int, default=224)
parser.add_argument('--val_mask_size', type=int, default=320)
parser.add_argument('--eval_batch_size', type=int, default=32)
parser.add_argument('--eval_viz_percent', type=float, default=0.2)
parser.add_argument('--checkpoint_path', default='checkpoint.pt.tar', help='checkpoint to continue the training, loaded only if exists')
parser.add_argument('--log_path', default='logs')
parser.add_argument('--dataset', default='coco', help='coco or voc')
parser.add_argument('--data_path', type=str, help='dataset path')
parser.add_argument('--predefined_movi_json_paths', default = None, type=str, help='For MOVi datasets, use the same subsampled images. Typically for the 2nd stage of Spot training to retain the same images')
parser.add_argument('--lr_main', type=float, default=4e-4)
parser.add_argument('--lr_min', type=float, default=4e-7)
parser.add_argument('--lr_warmup_steps', type=int, default=10000)
parser.add_argument('--num_dec_blocks', type=int, default=4)
parser.add_argument('--d_model', type=int, default=768)
parser.add_argument('--num_heads', type=int, default=6)
parser.add_argument('--dropout', type=float, default=0.0)
parser.add_argument('--num_iterations', type=int, default=3)
parser.add_argument('--num_slots', type=int, default=7)
parser.add_argument('--slot_size', type=int, default=256)
parser.add_argument('--mlp_hidden_size', type=int, default=1024)
parser.add_argument('--img_channels', type=int, default=3)
parser.add_argument('--pos_channels', type=int, default=4)
parser.add_argument('--num_cross_heads', type=int, default=None)
parser.add_argument('--dec_type', type=str, default='transformer', help='type of decoder transformer or mlp')
parser.add_argument('--cappa', type=float, default=-1)
parser.add_argument('--mlp_dec_hidden', type=int, default=2048, help='Dimension of decoder mlp hidden layers')
parser.add_argument('--use_slot_proj', type=bool_flag, default=True, help='Use an extra projection before MLP decoder')
parser.add_argument('--which_encoder', type=str, default='dino_vitb16', help='dino_vitb16, dino_vits8, dinov2_vitb14_reg, dinov2_vits14_reg, dinov2_vitb14, dinov2_vits14, mae_vitb16')
parser.add_argument('--finetune_blocks_after', type=int, default=100, help='finetune the blocks from this and after (counting from 0), for vit-b values greater than 12 means keep everything frozen')
parser.add_argument('--encoder_final_norm', type=bool_flag, default=False)
parser.add_argument('--pretrained_encoder_weights', type=str, default=None)
parser.add_argument('--use_second_encoder', type= bool_flag, default = False, help='different encoder for input and target of decoder')
parser.add_argument('--truncate', type=str, default='none', help='bi-level or fixed-point or none')
parser.add_argument('--init_method', default='shared_gaussian', help='embedding or shared_gaussian')
parser.add_argument('--train_permutations', type=str, default='random', help='which permutation')
parser.add_argument('--eval_permutations', type=str, default='standard', help='which permutation')
parser.add_argument('--ms_which_encoder_layers', type=str, default="9,10,11", help= "Which block layers of the encoders are to be used for multi-scale slot attention, values as ints separated by commas with no whitespace")
parser.add_argument('--concat_method', type=str, default='mean', help="how the multiscale attention is concatenated, choose from ['mean', 'sum', 'residual, 'max', 'denseconnector', 'transformerconnector']")
parser.add_argument('--shared_weights', type=bool, default=False, help='if the weights of the slot attention encoder module are shared')
parser.add_argument('--data_cut', type=float, default=1, help='factor how much of the original length of the data is used')
parser.add_argument('--log_folder_name', type=str, default=None, help='folder to save the logs and model')
parser.add_argument('--visualize_attn', type=bool, default=False)
return parser
def train(args):
torch.manual_seed(args.seed)
print(f"device ids: {device_ids}")
# Directly transform string of layers into proper list
args_layers_list = list(map(int, args.ms_which_encoder_layers.split(',')))
assert len(args_layers_list) > 0, "ms_which_encoder_layers must contain at least one integer"
assert all(isinstance(x, int) for x in args_layers_list), "ms_which_encoder_layers must contain only integers, separated by commas"
args.ms_which_encoder_layers = args_layers_list
arg_str_list = ['{}={}'.format(k, v) for k, v in vars(args).items()]
arg_str = '__'.join(arg_str_list)
log_dir = os.path.join(args.log_path, datetime.today().isoformat()) if args.log_folder_name is None else os.path.join(args.log_path, args.log_folder_name)
args.log_dir = log_dir
writer = SummaryWriter(log_dir)
writer.add_text('hparams', arg_str)
if args.dataset == 'voc':
train_dataset = PascalVOC(root=args.data_path, split='trainaug', image_size=args.image_size, mask_size = args.image_size)
val_dataset = PascalVOC(root=args.data_path, split='val', image_size=args.val_image_size, mask_size = args.val_mask_size)
elif args.dataset == 'coco':
train_dataset = COCO2017(root=args.data_path, split='train', image_size=args.image_size, mask_size = args.image_size)
val_dataset = COCO2017(root=args.data_path, split='val', image_size=args.val_image_size, mask_size = args.val_mask_size)
elif args.dataset == 'movi':
train_dataset = MOVi(root=os.path.join(args.data_path, 'train'), split='train', image_size=args.image_size, mask_size = args.image_size, frames_per_clip=9, predefined_json_paths = args.predefined_movi_json_paths)
val_dataset = MOVi(root=os.path.join(args.data_path, 'validation'), split='validation', image_size=args.val_image_size, mask_size = args.val_mask_size)
# Apply data reduction settings, scale lr_warmup_steps as well since it relies on dataset size
if args.data_cut < 1:
print(f"Dataset size is reduced using factor {args.data_cut}")
train_dataset = reduce_dataset(train_dataset, args.data_cut)
val_dataset = reduce_dataset(val_dataset, args.data_cut)
args.lr_warmup_steps = args.lr_warmup_steps * args.data_cut
train_sampler = None
val_sampler = None
loader_kwargs = {
'num_workers': args.num_workers,
'pin_memory': True,
}
train_loader = DataLoader(train_dataset, sampler=train_sampler, shuffle=True, drop_last = True, batch_size=args.batch_size, **loader_kwargs)
val_loader = DataLoader(val_dataset, sampler=val_sampler, shuffle=False, drop_last = False, batch_size=args.eval_batch_size, **loader_kwargs)
train_epoch_size = len(train_loader)
val_epoch_size = len(val_loader)
log_interval = train_epoch_size // 5
if args.which_encoder == 'dino_vitb16':
args.max_tokens = int((args.val_image_size/16)**2)
encoder = torch.hub.load('facebookresearch/dino:main', 'dino_vitb16')
elif args.which_encoder == 'dino_vits8':
args.max_tokens = int((args.val_image_size/8)**2)
encoder = torch.hub.load('facebookresearch/dino:main', 'dino_vits8')
elif args.which_encoder == 'dino_vitb8':
args.max_tokens = int((args.val_image_size/8)**2)
encoder = torch.hub.load('facebookresearch/dino:main', 'dino_vitb8')
elif args.which_encoder == 'dinov2_vitb14':
args.max_tokens = int((args.val_image_size/14)**2)
encoder = torch.hub.load('facebookresearch/dinov2', 'dinov2_vitb14')
elif args.which_encoder == 'dinov2_vits14':
args.max_tokens = int((args.val_image_size/14)**2)
encoder = torch.hub.load('facebookresearch/dinov2', 'dinov2_vits14')
elif args.which_encoder == 'dinov2_vitb14_reg':
args.max_tokens = int((args.val_image_size/14)**2)
encoder = torch.hub.load('facebookresearch/dinov2', 'dinov2_vitb14_reg')
elif args.which_encoder == 'dinov2_vits14_reg':
args.max_tokens = int((args.val_image_size/14)**2)
encoder = torch.hub.load('facebookresearch/dinov2', 'dinov2_vits14_reg')
elif args.which_encoder == 'mae_vitb16':
args.max_tokens = int((args.val_image_size/16)**2)
encoder = models_vit.__dict__["vit_base_patch16"](num_classes=0, global_pool=False, drop_path_rate=0)
assert args.pretrained_encoder_weights is not None
load_pretrained_encoder(encoder, args.pretrained_encoder_weights, prefix=None)
else:
raise
encoder = encoder.eval()
if args.use_second_encoder:
encoder_second = copy.deepcopy(encoder).eval()
else:
encoder_second = None
if args.num_cross_heads is None:
args.num_cross_heads = args.num_heads
# Print settings for better reproducibility / result tracking
print("\n=======================\n \nSettings:\n")
for entry in ['{}={}'.format(k, v) for k, v in vars(args).items()]:
print(entry)
# Create model with hyper parameters
#model = SPOT(encoder, args, encoder_second)
model = MSSPOT(encoder, args, encoder_second)
# register hooks for MSSPOT
for name, module in model.named_modules():
module.register_forward_hook(check_for_nan_inf)
print("\n=======================\n")
if os.path.isfile(args.checkpoint_path):
checkpoint = torch.load(args.checkpoint_path, map_location='cpu')
start_epoch = checkpoint['epoch']
best_val_loss = checkpoint['best_val_loss']
best_val_ari = checkpoint['best_val_ari']
best_val_ari_slot = checkpoint['best_val_ari_slot']
best_mbo_c = checkpoint['best_mbo_c']
best_mbo_i = checkpoint['best_mbo_i']
best_miou = checkpoint['best_miou']
best_mbo_c_slot = checkpoint['best_mbo_c_slot']
best_mbo_i_slot = checkpoint['best_mbo_i_slot']
best_miou_slot = checkpoint['best_miou_slot']
best_epoch = checkpoint['best_epoch']
model.load_state_dict(checkpoint['model'], strict=True)
msg = model.load_state_dict(checkpoint['model'], strict=True)
print(msg)
else:
print('No checkpoint_path found')
checkpoint = None
start_epoch = 0
best_val_loss = math.inf
best_epoch = 0
best_val_ari = 0
best_val_ari_slot = 0
best_mbo_c = 0
best_mbo_i = 0
best_miou= 0
best_mbo_c_slot = 0
best_mbo_i_slot = 0
best_miou_slot= 0
model = model.cuda()
# TODO see if needed
n_warmup_epochs = int(args.lr_warmup_steps/(len(train_dataset)/args.batch_size))
print (f"Number warmup epochs: {n_warmup_epochs}")
#if n_warmup_epochs > args.epochs/10:
# print("Warmup epochs needed to be adjusted")
# n_warmup_epochs = int(args.epochs*0.1)
lr_schedule = cosine_scheduler( base_value = args.lr_main,
final_value = args.lr_min,
epochs = args.epochs,
niter_per_ep = len(train_loader),
warmup_epochs=n_warmup_epochs,
start_warmup_value=0,
)
optimizer = Adam([
{'params': (param for name, param in model.named_parameters() if param.requires_grad), 'lr': args.lr_main},
])
if checkpoint is not None:
optimizer.load_state_dict(checkpoint['optimizer'])
MBO_c_metric = UnsupervisedMaskIoUMetric(matching="best_overlap", ignore_background = True, ignore_overlaps = True).cuda()
MBO_i_metric = UnsupervisedMaskIoUMetric(matching="best_overlap", ignore_background = True, ignore_overlaps = True).cuda()
miou_metric = UnsupervisedMaskIoUMetric(matching="hungarian", ignore_background = True, ignore_overlaps = True).cuda()
ari_metric = ARIMetric(foreground = True, ignore_overlaps = True).cuda()
MBO_c_slot_metric = UnsupervisedMaskIoUMetric(matching="best_overlap", ignore_background = True, ignore_overlaps = True).cuda()
MBO_i_slot_metric = UnsupervisedMaskIoUMetric(matching="best_overlap", ignore_background = True, ignore_overlaps = True).cuda()
miou_slot_metric = UnsupervisedMaskIoUMetric(matching="hungarian", ignore_background = True, ignore_overlaps = True).cuda()
ari_slot_metric = ARIMetric(foreground = True, ignore_overlaps = True).cuda()
visualize_per_epoch = int(args.epochs*args.eval_viz_percent)
make_graph = False
# check for NaNs and Infs in backward pass
torch.autograd.set_detect_anomaly(True)
print(datetime.now())
print(f"PID = {os.getpid()}")
print(f"Hostname = {os.uname().nodename}")
for epoch in range(start_epoch, args.epochs):
model.train()
for batch, image in enumerate(train_loader):
image = image.cuda()
global_step = epoch * train_epoch_size + batch
optimizer.param_groups[0]['lr'] = lr_schedule[global_step]
lr_value = optimizer.param_groups[0]['lr']
optimizer.zero_grad()
mse, _, _, _, _, _ = model(image)
if make_graph:
print("Making graph")
make_dot(mse.mean(), params=dict(model.named_parameters())).render("msspotnodetach.png", format="png")
make_graph = False
if torch.isnan(mse):
print("Nan in loss")
continue
mse.backward()
total_norm = clip_grad_norm_(model.parameters(), args.clip, 'inf')
total_norm = total_norm.item()
optimizer.step()
with torch.no_grad():
if batch % log_interval == 0:
print('Train Epoch: {:3} [{:5}/{:5}] \t lr = {:5} \t MSE: {:F} \t TotNorm: {:F}'.format(
epoch+1, batch, train_epoch_size, lr_value, mse.item(), total_norm))
writer.add_scalar('TRAIN/mse', mse.item(), global_step)
writer.add_scalar('TRAIN/lr_main', lr_value, global_step)
writer.add_scalar('TRAIN/total_norm', total_norm, global_step)
with torch.no_grad():
model.eval()
val_mse = 0.
counter = 0
for batch, (image, true_mask_i, true_mask_c, mask_ignore) in enumerate(tqdm(val_loader)):
image = image.cuda()
true_mask_i = true_mask_i.cuda()
true_mask_c = true_mask_c.cuda()
mask_ignore = mask_ignore.cuda()
batch_size = image.shape[0]
counter += batch_size
mse, default_slots_attns, dec_slots_attns, _, _, _ = model(image)
# DINOSAUR uses as attention masks the attenton maps of the decoder
# over the slots, which bilinearly resizes to match the image resolution
# dec_slots_attns shape: [B, num_slots, H_enc, W_enc]
default_attns = F.interpolate(default_slots_attns, size=args.val_mask_size, mode='bilinear')
dec_attns = F.interpolate(dec_slots_attns, size=args.val_mask_size, mode='bilinear')
# dec_attns shape [B, num_slots, H, W]
default_attns = default_attns.unsqueeze(2)
dec_attns = dec_attns.unsqueeze(2) # shape [B, num_slots, 1, H, W]
pred_default_mask = default_attns.argmax(1).squeeze(1)
pred_dec_mask = dec_attns.argmax(1).squeeze(1)
val_mse += mse.item()
# Compute ARI, MBO_i and MBO_c, miou scores for both slot attention and decoder
true_mask_i_reshaped = torch.nn.functional.one_hot(true_mask_i).to(torch.float32).permute(0,3,1,2).cuda()
true_mask_c_reshaped = torch.nn.functional.one_hot(true_mask_c).to(torch.float32).permute(0,3,1,2).cuda()
pred_dec_mask_reshaped = torch.nn.functional.one_hot(pred_dec_mask).to(torch.float32).permute(0,3,1,2).cuda()
pred_default_mask_reshaped = torch.nn.functional.one_hot(pred_default_mask).to(torch.float32).permute(0,3,1,2).cuda()
MBO_i_metric.update(pred_dec_mask_reshaped, true_mask_i_reshaped, mask_ignore)
MBO_c_metric.update(pred_dec_mask_reshaped, true_mask_c_reshaped, mask_ignore)
miou_metric.update(pred_dec_mask_reshaped, true_mask_i_reshaped, mask_ignore)
ari_metric.update(pred_dec_mask_reshaped, true_mask_i_reshaped, mask_ignore)
MBO_i_slot_metric.update(pred_default_mask_reshaped, true_mask_i_reshaped, mask_ignore)
MBO_c_slot_metric.update(pred_default_mask_reshaped, true_mask_c_reshaped, mask_ignore)
miou_slot_metric.update(pred_default_mask_reshaped, true_mask_i_reshaped, mask_ignore)
ari_slot_metric.update(pred_default_mask_reshaped, true_mask_i_reshaped, mask_ignore)
val_mse /= (val_epoch_size)
ari = 100 * ari_metric.compute()
ari_slot = 100 * ari_slot_metric.compute()
mbo_c = 100 * MBO_c_metric.compute()
mbo_i = 100 * MBO_i_metric.compute()
miou = 100 * miou_metric.compute()
mbo_c_slot = 100 * MBO_c_slot_metric.compute()
mbo_i_slot = 100 * MBO_i_slot_metric.compute()
miou_slot = 100 * miou_slot_metric.compute()
val_loss = val_mse
writer.add_scalar('VAL/mse', val_mse, epoch+1)
writer.add_scalar('VAL/ari (slots)', ari_slot, epoch+1)
writer.add_scalar('VAL/ari (decoder)', ari, epoch+1)
writer.add_scalar('VAL/mbo_c', mbo_c, epoch+1)
writer.add_scalar('VAL/mbo_i', mbo_i, epoch+1)
writer.add_scalar('VAL/miou', miou, epoch+1)
writer.add_scalar('VAL/mbo_c (slots)', mbo_c_slot, epoch+1)
writer.add_scalar('VAL/mbo_i (slots)', mbo_i_slot, epoch+1)
writer.add_scalar('VAL/miou (slots)', miou_slot, epoch+1)
print(args.log_path)
print('====> Epoch: {:3} \t Loss = {:F} \t MSE = {:F} \t ARI = {:F} \t ARI_slots = {:F} \t mBO_c = {:F} \t mBO_i = {:F} \t miou = {:F} \t mBO_c_slots = {:F} \t mBO_i_slots = {:F} \t miou_slots = {:F}'.format(
epoch+1, val_loss, val_mse, ari, ari_slot, mbo_c, mbo_i, miou, mbo_c_slot, mbo_i_slot, miou_slot))
ari_metric.reset()
MBO_c_metric.reset()
MBO_i_metric.reset()
miou_metric.reset()
MBO_c_slot_metric.reset()
MBO_i_slot_metric.reset()
ari_slot_metric.reset()
miou_slot_metric.reset()
if (val_loss < best_val_loss) or (best_val_ari > ari) or (best_mbo_c > mbo_c):
best_val_loss = val_loss
best_val_ari = ari
best_val_ari_slot = ari_slot
best_mbo_c = mbo_c
best_mbo_i = mbo_i
best_miou = miou
best_mbo_c_slot = mbo_c_slot
best_mbo_i_slot = mbo_i_slot
best_miou_slot = miou_slot
best_epoch = epoch + 1
#torch.save(model.state_dict(), os.path.join(log_dir, 'best_model.pt'))
if epoch%visualize_per_epoch==0 or epoch==args.epochs-1:
image = inv_normalize(image)
image = F.interpolate(image, size=args.val_mask_size, mode='bilinear')
rgb_default_attns = image.unsqueeze(1) * default_attns + 1. - default_attns
rgb_dec_attns = image.unsqueeze(1) * dec_attns + 1. - dec_attns
vis_recon = visualize(image, true_mask_c, pred_dec_mask, rgb_dec_attns, pred_default_mask, rgb_default_attns, N=32)
grid = vutils.make_grid(vis_recon, nrow=2*args.num_slots + 4, pad_value=0.2)[:, 2:-2, 2:-2]
grid = F.interpolate(grid.unsqueeze(1), scale_factor=0.15, mode='bilinear').squeeze() # Lower resolution
writer.add_image('VAL_recon/epoch={:03}'.format(epoch + 1), grid)
writer.add_scalar('VAL/best_loss', best_val_loss, epoch+1)
checkpoint = {
'epoch': epoch + 1,
'best_val_loss': best_val_loss,
'best_val_ari': best_val_ari,
'best_val_ari_slot': best_val_ari_slot,
'best_mbo_c':best_mbo_c,
'best_mbo_i':best_mbo_i,
'best_miou':best_miou,
'best_mbo_c_slot':best_mbo_c_slot,
'best_mbo_i_slot':best_mbo_i_slot,
'best_miou_slot':best_miou_slot,
'best_epoch': best_epoch,
'model': model.state_dict(),
'optimizer': optimizer.state_dict()
}
torch.save(checkpoint, os.path.join(log_dir, 'checkpoint.pt.tar'))
print('====> Best Loss = {:F} @ Epoch {}'.format(best_val_loss, best_epoch))
# Compute distances in feature space between layers
# pairwise_distances = model.layer_dist_accumulator / model.accumulator_counter
# for i, dist in enumerate(pairwise_distances):
# print(f"Mean euclidean distance in feature space from layer {i} to {i+1} is: {pairwise_distances[i]}")
writer.close()
if __name__ == '__main__':
parser = argparse.ArgumentParser('SPOT', parents=[get_args_parser()])
args = parser.parse_args()
train(args)