A posteriori dose selection
- Source:vignettes/a_posteriori_dosing.Rmd
+ Source: vignettes/articles/a_posteriori_dosing.Rmd
a_posteriori_dosing.Rmd
Introduction
-Dosage individualization for a critical care patient treated with -amikacin for suspected ventilator-associated pneumonia, using the -population pharmacokinetic (ppk) model of Burdet et al. 2015, using the -data from therapeutic drug monitoring (TDM).
+Dosage individualization for a critical care patient treated with amikacin for suspected ventilator-associated pneumonia, using the population pharmacokinetic (ppk) model of Burdet et al. 2015, using the data from therapeutic drug monitoring (TDM).
mod_amikacin_Burdet2015 <- function() {
ini({
@@ -135,10 +131,7 @@ A posteriori dose selection
Patient record with TDM data
-After the first administration, the dosage selection can be refined
-using the results of TDM. See
-vignette("patient_data_input")
for more details regarding
-the patient record.
+After the first administration, the dosage selection can be refined using the results of TDM. See vignette("patient_data_input")
for more details regarding the patient record.
df_patientA <- data.frame(ID=1,TIME=c(0,1,6),
DV=c(NA,58,14),
@@ -151,14 +144,12 @@ Patient record with TDM data#> 1 1 0 NA 1 2000 0.5 50 62 169
#> 2 1 1 58 0 0 NA 50 62 169
#> 3 1 6 14 0 0 NA 50 62 169
-The concentration measured 30 min after a 30 min infusion do not meet
-the target for a peak concentration; it is < 60 mg/L.
+The concentration measured 30 min after a 30 min infusion do not meet the target for a peak concentration; it is < 60 mg/L.
Estimate the MAP individual parameters
-The maximum a posteriori (MAP) individual parameters are -estimated.
+The maximum a posteriori (MAP) individual parameters are estimated.
patA_map <- poso_estim_map(dat=df_patientA,
prior_model=mod_amikacin_Burdet2015)
@@ -167,19 +158,15 @@ Estimate the MAP individual para
Plot the individual pharmacokinetic profile
-The individual pharmacokinetic profile can be plotted using the
-rxode2
model provided by the poso_estim_map()
-function.
+The individual pharmacokinetic profile can be plotted using the rxode2
model provided by the poso_estim_map()
function.
plot(patA_map$model,Cc)
-Time required to reach the target Cmin following the first
-administration
+Time required to reach the target Cmin following the first administration
-
With the MAP estimates of the individual parameters, the prediction
-of the time needed before reaching the target Cmin can be updated.
+With the MAP estimates of the individual parameters, the prediction of the time needed before reaching the target Cmin can be updated.
poso_time_cmin(dat=df_patientA,
prior_model=mod_amikacin_Burdet2015,
@@ -193,21 +180,19 @@ #> [1] "point estimate"
#>
#> $cmin_estimate
-#> [1] 2.487865
+#> [1] 2.487844
#>
#> $indiv_param
#> THETA_Cl THETA_Vc THETA_Vp THETA_Q add_sd prop_sd ETA_Cl ETA_Vc
-#> 3 4.3 15.9 21.4 12.1 0.2 0.1 0.4499479 0.2730561
-#> ETA_Vp ETA_Q CLCREAT4H TBW PoverF
-#> 3 0.7061648 -0.13884 50 62 169
-The next dose (if needed) can be administered 33.9 hours following
-the first infusion.
+#> 3 4.3 15.9 21.4 12.1 0.2 0.1 0.4499508 0.2730587
+#> ETA_Vp ETA_Q CLCREAT4H TBW PoverF
+#> 3 0.7061613 -0.1388429 50 62 169
+
The next dose (if needed) can be administered 33.9 hours following the first infusion.
Optimal dose selection a posteriori
-The optimal dose to achieve a peak concentration of 80 mg/l can be -determined using the MAP estimates.
+The optimal dose to achieve a peak concentration of 80 mg/l can be determined using the MAP estimates.
map_dose <- poso_dose_conc(dat=df_patientA,
prior_model=mod_amikacin_Burdet2015,
@@ -228,16 +213,15 @@ Optimal dose selection a posteriori
#>
#> $indiv_param
#> THETA_Cl THETA_Vc THETA_Vp THETA_Q add_sd prop_sd ETA_Cl ETA_Vc
-#> 3 4.3 15.9 21.4 12.1 0.2 0.1 0.4499608 0.2730596
+#> 3 4.3 15.9 21.4 12.1 0.2 0.1 0.4499511 0.2730605
#> ETA_Vp ETA_Q CLCREAT4H TBW PoverF
-#> 3 0.7061496 -0.1388505 50 62 169
The next dose should be 2450 mg.
Interdose interval selection a posteriori
-The optimal inter-dose interval to reach a Cmin of 2.5 mg/L before -each dosing can be determined using the MAP estimates.
+The optimal inter-dose interval to reach a Cmin of 2.5 mg/L before each dosing can be determined using the MAP estimates.
map_interval <- poso_inter_cmin(dat=df_patientA,
prior_model=mod_amikacin_Burdet2015,
@@ -246,7 +230,7 @@ Interdose interval selection
target_cmin = 2.5)
map_interval
#> $interval
-#> [1] 38.57781
+#> [1] 38.57783
#>
#> $type_of_estimate
#> [1] "point estimate"
@@ -255,12 +239,11 @@ Interdose interval selection
#> [1] 2.500173
#>
#> $indiv_param
-#> THETA_Cl THETA_Vc THETA_Vp THETA_Q add_sd prop_sd ETA_Cl ETA_Vc
-#> 1 4.3 15.9 21.4 12.1 0.2 0.1 0.449952 0.2730587
+#> THETA_Cl THETA_Vc THETA_Vp THETA_Q add_sd prop_sd ETA_Cl ETA_Vc
+#> 1 4.3 15.9 21.4 12.1 0.2 0.1 0.4499517 0.2730584
#> ETA_Vp ETA_Q CLCREAT4H TBW PoverF
-#> 1 0.7061588 -0.1388432 50 62 169
The interval between doses should not be less than 38.6 hours to -allow adequate elimination of amikacin between each infusion.
+#> 1 0.7061594 -0.1388427 50 62 169The interval between doses should not be less than 38.6 hours to allow adequate elimination of amikacin between each infusion.