-
Notifications
You must be signed in to change notification settings - Fork 22
/
visualization.py
77 lines (58 loc) · 2.6 KB
/
visualization.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
from torch.utils.tensorboard import SummaryWriter
import torch
from PIL import Image
import os
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
def tensor_for_board(img_tensor):
# map into [0,1]
tensor = (img_tensor.clone()+1) * 0.5
tensor.cpu().clamp(0,1)
if tensor.size(1) == 1:
tensor = tensor.repeat(1,3,1,1)
return tensor
def tensor_list_for_board(img_tensors_list):
grid_h = len(img_tensors_list)
grid_w = max(len(img_tensors) for img_tensors in img_tensors_list)
batch_size, channel, height, width = tensor_for_board(img_tensors_list[0][0]).size()
canvas_h = grid_h * height
canvas_w = grid_w * width
canvas = torch.FloatTensor(batch_size, channel, canvas_h, canvas_w).fill_(0.5)
for i, img_tensors in enumerate(img_tensors_list):
for j, img_tensor in enumerate(img_tensors):
offset_h = i * height
offset_w = j * width
tensor = tensor_for_board(img_tensor)
canvas[:, :, offset_h : offset_h + height, offset_w : offset_w + width].copy_(tensor)
return canvas
def board_add_image(board, tag_name, img_tensor, step_count):
tensor = tensor_for_board(img_tensor)
for i, img in enumerate(tensor):
board.add_image('%s/%03d' % (tag_name, i), img, step_count)
def board_add_images(board, tag_name, img_tensors_list, step_count):
tensor = tensor_list_for_board(img_tensors_list)
for i, img in enumerate(tensor):
board.add_image('%s/%03d' % (tag_name, i), img, step_count)
def save_images(img_tensors, img_names, save_dir):
if not os.path.isdir(save_dir):
os.makedirs(save_dir)
for img_tensor, img_name in zip(img_tensors, img_names):
tensor = (img_tensor.clone()+1)*0.5 * 255
tensor = tensor.cpu().clamp(0,255)
array = tensor.numpy().astype('uint8')
if array.shape[0] == 1:
array = array.squeeze(0)
elif array.shape[0] == 3:
array = array.swapaxes(0, 1).swapaxes(1, 2)
Image.fromarray(array).save(os.path.join(save_dir, img_name))
def save_checkpoint(model, save_path):
if not os.path.exists(os.path.dirname(save_path)):
os.makedirs(os.path.dirname(save_path))
torch.save(model.cpu().state_dict(), save_path)
model.to(device)
def load_checkpoint(model, checkpoint_path):
if not os.path.exists(checkpoint_path):
print('----No checkpoints at given path----')
return
model.load_state_dict(torch.load(checkpoint_path))
model.to(device)
print('----checkpoints loaded from path: {}----'.format(checkpoint_path))