forked from ufownl/alpr_utils
-
Notifications
You must be signed in to change notification settings - Fork 0
/
transformer_utils.py
259 lines (219 loc) · 11.5 KB
/
transformer_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
# Copyright (c) 2019, RangerUFO
#
# This file is part of alpr_utils.
#
# alpr_utils is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# alpr_utils is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with alpr_utils. If not, see <https://www.gnu.org/licenses/>.
import sys
import numpy as np
import mxnet as mx
def padding_mask(seq_q, seq_k):
mask = mx.nd.equal(seq_k, 0)
mask = mask.expand_dims(1).broadcast_axes(1, seq_q.shape[1])
return mask
def sequence_mask(seq):
mask = mx.nd.array(np.triu(np.ones((seq.shape[1], seq.shape[1])), 1), ctx=seq.context)
mask = mask.expand_dims(0).broadcast_axes(0, seq.shape[0])
return mask
def mask_fill(a, mask, value):
return a * mx.nd.logical_not(mask) + mask * value
class ScaledDotProductAttention(mx.gluon.nn.Block):
def __init__(self, dropout=0.0, **kwargs):
super(ScaledDotProductAttention, self).__init__(**kwargs)
with self.name_scope():
self._dropout = mx.gluon.nn.Dropout(dropout)
def forward(self, q, k, v, scale, mask):
attn = mx.nd.batch_dot(q, k, transpose_b=True)
if not scale is None:
attn = attn * scale
if not mask is None:
attn = mask_fill(attn, mask, -sys.maxsize-1)
attn = mx.nd.softmax(attn, axis=2)
attn = self._dropout(attn)
return mx.nd.batch_dot(attn, v), attn
class MultiHeadAttention(mx.gluon.nn.Block):
def __init__(self, dims, heads, dropout=0.0, **kwargs):
super(MultiHeadAttention, self).__init__(**kwargs)
self._dims_per_head = dims // heads
self._heads = heads
with self.name_scope():
self._dense_q = mx.gluon.nn.Dense(self._dims_per_head * heads, flatten=False)
self._dense_k = mx.gluon.nn.Dense(self._dims_per_head * heads, flatten=False)
self._dense_v = mx.gluon.nn.Dense(self._dims_per_head * heads, flatten=False)
self._attention = ScaledDotProductAttention(dropout)
self._dense_final = mx.gluon.nn.Dense(dims, flatten=False)
self._dropout = mx.gluon.nn.Dropout(dropout)
def forward(self, q, k, v, residual, mask):
batch_size = q.shape[0]
q = self._dense_q(q)
k = self._dense_k(k)
v = self._dense_v(v)
q = q.reshape((batch_size, -1, self._heads, self._dims_per_head))
q = q.transpose((0, 2, 1, 3))
q = q.reshape((batch_size * self._heads, -1, self._dims_per_head))
k = k.reshape((batch_size, -1, self._heads, self._dims_per_head))
k = k.transpose((0, 2, 1, 3))
k = k.reshape((batch_size * self._heads, -1, self._dims_per_head))
v = v.reshape((batch_size, -1, self._heads, self._dims_per_head))
v = v.transpose((0, 2, 1, 3))
v = v.reshape((batch_size * self._heads, -1, self._dims_per_head))
scale = self._dims_per_head ** -0.5
if not mask is None:
mask = mask.repeat(self._heads, axis=0)
y, attn = self._attention(q, k, v, scale, mask)
y = y.reshape((batch_size, self._heads, -1, self._dims_per_head))
y = y.transpose((0, 2, 1, 3))
y = y.reshape((batch_size, -1, self._dims_per_head * self._heads))
y = self._dense_final(y)
y = self._dropout(y)
return y + residual, attn
class PositionalEncoding(mx.gluon.nn.Block):
def __init__(self, dims, max_len, **kwargs):
super(PositionalEncoding, self).__init__(**kwargs)
self._dims = dims
self._max_len = max_len + 1
self._weight = None
def forward(self, x, seq_len):
if self._weight is None:
self._weight = mx.nd.array([[pos / (10000 ** (2 * (i // 2) / self._dims)) for i in range(self._dims)] for pos in range(self._max_len)], ctx=x.context)
self._weight[:, 0::2] = mx.nd.sin(self._weight[:, 0::2])
self._weight[:, 1::2] = mx.nd.cos(self._weight[:, 1::2])
seq_pos = mx.nd.array([list(range(1, int(l.asscalar()) + 1)) + [0] * (x.shape[1] - int(l.asscalar())) for l in seq_len], ctx=x.context)
return mx.nd.Embedding(seq_pos, self._weight, self._max_len, self._dims)
class TimingEncoding(mx.gluon.nn.Block):
def __init__(self, dims, max_len, **kwargs):
super(TimingEncoding, self).__init__(**kwargs)
self._dims = dims
self._max_len = max_len
self._weight = None
def forward(self, x, t):
if self._weight is None:
self._weight = mx.nd.array([[pos / (10000 ** (2 * (i // 2) / self._dims)) for i in range(self._dims)] for pos in range(self._max_len)], ctx=x.context)
self._weight[:, 0::2] = mx.nd.sin(self._weight[:, 0::2])
self._weight[:, 1::2] = mx.nd.cos(self._weight[:, 1::2])
seq_t = mx.nd.ones(x.shape[:2], ctx=x.context) * t
return mx.nd.Embedding(seq_t, self._weight, self._max_len, self._dims)
class PositionalWiseFeedForward(mx.gluon.nn.Block):
def __init__(self, dims, ffn_dims, dropout=0.0, **kwargs):
super(PositionalWiseFeedForward, self).__init__(**kwargs)
with self.name_scope():
self._w1 = mx.gluon.nn.Conv1D(ffn_dims, 1)
self._w2 = mx.gluon.nn.Conv1D(dims, 1)
self._dropout = mx.gluon.nn.Dropout(dropout)
def forward(self, x, residual):
y = self._w2(mx.nd.relu(self._w1(x.transpose((0, 2, 1)))))
y = self._dropout(y.transpose((0, 2, 1)))
return y + residual
class EncoderLayer(mx.gluon.nn.Block):
def __init__(self, dims, heads, ffn_dims, dropout=0.0, **kwargs):
super(EncoderLayer, self).__init__(**kwargs)
with self.name_scope():
self._layer_norm = mx.gluon.nn.LayerNorm()
self._self_attn = MultiHeadAttention(dims, heads, dropout)
self._ffn = PositionalWiseFeedForward(dims, ffn_dims, dropout)
def forward(self, x, mask):
norm_x = self._layer_norm(x)
y, attn = self._self_attn(norm_x, norm_x, norm_x, x, mask)
return self._ffn(self._layer_norm(y), y), attn
class Encoder(mx.gluon.nn.Block):
def __init__(self, vocab_size, max_len, layers, dims, heads, ffn_dims, dropout=0.0, **kwargs):
super(Encoder, self).__init__(**kwargs)
with self.name_scope():
self._embedding = mx.gluon.nn.Embedding(vocab_size, dims, weight_initializer=mx.init.Uniform(0.1))
self._pos_encoding = PositionalEncoding(dims, max_len)
self._time_encoding = TimingEncoding(dims, layers)
self._encoder = EncoderLayer(dims, heads, ffn_dims, dropout)
self._act = AdaptiveComputationTime(layers)
def forward(self, x, seq_len):
y = self._embedding(x)
mask = padding_mask(x, x)
return self._act(self._encoder, self._pos_encoding, self._time_encoding, y, seq_len, mask)
class DecoderLayer(mx.gluon.nn.Block):
def __init__(self, dims, heads, ffn_dims, dropout=0.0, **kwargs):
super(DecoderLayer, self).__init__(**kwargs)
with self.name_scope():
self._layer_norm = mx.gluon.nn.LayerNorm()
self._self_attn = MultiHeadAttention(dims, heads, dropout)
self._context_attn = MultiHeadAttention(dims, heads, dropout)
self._ffn = PositionalWiseFeedForward(dims, ffn_dims, dropout)
def forward(self, x, enc_y, self_attn_mask, context_attn_mask):
norm_x = self._layer_norm(x)
y, self_attn = self._self_attn(norm_x, norm_x, norm_x, x, self_attn_mask)
y, context_attn = self._context_attn(self._layer_norm(y), enc_y, enc_y, y, context_attn_mask)
return self._ffn(self._layer_norm(y), y), self_attn, context_attn
class Decoder(mx.gluon.nn.Block):
def __init__(self, vocab_size, max_len, layers, dims, heads, ffn_dims, dropout=0.0, **kwargs):
super(Decoder, self).__init__(**kwargs)
with self.name_scope():
self._embedding = mx.gluon.nn.Embedding(vocab_size, dims, weight_initializer=mx.init.Uniform(0.1))
self._pos_encoding = PositionalEncoding(dims, max_len)
self._time_encoding = TimingEncoding(dims, layers)
self._decoder = DecoderLayer(dims, heads, ffn_dims, dropout)
self._act = AdaptiveComputationTime(layers)
def forward(self, x, seq_len, enc_y, context_attn_mask):
y = self._embedding(x)
self_attn_mask = mx.nd.logical_or(padding_mask(x, x), sequence_mask(x))
return self._act(self._decoder, self._pos_encoding, self._time_encoding, y, seq_len, self_attn_mask, enc_y, context_attn_mask)
class AdaptiveComputationTime(mx.gluon.nn.Block):
def __init__(self, layers, threshold=0.9, **kwargs):
super(AdaptiveComputationTime, self).__init__(**kwargs)
self._layers = layers
self._threshold = threshold
with self.name_scope():
self._p = mx.gluon.nn.Dense(1, activation="sigmoid", bias_initializer="ones", flatten=False)
self._layer_norm = mx.gluon.nn.LayerNorm()
def forward(self, fn, pos_encoding, time_encoding, x, seq_len, self_attn_mask, enc_y=None, context_attn_mask=None):
halting_prob = mx.nd.zeros(x.shape[:2], ctx=x.context)
remainders = mx.nd.zeros(x.shape[:2], ctx=x.context)
updates = mx.nd.zeros(x.shape[:2], ctx=x.context)
prev_state = mx.nd.zeros_like(x, ctx=x.context)
y = x
self_attns = []
if not enc_y is None:
context_attns = []
t = 0
while mx.nd.logical_and(halting_prob < self._threshold, updates < self._layers).sum() > 0:
state = y + pos_encoding(y, seq_len) + time_encoding(y, t)
p = self._p(state).flatten()
running = halting_prob < 1.0
halting = mx.nd.logical_and(halting_prob + p * running > self._threshold, running)
running = mx.nd.logical_and(halting_prob + p * running <= self._threshold, running)
halting_prob = halting_prob + p * running
remainders = remainders + (1 - halting_prob) * halting
halting_prob = halting_prob + remainders * halting
updates = updates + running + halting
weights = (p * running + remainders * halting).expand_dims(2)
if enc_y is None:
y, self_attn = fn(state, self_attn_mask)
self_attns.append(self_attn)
else:
y, self_attn, context_attn = fn(state, enc_y, self_attn_mask, context_attn_mask)
self_attns.append(self_attn)
context_attns.append(context_attn)
prev_state = y * weights + prev_state * (1 - weights)
t += 1
if enc_y is None:
return self._layer_norm(prev_state), self_attns
else:
return self._layer_norm(prev_state), self_attns, context_attns
if __name__ == "__main__":
seq = mx.nd.array([[10, 10, 3, 0, 0], [11, 11, 11, 3, 0]])
seq_len = mx.nd.array([3, 4])
encoder = Encoder(16, 8, 6, 512, 8, 2048)
encoder.initialize(mx.init.Xavier())
enc_y, enc_self_attns = encoder(seq, seq_len)
print(enc_y, enc_self_attns)
decoder = Decoder(16, 8, 6, 512, 8, 2048)
decoder.initialize(mx.init.Xavier())
dec_y, dec_self_attns, context_attns = decoder(seq, seq_len, enc_y, None)
print(dec_y, dec_self_attns, context_attns)