This document is used to list steps of reproducing TensorFlow Object Detection models tuning results. Currently, we've enabled below models.
- ssd_resnet50_v1
- ssd_resnet34
- ssd_mobilenet_v1
- fastrcnn_inception_resnet_v2
- fastrcnn_resnet101
- fastrcnn_resnet50
- maskrcnn_inception_v2
Recommend python 3.6 or higher version.
# Install Intel® Neural Compressor
pip install neural-compressor
pip install intel-tensorflow
Note: Supported Tensorflow Version.
cd examples/tensorflow/object_detection/tensorflow_models/quantization/ptq
pip install -r requirements.txt
Protocol Buffer Compiler
in version higher than 3.0.0 is necessary ingredient for automatic COCO dataset preparation. To install please follow
Protobuf installation instructions.
Note:
prepare_dataset.sh
script works with TF version 1.x.
Run the prepare_dataset.sh
script located in examples/tensorflow/object_detection/tensorflow_models/quantization/ptq
.
Usage:
cd examples/tensorflow/object_detection/tensorflow_models/quantization/ptq
. prepare_dataset.sh
This script will download the train, validation and test COCO datasets. Furthermore it will convert them to
tensorflow records using the https://github.com/tensorflow/models.git
dedicated script.
Download CoCo Dataset from Official Website.
Run the prepare_model.py
script located in examples/tensorflow/object_detection/tensorflow_models/quantization/ptq
.
usage: prepare_model.py [-h] [--model_name {ssd_resnet50_v1,ssd_mobilenet_v1}]
[--model_path MODEL_PATH]
Prepare pre-trained model for COCO object detection
optional arguments:
-h, --help show this help message and exit
--model_name {ssd_resnet50_v1,ssd_mobilenet_v1}
model to download, default is ssd_resnet50_v1
--model_path MODEL_PATH
directory to put models, default is ./model
wget http://download.tensorflow.org/models/object_detection/ssd_resnet50_v1_fpn_shared_box_predictor_640x640_coco14_sync_2018_07_03.tar.gz
tar -xvzf ssd_resnet50_v1_fpn_shared_box_predictor_640x640_coco14_sync_2018_07_03.tar.gz -C /tmp
wget http://download.tensorflow.org/models/object_detection/ssd_mobilenet_v1_coco_2018_01_28.tar.gz
tar -xvzf ssd_mobilenet_v1_coco_2018_01_28.tar.gz
wget http://download.tensorflow.org/models/object_detection/faster_rcnn_inception_v2_coco_2018_01_28.tar.gz
tar -xvzf faster_rcnn_inception_v2_coco_2018_01_28.tar.gz
wget http://download.tensorflow.org/models/object_detection/faster_rcnn_resnet101_coco_2018_01_28.tar.gz
tar -xvzf faster_rcnn_resnet101_coco_2018_01_28.tar.gz
wget https://storage.googleapis.com/intel-optimized-tensorflow/models/faster_rcnn_resnet50_fp32_coco_pretrained_model.tar.gz
tar -xvf faster_rcnn_resnet50_fp32_coco_pretrained_model.tar.gz
wget http://download.tensorflow.org/models/object_detection/mask_rcnn_inception_v2_coco_2018_01_28.tar.gz
tar -xvzf mask_rcnn_inception_v2_coco_2018_01_28.tar.gz
wget https://storage.googleapis.com/intel-optimized-tensorflow/models/v1_8/ssd_resnet34_fp32_1200x1200_pretrained_model.pb
You need to install intel-tensorflow==2.4.0 to enable ssd_resnet34 model.
Now we support both pb and ckpt formats.
# The cmd of running ssd_resnet50_v1
bash run_tuning.sh --config=ssd_resnet50_v1.yaml --input_model=/tmp/ssd_resnet50_v1_fpn_shared_box_predictor_640x640_coco14_sync_2018_07_03/frozen_inference_graph.pb --output_model=./tensorflow-ssd_resnet50_v1-tune.pb
# The cmd of running ssd_resnet50_v1
bash run_tuning.sh --config=ssd_resnet50_v1.yaml --input_model=/tmp/ssd_resnet50_v1_fpn_shared_box_predictor_640x640_coco14_sync_2018_07_03/ --output_model=./tensorflow-ssd_resnet50_v1-tune.pb
Note
Make sure to add dataset_location=/path/to/dataset/coco_val.record in config file: "ssd_resnet50_v1.yaml"
For ssd_resnet34 model, anno_path of evaluation/accuracy/metric/COCOmAP in config file should be "label_map.yaml"
This is a tutorial of how to enable ssd_resnet50_v1 model with Intel® Neural Compressor.
-
User specifies fp32 model, calibration dataset q_dataloader, evaluation dataset eval_dataloader and metric in tuning.metric field of model-specific yaml config file.
-
User specifies fp32 model, calibration dataset q_dataloader and a custom eval_func which encapsulates the evaluation dataset and metric by itself.
For ssd_resnet50_v1, we applied the latter one because our philosophy is to enable the model with minimal changes. Hence we need to make two changes on the original code. The first one is to implement the q_dataloader and make necessary changes to eval_func.
Specifically, we need to add one generator to iterate the dataset per Intel® Neural Compressor requirements. The easiest way is to implement iter interface. Below function will yield the images to feed the model as input.
def __iter__(self):
"""Enable the generator for q_dataloader
Yields:
[Tensor]: images
"""
data_graph = tf.Graph()
with data_graph.as_default():
self.input_images, self.bbox, self.label, self.image_id = self.get_input(
)
self.data_sess = tf.compat.v1.Session(graph=data_graph,
config=self.config)
for i in range(COCO_NUM_VAL_IMAGES):
input_images = self.data_sess.run([self.input_images])
yield input_images
The Class model_infer has the run_accuracy function which actually could be re-used as the eval_func.
Compare with the original version, we added the additional parameter input_graph as the Intel® Neural Compressor would call this interface with the graph to be evaluated. The following code snippet also need to be added into the run_accuracy function to update the class members like self.input_tensor and self.output_tensors.
if input_graph:
graph_def = get_graph_def(self.args.input_graph, self.output_layers)
input_graph = tf.Graph()
with input_graph.as_default():
tf.compat.v1.import_graph_def(graph_def, name='')
self.infer_graph = input_graph
# Need to reset the input_tensor/output_tensor
self.input_tensor = self.infer_graph.get_tensor_by_name(
self.input_layer + ":0")
self.output_tensors = [
self.infer_graph.get_tensor_by_name(x + ":0")
for x in self.output_layers
]
In examples directory, there is a ssd_resnet50_v1.yaml. We could remove most of items and only keep mandatory item for tuning.
model: # mandatory. used to specify model specific information.
name: ssd_resnet50_v1
framework: tensorflow # mandatory. supported values are tensorflow, pytorch, pytorch_ipex, onnxrt_integer, onnxrt_qlinear or mxnet; allow new framework backend extension.
inputs: image_tensor
outputs: num_detections,detection_boxes,detection_scores,detection_classes
quantization: # optional. tuning constraints on model-wise for advance user to reduce tuning space.
calibration:
sampling_size: 100 # optional. default value is 100. used to set how many samples should be used in calibration.
model_wise: # optional. tuning constraints on model-wise for advance user to reduce tuning space.
activation:
algorithm: minmax
weight:
algorithm: minmax
op_wise: {
'FeatureExtractor/resnet_v1_50/fpn/bottom_up_block5/Conv2D': {
'activation': {'dtype': ['fp32']},
},
'WeightSharedConvolutionalBoxPredictor_2/ClassPredictionTower/conv2d_0/Conv2D': {
'activation': {'dtype': ['fp32']},
}
}
tuning:
accuracy_criterion:
relative: 0.01 # optional. default value is relative, other value is absolute. this example allows relative accuracy loss: 1%.
exit_policy:
timeout: 0 # optional. tuning timeout (seconds). default value is 0 which means early stop. combine with max_trials field to decide when to exit.
max_trials: 100 # optional. max tune times. default value is 100. combine with timeout field to decide when to exit.
random_seed: 9527 # optional. random seed for deterministic tuning.
Here we set the input tensor and output tensors name into inputs and outputs field. Meanwhile, we set mAp target as tolerating 0.01 relative mAp of baseline. The default tuning strategy is basic strategy. The timeout 0 means early stop as well as a tuning config meet accuracy target.
After prepare step is done, we just need update infer_detections.py like below.
from neural_compressor.experimental import Quantization,common
quantizer = Quantization(args.config)
quantizer.model = common.Model(args.input_graph)
quantizer.calib_dataloader = infer
quantizer.eval_dataloader = infer
quantizer.eval_func = infer.accuracy_check
q_model = quantizer.fit()
The quantizer.fit() function will return a best quantized model during timeout constrain.