- All vignettes are moved to articles
- The updates to
poso_simu_pop()
in v1.2.5 introduced several issues and have been reverted - The new function
poso_replace_et()
enables updating a model with events from a new rxode2 event table, while accounting for and interpolating any covariates or inter-occasion variability
- Use undirected quotes when quoting in the DESCRIPTION (as requested by CRAN)
- CRAN test times have been reduced by using an environment variable to identify the development machine, which now determines whether less critical tests are executed (as requested by CRAN)
- The route of administration (i.e. the compartment in which the drug is to be administered) can now be specified in
poso_time_cmin()
,poso_dose_conc()
,poso_dose_auc()
andposo_inter_cmin()
. poso_simu_pop()
provides an rxode2 model using the simulated ETA and the input dataset, with interpolation of covariates, to make plotting easier
- The README illustrates a simple example of dose adaptation
vignette("route_of_administration")
shows how to select a route of administration for optimal dosingvignette("population_models")
describes the structure of prior population models written as model functions which can be parsed byrxode2
and used byposologyr
vignette("posologyr_user_defined_models")
is renamedvignette("classic_posologyr_models")
- Examples use
rxode2
model functions
- Fix a bug where
poso_estim_map()
,poso_estim_sir()
andposo_simu_pop()
failed for models featuring a single parameter with IIV.
- Add ability to use rxode2 ui models for the
poso_*
functions. Once the model has been parsed byrxode2()
with this package themodel$posologyr
gives the list needed forposo_*
functions
- Fix a bug in
poso_dose_conc()
,poso_dose_auc()
andposo_inter_cmin()
where the returned estimate of the target value to be optimized against was always equal to zero.
- The documentation for
poso_time_cmin()
,poso_dose_conc()
, andposo_dose_auc()
now explicitly states the consequences of settingtdm
toTRUE
: which parameters are required, which parameters are ignored, and which parameters behave differently. - The functions
poso_time_cmin()
,poso_dose_conc()
, andposo_dose_auc()
now return a warning if any of the input parameters are ignored. - Fix incorrect information regarding the duration of the AUC in the documentation of
poso_dose_auc()
- Relax the requirements of the NONMEM comparison test for time-varying covariates to account for computational differences observed with the alternative BLAS ATLAS on CRAN.
- Add a reference to Kang et al. (2012) doi:10.4196/kjpp.2012.16.2.97 in the DESCRIPTION (as requested by CRAN)
- Fix messages to the console in the internal function
posologyr()
(as requested by CRAN) - Fix assignment to parent environment in dose optim functions, using
parent.frame()
(as requested by CRAN)
poso_estim_map()
,poso_estim_sir()
andposo_estim_mcmc()
can now estimate individual PK profiles for multiple endpoints models (eg. PK-PD, parent-metabolite, blood-CSF...), using a different residual error model for each endpoint.poso_time_cmin()
,poso_dose_conc()
,poso_dose_auc()
andposo_inter_cmin()
now allow you to select the end point of interest for which you want to optimise, provided it is defined in the model.
vignette("a_priori_dosing")
illustrates a priori dose selectionvignette("a_posteriori_dosing")
illustrates a posteriori dose selection, using TDM datavignette("auc_based_dosing")
shows how to select an optimal dose for a given target AUC using data from TDMvignette("multiple_endpoints")
introduces the new multiple endpoints feature
- The description of the package is updated
poso_time_cmin()
can now estimate time needed to reach a selected trough concentration (Cmin) using the data from TDM directlyposo_dose_conc()
can now estimate an optimal dose to reach a target concentration following the events from TDMposo_dose_auc()
can now estimate an optimal dose to reach a target auc following the events from TDM
posologyr()
is now an internal function, all exported functions take patient data and a prior model as input parameters- The adaptive MAP forecasting option is removed
poso_estim_map()
provides an rxode2 model using MAP-EBE and the input dataset, with interpolation of covariates, to make plotting easier
- RxODE import is updated to rxode2
- All tests are updated to take into account the internalization of the
posologyr()
function
poso_time_cmin()
,poso_dose_auc()
,poso_dose_conc()
, andposo_inter_cmin()
no longer fail for models with IOV
poso_estim_sir()
estimates the posterior distribution of individual parameters by Sequential Importance Resampling (SIR). It is roughly 25 times faster thanposo_estim_mcmc()
for 1000 samples.poso_estim_map()
allows the estimation of the individual parameters by adaptive MAP forecasting (cf. doi: 10.1007/s11095-020-02908-7) withadapt=TRUE
.poso_simu_pop()
,poso_estim_map()
, andposo_estim_sir()
now support models with both inter-individual (IIV) and inter-occasion variability (IOV).MASS:mvrnorm
is replaced bymvtnorm::rmvnorm
for multivariate normal distributions.- Input validation is added to all exported functions.
poso_estim_map()
now uses method="L-BFGS-B" in optim for better convergence of the algorithm.poso_inter_cmin()
now uses method="L-BFGS-B" in optim for better convergence of the algorithm.poso_dose_conc()
is the new name ofposo_dose_ctime()
.- Issues #5 and #6 are fixed:
poso_time_cmin()
,poso_dose_auc()
,poso_dose_conc()
, andposo_inter_cmin()
now work with prior and posterior distributions of ETA, and not only with point estimates (such as the MAP). - A new
nocb
parameter is added toposologyr()
. The interpolation method for time-varying covariates can be either last observation carried forward (locf, the RxODE default), or next observation carried backward (nocb, the NONMEM default). vignette("uncertainty_estimates")
is removed.- The built-in models are removed.
poso_time_cmin()
,poso_dose_ctime()
, andposo_dose_auc()
now work for multiple dose regimen.poso_inter_cmin()
allows the optimization of the inter-dose interval for multiple dose regimen.vignette("case_study_vancomycin")
illustrates AUC-based optimal dosing, multiple dose regimen, and continuous intravenous infusion.
First public release.