forked from ufownl/alpr_utils
-
Notifications
You must be signed in to change notification settings - Fork 0
/
ocr_net.py
110 lines (89 loc) · 4.55 KB
/
ocr_net.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
# Copyright (c) 2019, RangerUFO
#
# This file is part of alpr_utils.
#
# alpr_utils is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# alpr_utils is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with alpr_utils. If not, see <https://www.gnu.org/licenses/>.
import math
import backbone
import mxnet as mx
from transformer_utils import MultiHeadAttention, PositionalEncoding, TimingEncoding, PositionalWiseFeedForward, EncoderLayer, AdaptiveComputationTime
class ImageEmbedding(mx.gluon.nn.Block):
def __init__(self, dims, **kwargs):
super(ImageEmbedding, self).__init__(**kwargs)
with self.name_scope():
self._block = mx.gluon.nn.Sequential()
backbone.add_layers(self._block, dims)
def forward(self, x):
y = self._block(x).transpose((0, 1, 3, 2))
return y.reshape((y.shape[0], y.shape[1], -1)).transpose((0, 2, 1))
class ImageEncoder(mx.gluon.nn.Block):
def __init__(self, max_hw, layers, dims, heads, ffn_dims, dropout=0.0, **kwargs):
super(ImageEncoder, self).__init__(**kwargs)
h = math.ceil(max_hw[0] / 16)
w = math.ceil(max_hw[1] / 16)
with self.name_scope():
self._embedding = ImageEmbedding(dims)
self._pos_encoding = PositionalEncoding(dims, h * w)
self._time_encoding = TimingEncoding(dims, layers)
self._encoder = EncoderLayer(dims, heads, ffn_dims, dropout)
self._act = AdaptiveComputationTime(layers)
def forward(self, x):
y = self._embedding(x)
seq_len = mx.nd.array([y.shape[1]] * y.shape[0], ctx=y.context)
return self._act(self._encoder, self._pos_encoding, self._time_encoding, y, seq_len, None)
class LpDecoderLayer(mx.gluon.nn.Block):
def __init__(self, dims, heads, ffn_dims, dropout=0.0, **kwargs):
super(LpDecoderLayer, self).__init__(**kwargs)
with self.name_scope():
self._layer_norm = mx.gluon.nn.LayerNorm()
self._context_attn = MultiHeadAttention(dims, heads, dropout)
self._ffn = PositionalWiseFeedForward(dims, ffn_dims, dropout)
def forward(self, x, enc_y, self_attn_mask, context_attn_mask):
y, context_attn = self._context_attn(self._layer_norm(x), enc_y, enc_y, x, context_attn_mask)
return self._ffn(self._layer_norm(y), y), None, context_attn
class LpDecoder(mx.gluon.nn.Block):
def __init__(self, vocab_size, max_len, layers, dims, heads, ffn_dims, dropout=0.0, **kwargs):
super(LpDecoder, self).__init__(**kwargs)
with self.name_scope():
self._embedding = mx.gluon.nn.Embedding(vocab_size, dims, weight_initializer=mx.init.Uniform(0.1))
self._pos_encoding = PositionalEncoding(dims, max_len)
self._time_encoding = TimingEncoding(dims, layers)
self._decoder = LpDecoderLayer(dims, heads, ffn_dims, dropout)
self._act = AdaptiveComputationTime(layers)
def forward(self, x, seq_len, enc_y):
y = self._embedding(x)
return self._act(self._decoder, self._pos_encoding, self._time_encoding, y, seq_len, None, enc_y)
class OcrNet(mx.gluon.nn.Block):
def __init__(self, max_hw, vocab_size, max_len, **kwargs):
super(OcrNet, self).__init__(**kwargs)
with self.name_scope():
self._encoder = ImageEncoder(max_hw, 6, 256, 8, 2048, 0.5)
self._decoder = LpDecoder(vocab_size, max_len + 1, 6, 256, 8, 2048, 0.5)
self._output = mx.gluon.nn.Dense(vocab_size, flatten=False)
def forward(self, img, tgt_seq, tgt_len):
out, self_attn = self.encode(img)
out, context_attn = self.decode(tgt_seq, tgt_len, out)
return out, self_attn, context_attn
def encode(self, img):
return self._encoder(img)
def decode(self, seq, seq_len, enc_out):
out, self_attn, context_attn = self._decoder(seq, seq_len, enc_out)
out = self._output(out)
return out, context_attn
if __name__ == "__main__":
x = mx.nd.zeros((4, 3, 48, 144))
net = OcrNet((48, 144), 72, 8)
net.initialize(mx.init.Xavier())
print(net)
print(net(mx.nd.zeros((4, 3, 48, 144)), mx.nd.zeros((4, 9)), mx.nd.ones((4,)) * 9))