forked from lilywang1988/eSIR
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathqh.eSIR.R
687 lines (576 loc) · 44.6 KB
/
qh.eSIR.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
# This is the source code for R package eSIR: extended-SIR
# Built on Feb 13, 2020, and last edited on Feb 19, 2020
# Correspondence : Peter X.K. Song, Ph.D. ([email protected])
# Creator: Lili Wang, M.S. ([email protected])
# Model 2: An extend SIR with time-varying quarantine, which follows a Dirac Delta function
# library(rjags)
# library(gtools) #rdirichlet(n, alpha)
# library(scales) #alpha function
# library(ggplot2)
# library(chron)
#library(data.table)
library(stats)
#' Extended state-space SIR with quarantine
#'
#' Fit an extended state-space SIR model being reduced by in-home hospitalization.
#'
#' In this function we allow it to characterize time-varying proportions of susceptible due to government-enforced stringent in-home isolation. We expanded the SIR model by adding a quarantine compartment with a time-varying rate of quarantine \eqn{\phi_t}, the chance of a susceptible person being willing to take in-home isolation at time t.
#'
#' @param Y the time series of daily observed infected compartment proportions.
#' @param R the time series of daily observed removed compartment proportions, including death and recovered.
#' @param phi0 a vector of values of the dirac delta function \eqn{\phi_t}. Each entry denotes the proportion that will be qurantined at each change time point. Note that all the entries lie between 0 and 1, its default is \code{NULL}.
#' @param change_time the change points over time corresponding to \code{phi0}, to formulate the dirac delta function \eqn{\phi_t}; its defalt value is \code{NULL}.
#' @param begin_str the character of starting time, the default is "01/13/2020".
#' @param T_fin the end of follow-up time after the beginning date \code{begin_str}, the default is 200.
#' @param nchain the number of MCMC chains generated by \code{\link[rjags]{rjags}}, the default is 4.
#' @param nadapt the iteration number of adaptation in the MCMC. We recommend using at least the default value 1e4 to obtained fully adapted chains.
#' @param M the number of draws in each chain, with no thinning. The default is M=5e2 but suggest using 5e5.
#' @param thn the thinning interval between mixing. The total number of draws thus would become \code{round(M/thn)*nchain}. The default is 10.
#' @param nburnin the burn-in period. The default is 2e2 but suggest 2e5.
#' @param dic logical, whether compute the DIC (deviance information criterion) for model selection.
#' @param death_in_R the numeric value of average of cumulative deaths in the removed compartments. The default is 0.4 within Hubei and 0.02 outside Hubei.
#' @param casename the string of the job's name. The default is "qh.eSIR".
#' @param beta0 the hyperparameter of average transmission rate, the default is the one estimated from the SARS first-month outbreak (0.2586).
#' @param gamma0 the hyperparameter of average removed rate, the default is the one estimated from the SARS first-month outbreak (0.0821).
#' @param R0 the hyperparameter of the mean reproduction number R0. The default is thus the ratio of \code{beta0/gamma0}, which can be specified directly.
#' @param gamma0_sd the standard deviation for the prior distrbution of the removed rate \eqn{\gamma}, the default is 0.1.
#' @param R0_sd the standard deviation for the prior disbution of R0, the default is 1.
#' @param file_add the string to denote the location of saving output files and tables.
#'
#' @param save_mcmc logical, whether save (\code{TRUE}) all the MCMC outputs or not (\code{FALSE}).The output file will be an \code{.RData} file named by the \eqn{casename}. We include arrays of prevalence values of the three compartments with their matrices of posterior draws up to the last date of the collected data as \code{theta_p[,,1]} and afterwards as \code{theta_pp[,,1]} for \eqn{\theta_t^S}, \code{theta_p[,,2]} and \code{theta_pp[,,2]} for \eqn{\theta_t^I}, and \code{theta_p[,,3]} and \code{theta_pp[,,3]} for \eqn{\theta_t^R}. The posterior draws of the prevalence process of the quarantine compartment can be obtained via \code{thetaQ_p} and \code{thetaQ_pp}. Moreover, the input and predicted proportions \code{Y}, \code{Y_pp}, \code{R} and \code{R_pp} can also be retrieved. The prevalence and prediceted proportion matrices have rows for MCMC replicates, and columns for days. The MCMC posterior draws of other parameters including \code{beta}, \code{gamma}, \code{R0}, and variance controllers \code{k_p}, \code{lambdaY_p}, \code{lambdaR_p} are also available.
#' @param save_plot_data logical, whether save the plotting data or not.
#' @param add_death logical, whether add the approximate death curve to the plot, default is false.
#' @param esp a non-zero controller so that all the input \code{Y} and \code{R} values would be bounded above 0 (at least \code{eps}). Its default value is 1e-10
#'
#' @return
#' \item{casename}{the predefined \code{casename}.}
#' \item{incidence_mean}{mean incidence.}
#' \item{incidence_ci}{2.5\%, 50\%, and 97.5\% quantiles of the incidences.}
#' \item{out_table}{summary tables including the posterior mean of the prevalance processes of the 3 states compartments (\eqn{\theta_t^S,\theta_t^I,\theta_t^R,\theta_t^H}) at last date of data collected ((\eqn{t^\prime}) decided by the lengths of your input data \code{Y} and \code{R}), and their respective credible inctervals (ci); the respective means and ci's of the reporduction number (R0), removed rate (\eqn{\gamma}), transmission rate (\eqn{\beta}).}
#' \item{plot_infection}{plot of summarizing and forecasting for the infection compartment, in which the vertial blue line denotes the last date of data collected (\eqn{t^\prime}), the vertial darkgray line denotes the deacceleration point (first turning point) that the posterior mean first-derivative of infection prevalence \eqn{\dot{\theta}_t^I} achieves the maximum, the vertical purple line denotes the second turning point that the posterior mean first-derivative infection proportion \eqn{\dot{\theta}_t^I} equals zero, the darkgray line denotes the posterior mean of the infection prevalence \eqn{\theta_t^I} and the red line denotes its posterior median. }
#' \item{plot_removed}{plot of summarizing and forecasting for the removed compartment with lines similar to those in the \code{plot_infection}. The vertical lines are identical, but the horizontal mean and median correspond to the posterior mean and median of the removed process \eqn{\theta_t^R}. An additional line indicates the estimated death prevalence from the input \code{death_in_R}.}
#' \item{spaghetti_plot}{20 randomly selected MCMC draws of the first-order derivative of the posterior prevalence of infection, namely \eqn{\dot{\theta}_t^I}. The black curve is the posterior mean of the derivative, and the vertical lines mark times of turning points corresponding respectively to those shown in \code{plot_infection} and \code{plot_removed}. Moreover, the 95\% credible intervals of these turning points are also highlighted by semi-transparent rectangles. }
#' \item{first_tp_mean}{the date t at which \eqn{\ddot{\theta}_t^I=0}, calculated as the average of the time points with maximum posterior first-order derivatives \eqn{\dot{\theta}_t^I}; this value may be slightly different from the one labeled by the "darkgreen" lines in the two plots \code{plot_infection} and \code{plot_removed}, which indicate the stationary point such that the first-order derivative of the averaged posterior of \eqn{\theta_t^I} reaches its maximum.}
#' \item{first_tp_mean}{the date t at which \eqn{\ddot{\theta}_t^I=0}, calculated as the average of the time points with maximum posterior first-order derivatives \eqn{\dot{\theta}_t^I}; this value may be slightly different from the one labeled by the "darkgreen" lines in the two plots \code{plot_infection} and \code{plot_removed}, which indicate the stationary point such that the first-order derivative of the averaged posterior of \eqn{\theta_t^I} reaches its maximum.}
#'
#'\item{first_tp_ci}{fwith \code{first_tp_mean}, it reports the corresponding credible interval and median.}
#' \item{second_tp_mean}{the date t at which \eqn{\theta_t^I=0}, calculated as the average of the stationary points of all of posterior first-order derivatives \eqn{\dot{\theta}_t^I}; this value may be slightly different from the one labeled by the "pruple" lines in the plots of \code{plot_infection} and \code{plot_removed}. The latter indicate stationary t at which the first-order derivative of the averaged posterior of \eqn{\theta_t^I} equals zero.}
#' \item{second_tp_ci}{with \code{second_tp_mean}, it reports the corresponding credible interval and median.}
#' \item{dic_val}{the output of \code{dic.sample()} in \code{\link[rjags]{dic.sample}}, computing deviance information criterion for model comparison.}
#'
#'
#' @examples
#' NI_complete <- c( 41,41,41,45,62,131,200,270,375,444,549, 729,
#' 1052,1423,2714,3554,4903,5806,7153,9074,11177,
#' 13522,16678,19665,22112,24953,27100,29631,31728,33366)
#' RI_complete <- c(1,1,7,10,14,20,25,31,34,45,55,71,94,121,152,213,
#' 252,345,417,561,650,811,1017,1261,1485,1917,2260,
#' 2725,3284,3754)
#' N=58.5e6
#' R <- RI_complete/N
#' Y <- NI_complete/N- R #Jan13->Feb 11
#'
#' change_time <- c("01/23/2020","02/04/2020","02/08/2020")
#' phi0 <- c(0.1,0.4,0.4)
#' res.q <- qh.eSIR (Y,R,begin_str="01/13/2020",death_in_R = 0.4,
#' phi0=phi0,change_time=change_time,
#' casename="Hubei_q",save_files = T,save_mcmc = F,
#' M=5e2,nburnin = 2e2)
#' res.q$plot_infection
#' #res.q$plot_removed
#'
#' res.noq <- qh.eSIR (Y,R,begin_str="01/13/2020",death_in_R = 0.4,
#' T_fin=200,casename="Hubei_noq",
#' M=5e2,nburnin = 2e2)
#' res.noq$plot_infection
#'
#'
#' @export
qh.eSIR<-function (Y,R, phi0=NULL,change_time=NULL,begin_str="01/13/2020",T_fin=200,nchain=4,nadapt=1e4,M=5e2,thn=10,nburnin=2e2,dic=FALSE,death_in_R=0.02,casename="qh.eSIR",beta0=0.2586,gamma0=0.0821,R0=beta0/gamma0,gamma0_sd=0.1, R0_sd=1,file_add=character(0),add_death=FALSE,save_files=FALSE,save_mcmc=FALSE,save_plot_data=FALSE,eps=1e-10){
beta0 <- R0*gamma0
len <- round(M/thn)*nchain #number of MCMC draws in total
T_prime <- length(Y)
if(T_prime!=length(R)) stop("Y and R should be matched.")
Y <- pmax(Y,eps)
R <- pmax(R,eps)
if(add_death==T&&death_in_R==0.02){
message("use the default death_in_R which is equal to 0.02 to plot the death curve in the removed process forecast plot")
}
begin <- chron(dates.=begin_str)
chron_ls <- chron(begin:(begin+T_fin))
end <- chron(begin:(begin+T_fin))[T_fin]
message(paste0("The follow-up is from ",begin," to ",end," and the last observed date is ", chron_ls [T_prime],".") )# current data up to this date
gamma_var <- gamma0_sd^2
lognorm_gamma_parm <- lognorm.parm(gamma0,gamma_var)
R0_var <- R0_sd^2
lognorm_R0_parm <- lognorm.parm(R0,R0_var)
message("Running for qh.eSIR")
if(length(change_time)!=length(phi0)){stop("We need the length of vector change_time to be the length of phi0. ")}
change_time_chorn<-chron(dates.=change_time)
phi_vec <-rep(0,T_fin)
phi_vec[as.numeric(change_time_chorn-begin)] <- phi0
################ MCMC ##########
gamma_H_vec <-rep(0,T_fin) # remove the Hospitalization for now
##gamma_H_vec[as.numeric(change_hospitalization-begin)] <- gamma_H
################ MCMC ##########
model2.string <- paste0("
model{
for(t in 2:(T_prime+1)){
Km[t-1,1] <- -beta*theta[t-1,1]*theta[t-1,2]
Km[t-1,9] <- gamma*theta[t-1,2]
Km[t-1,5] <- -Km[t-1,1]-Km[t-1,9]
Km[t-1,2] <- -beta*(theta[t-1,1]+0.5*Km[t-1,1])*(theta[t-1,2]+0.5*Km[t-1,5])
Km[t-1,10] <- gamma*(theta[t-1,2]+0.5*Km[t-1,5])
Km[t-1,6] <- -Km[t-1,2]-Km[t-1,10]
Km[t-1,3] <- -beta*(theta[t-1,1]+0.5*Km[t-1,2])*(theta[t-1,2]+0.5*Km[t-1,6])
Km[t-1,11] <- gamma*(theta[t-1,2]+0.5*Km[t-1,6])
Km[t-1,7] <- -Km[t-1,3]-Km[t-1,11]
Km[t-1,4] <- -beta*(theta[t-1,1]+Km[t-1,3])*(theta[t-1,2]+Km[t-1,7])
Km[t-1,12] <- gamma*(theta[t-1,2]+Km[t-1,7])
Km[t-1,8] <- -Km[t-1,4]-Km[t-1,12]
alpha_temp[t-1,1] <- max(theta[t-1,1]+(Km[t-1,1]+2*Km[t-1,2]+2*Km[t-1,3]+Km[t-1,4])/6-phi_vec[t-1]*theta[t-1,1],0)
alpha_temp[t-1,2] <- max(theta[t-1,2]+(Km[t-1,5]+2*Km[t-1,6]+2*Km[t-1,7]+Km[t-1,8])/6-gamma_H_vec[t-1]*theta[t-1,2],0)
alpha_temp[t-1,3] <- theta[t-1,3]+(Km[t-1,9]+2*Km[t-1,10]+2*Km[t-1,11]+Km[t-1,12])/6
theta_Q[t] <- theta_Q[t-1]+min(phi_vec[t-1]*theta[t-1,1],theta[t-1,1]+(Km[t-1,1]+2*Km[t-1,2]+2*Km[t-1,3]+Km[t-1,4])/6)
theta_H[t] <- theta_H[t-1]+min(gamma_H_vec[t-1]*theta[t-1,2],theta[t-1,2]+(Km[t-1,5]+2*Km[t-1,6]+2*Km[t-1,7]+Km[t-1,8])/6)
v[t-1] <- (1-theta_Q[t]-theta_H[t])
alpha[t-1,1] <- (1-step(-v[t-1]))*alpha_temp[t-1,1]/v[t-1]
alpha[t-1,2] <- (1-step(-v[t-1]))*alpha_temp[t-1,2]/v[t-1]
alpha[t-1,3] <- (1-step(-v[t-1]))*alpha_temp[t-1,3]/v[t-1]
theta_temp[t,1:3] ~ ddirch(k*alpha[t-1,1:3])
theta[t,1:3] <- v[t-1]*theta_temp[t,1:3]
Y[t-1] ~ dbeta(lambdaY*theta[t,2],lambdaY*(1-theta[t,2]))
R[t-1] ~ dbeta(lambdaR*theta[t,3],lambdaR*(1-theta[t,3]))
}
theta_Q[1] <- 0
theta_H[1] <- 0
theta_temp[1,1] <- 1- theta_temp[1,2]- theta_temp[1,3]- theta_Q[1]- theta_H[1]
theta_temp[1,2] ~ dbeta(",1,",",1/Y[1],")
theta_temp[1,3] ~ dbeta(",1,",",1/R[1],")
theta[1,1] <- theta_temp[1,1]
theta[1,2] <- theta_temp[1,2]
theta[1,3] <- theta_temp[1,3]
gamma ~ dlnorm(",lognorm_gamma_parm[1],",",1/lognorm_gamma_parm[2],")
R0 ~ dlnorm(",lognorm_R0_parm[1],",",1/lognorm_R0_parm[2],")
beta <- R0*gamma
k ~ dgamma(2,0.0001)
lambdaY ~ dgamma(2,0.0001)
lambdaR ~ dgamma(2,0.0001)
}
")
model.spec <- textConnection(model2.string)
posterior <- jags.model(model.spec,data=list('Y'=Y,'R'=R,'T_prime'=T_prime,'phi_vec'=phi_vec,'gamma_H_vec'=gamma_H_vec),n.chains =nchain, n.adapt = nadapt)
update(posterior,nburnin) #burn-in
jags_sample <-jags.samples(posterior,c('theta','theta_H','theta_Q','gamma','R0','beta','Y','lambdaY','lambdaR','k','v'),n.iter=M*nchain,thin=thn)
if(dic) {
dic_val <-dic.samples(posterior,n.iter=M*nchain,thin=thn)
#message(paste0("DIC is: ", dic_val))
} else dic_val=NULL
if(save_files) {
png(paste0(file_add,casename,"theta_p.png"), width = 700, height = 900)
plot(as.mcmc.list(jags_sample$theta)[[1]][,(1:3)*(T_prime+1)]) # posterior true porbabilities
dev.off()
png(paste0(file_add,casename,"thetaQ_p.png"), width = 700, height = 900)
plot(as.mcmc.list(jags_sample$theta_Q)[[1]][,T_prime],main="thetaQ[T_prime]") # posterior true porbabilities
dev.off()
png(paste0(file_add,casename,"R0_p.png"), width = 700, height = 350)
plot(R0_p<-as.mcmc.list(jags_sample$R0)[[1]])
dev.off()
png(paste0(file_add,casename,"gamma_p.png"), width = 700, height = 350)
plot(gamma_p<-as.mcmc.list(jags_sample$gamma)[[1]])
dev.off()
png(paste0(file_add,casename,"beta_p.png"), width = 700, height = 350)
plot(beta_p<-as.mcmc.list(jags_sample$beta)[[1]])
dev.off()
png(paste0(file_add,casename,"lambdaY_p.png"), width = 700, height = 350)
plot(lambdaY_p<-as.mcmc.list(jags_sample$lambdaY)[[1]])
dev.off()
png(paste0(file_add,casename,"lambdaR_p.png"), width = 700, height = 350)
plot(lambdaR_p<-as.mcmc.list(jags_sample$lambdaR)[[1]])
dev.off()
png(paste0(file_add,casename,"k_p.png"), width = 700, height = 350)
plot(k_p<-as.mcmc.list(jags_sample$k)[[1]])
dev.off()
}else{
R0_p<-as.mcmc.list(jags_sample$R0)[[1]]
gamma_p<-as.mcmc.list(jags_sample$gamma)[[1]]
beta_p<-as.mcmc.list(jags_sample$beta)[[1]]
lambdaY_p<-as.mcmc.list(jags_sample$lambdaY)[[1]]
lambdaR_p<-as.mcmc.list(jags_sample$lambdaR)[[1]]
k_p<-as.mcmc.list(jags_sample$k)[[1]]
}
theta_p<-array(as.mcmc.list(jags_sample$theta)[[1]],dim=c(len,T_prime+1,3))
theta_p_mean <- apply(theta_p[,T_prime+1,],2,mean)
theta_p_ci <- as.vector(apply(theta_p[,T_prime+1,],2,quantile,c(0.025,0.5,0.975)))
thetaQ_p<-matrix(as.mcmc.list(jags_sample$theta_Q)[[1]],nrow=len,ncol=T_prime+1)
thetaH_p<-matrix(as.mcmc.list(jags_sample$theta_H)[[1]],nrow=len,ncol=T_prime+1)
thetaQ_p_mean <- mean(thetaQ_p[,T_prime+1])
thetaQ_p_ci <- quantile(thetaQ_p[,T_prime+1],c(0.025,0.5,0.975))
R0_p_mean <- mean(R0_p)
R0_p_ci <- quantile(R0_p,c(0.025,0.5,0.975))
gamma_p_mean <- mean(gamma_p)
gamma_p_ci <- quantile(gamma_p,c(0.025,0.5,0.975))
beta_p_mean <- mean(beta_p)
beta_p_ci <- quantile(beta_p,c(0.025,0.5,0.975))
lambdaY_p_mean <- mean(lambdaY_p)
lambdaY_p_ci <- quantile(lambdaY_p,c(0.025,0.5,0.975))
lambdaR_p_mean <- mean(lambdaR_p)
lambdaR_p_ci <- quantile(lambdaR_p,c(0.025,0.5,0.975))
k_p_mean <- mean(k_p)
k_p_ci <- quantile(k_p,c(0.025,0.5,0.975))
#### Forecast ####
theta_pp <- array(0,dim=c(len,T_fin-T_prime,3))
thetaQ_pp <-thetaH_pp <- matrix(0,nrow=len,ncol=T_fin-T_prime)
Y_pp <- matrix(NA,nrow=len,ncol=T_fin-T_prime)
R_pp <- matrix(NA,nrow=len,ncol=T_fin-T_prime)
v_pp <- matrix(NA,nrow=len,ncol=T_fin-T_prime)
for(l in 1:len){
thetalt1 <- theta_p[l,T_prime+1,1]
thetalt2 <- theta_p[l,T_prime+1,2]
thetalt3 <- theta_p[l,T_prime+1,3]
thetaltH <- thetaH_p[l,T_prime+1]
thetaltQ <- thetaQ_p[l,T_prime+1]
betal <- c(beta_p)[l]
gammal <- c(gamma_p)[l]
kl <- c(k_p)[l]
lambdaYl <- c(lambdaY_p)[l]
lambdaRl <- c(lambdaR_p)[l]
if(betal<0 |gammal<0 |thetalt1<0 |thetalt2<0 |thetalt3<0|thetaltH<0|thetaltQ<0) next
for(t in 1:(T_fin-T_prime)){
Km<-NULL
theta_temp <- alpha_temp <- alpha <- NULL
Km[1] <- -betal*thetalt1*thetalt2
Km[9] <- gammal*thetalt2
Km[5] <- -Km[1]-Km[9]
Km[2] <- -betal*(thetalt1+0.5*Km[1])*(thetalt2+0.5*Km[5])
Km[10] <- gammal*(thetalt2+0.5*Km[5])
Km[6] <- -Km[2]-Km[10]
Km[3] <- -betal*(thetalt1+0.5*Km[2])*(thetalt2+0.5*Km[6])
Km[11] <- gammal*(thetalt2+0.5*Km[6])
Km[7] <- -Km[3]-Km[11]
Km[4] <- -betal*(thetalt1+Km[3])*(thetalt2+Km[7])
Km[12] <- gammal*(thetalt2+Km[7])
Km[8] <- -Km[4]-Km[12]
#if(is.na(thetat1)|is.na(thetat2)) stop("NA1")
alpha_temp[1] <- max(thetalt1+(Km[1]+2*Km[2]+2*Km[3]+Km[4])/6-phi_vec[t+T_prime]*thetalt1,0)
alpha_temp[2] <- max(thetalt2+(Km[5]+2*Km[6]+2*Km[7]+Km[8])/6-gamma_H_vec[t+T_prime]*thetalt2,0)
alpha_temp[3] <- max(thetalt3+(Km[9]+2*Km[10]+2*Km[11]+Km[12])/6,0)
thetaQ_pp[l,t] <- thetaltQ <- thetaltQ+ min(phi_vec[t+T_prime]*thetalt1,thetalt1+(Km[1]+2*Km[2]+2*Km[3]+Km[4])/6)
thetaH_pp[l,t] <- thetaltH <- thetaltH+ min(gamma_H_vec[t+T_prime]*thetalt2,thetalt2+(Km[5]+2*Km[6]+2*Km[7]+Km[8])/6)
v_pp[l,t] <- 1-thetaQ_pp[l,t]-thetaH_pp[l,t]
alpha[1] <- ifelse(v_pp[l,t]>0,alpha_temp[1]/v_pp[l,t],0)
alpha[2] <- ifelse(v_pp[l,t]>0,alpha_temp[2]/v_pp[l,t],0)
alpha[3] <- ifelse(v_pp[l,t]>0,alpha_temp[3]/v_pp[l,t],0)
theta_temp <- rdirichlet(1,kl*alpha)
thetalt1<-theta_pp[l,t,1] <- theta_temp[1]*v_pp[l,t]
thetalt2<-theta_pp[l,t,2] <- theta_temp[2]*v_pp[l,t]
thetalt3<-theta_pp[l,t,3] <- theta_temp[3]*v_pp[l,t]
#if(is.na(thetat1)|is.na(thetat2)) stop("NA2")
Y_pp[l,t] <- rbeta(1,lambdaYl*thetalt2,lambdaYl*(1-thetalt2))
if(is.na(Y_pp[l,t]))stop("NA")
R_pp[l,t] <- rbeta(1,lambdaRl*thetalt3,lambdaRl*(1-thetalt3))
}
}
par(mfrow=c(1,1))
col2 = gg_color_hue(2)
Y_band <- data.frame(t(apply(Y_pp,2,quantile,probs=c(0.025,0.975),na.rm=T)))
thetaI_band <- data.frame(t(apply(theta_p[,-1,2],2,quantile,probs=c(0.025,0.975),na.rm=T)))
Y_mean <- c(colMeans(Y_pp,na.rm = T))
thetaI_mean <- c(colMeans(theta_p[,-1,2],na.rm = T),colMeans(theta_pp[,,2],na.rm = T))
thetaI_median <- c(apply(theta_p[,-1,2],2,median,na.rm = T),apply(theta_pp[,,2],2,median,na.rm = T))
colnames(Y_band)<- c("lower", "upper")
colnames(thetaI_band)<- c("lower","upper")
data_pre <- data.frame(time=1:T_prime,Y)
data_post <-data.frame(time=1:T_prime,thetaI_band)
data_fore <- data.frame(time=(T_prime+1):T_fin,Y_band,Y_mean)
data_comp<-data.frame(time=1:T_fin,rbind(thetaI_band ,Y_band), phase=c(rep('pre',nrow(thetaI_band)),rep('post',nrow(Y_band))),mean=thetaI_mean,median=thetaI_median)
data_poly<-data.frame(y=c(thetaI_band$upper,rev(thetaI_band$lower),Y_band$upper,rev(Y_band$lower)),x=c(1:T_prime,T_prime:1,(T_prime+1):T_fin,T_fin:(T_prime+1)),phase=c(rep('pre',T_prime*2),rep('post',(T_fin-T_prime)*2)),value=c(rep(col2[1],T_prime*2),rep(col2[2],(T_fin-T_prime)*2)))
## First-order derivative check
thetaS_mat <- cbind(theta_p[,-1,1],theta_pp[,,1])
thetaI_mat <- cbind(theta_p[,-1,2],theta_pp[,,2])
thetaR_mat <- cbind(theta_p[,-1,3],theta_pp[,,3])
#dthetaI_mat <- (thetaS_mat*thetaI_mat)*replicate(T_fin,c(beta_p))-thetaI_mat*replicate(T_fin,c(gamma_p))-thetaI_mat*t(replicate(len,c(gamma_H_vec))) # old verstion, incorrected, need to be changed as below. This correction is made on Mar 3, 2020
#dthetaI_mat <- (thetaS_mat*thetaI_mat)*replicate(T_fin,c(beta_p))-thetaI_mat*replicate(T_fin,c(gamma_p))-thetaI_mat*t(replicate(len,c(gamma_H_vec)))-thetaS_mat*t(replicate(len,c(phi_vec))) # this is the corrected old version, seems to be correct!
# dthetaI_mat <- apply(thetaI_mat,1,diff) # this is to circumvent the difficulty of obtaining the differential equation among posterior theta's
dthetaI_mat_post <- (theta_pp[,,1]*theta_pp[,,2])*replicate(T_fin-T_prime,c(beta_p))-theta_pp[,,2]*replicate(T_fin-T_prime,c(gamma_p))-theta_pp[,,1]*t(replicate(len,c(phi_vec[(T_prime+1):T_fin])))-theta_pp[,,2]*t(replicate(len,c(gamma_H_vec[(T_prime+1):T_fin])))
dthetaI_mat_pre <- t(apply(theta_p[,,2],1,function(v){diff(smooth(v))}))
dthetaI_mat <-cbind(dthetaI_mat_pre,dthetaI_mat_post)
dthetaI <- colMeans(dthetaI_mat,na.rm=T)
dthetaI_tp1 <- (1:T_fin)[which.max(dthetaI)]# first second order derivative=0
dthetaI_tp2<- (dthetaI_tp1:T_fin)[which.min(dthetaI[dthetaI_tp1:T_fin]>0)] # first order derivative=0
#if(dthetaI_tp1<T_prime) {dthetaI_tp1=which.max(diff(colMeans(thetaI_mat)))
#message("The turning point 1 was observed and obtained from prevalence! The CI of turning point 1 may not be valid!")}
#if(dthetaI_tp2<T_prime) {dthetaI_tp2=which.min(diff(colMeans(thetaI_mat))>0)
#message("The turning point 2 was observed and obtained from prevalence! The CI of turning point 2 may not be valid!")
# }
dthetaI_tp1_rd<-max(round(dthetaI_tp1),1)
if(dthetaI_tp1_rd>T_prime) {
thetatI_tp1_vec<-thetaI_mat[,dthetaI_tp1_rd]
thetaI_tp1_mean <-mean(thetatI_tp1_vec,na.rm = T)
thetaI_tp1_ci <-quantile(thetatI_tp1_vec,c(0.025,0.5,0.975),na.rm = T)
Y_tp1_vec<-Y_pp[,dthetaI_tp1_rd-T_prime]
Y_tp1_mean <-mean(Y_tp1_vec,na.rm = T)
Y_tp1_ci <- quantile(Y_tp1_vec,c(0.025,0.5,0.975),na.rm = T)
thetatR_tp1_vec<-thetaR_mat[,dthetaI_tp1_rd]
thetaR_tp1_mean <-mean(thetatR_tp1_vec,na.rm = T)
thetaR_tp1_ci <-quantile(thetatR_tp1_vec,c(0.025,0.5,0.975),na.rm = T)
R_tp1_vec<-R_pp[,dthetaI_tp1_rd-T_prime]
R_tp1_mean <-mean(R_tp1_vec,na.rm = T)
R_tp1_ci <- quantile(R_tp1_vec,c(0.025,0.5,0.975),na.rm = T)
}else{
thetatI_tp1_vec<-thetaI_mat[,dthetaI_tp1_rd]
thetaI_tp1_mean <-mean(thetatI_tp1_vec,na.rm = T)
thetaI_tp1_ci <-quantile(thetatI_tp1_vec,c(0.025,0.5,0.975),na.rm = T)
Y_tp1_vec<-NA
Y_tp1_mean <-mean(Y_tp1_vec,na.rm = T)
Y_tp1_ci <- quantile(Y_tp1_vec,c(0.025,0.5,0.975),na.rm = T)
thetatR_tp1_vec<-thetaR_mat[,dthetaI_tp1_rd]
thetaR_tp1_mean <-mean(thetatR_tp1_vec,na.rm = T)
thetaR_tp1_ci <-quantile(thetatR_tp1_vec,c(0.025,0.5,0.975),na.rm = T)
R_tp1_vec<-R_pp[,dthetaI_tp1_rd-T_prime]
R_tp1_mean <-mean(R_tp1_vec,na.rm = T)
R_tp1_ci <- quantile(R_tp1_vec,c(0.025,0.5,0.975),na.rm = T)
}
dthetaI_tp2_rd<-max(round(dthetaI_tp2),1)
if(dthetaI_tp1_rd==dthetaI_tp2_rd){
thetatI_tp2_vec<-NA
thetaI_tp2_mean <-mean(thetatI_tp2_vec,na.rm = T)
thetaI_tp2_ci <-quantile(thetatI_tp2_vec,c(0.025,0.5,0.975),na.rm = T)
Y_tp2_vec<-NA
Y_tp2_mean <-mean(Y_tp2_vec,na.rm = T)
Y_tp2_ci <- quantile(Y_tp2_vec,c(0.025,0.5,0.975),na.rm = T)
thetatR_tp2_vec<-NA
thetaR_tp2_mean <-mean(thetatR_tp2_vec,na.rm = T)
thetaR_tp2_ci <-quantile(thetatR_tp2_vec,c(0.025,0.5,0.975),na.rm = T)
R_tp2_vec<-NA
R_tp2_mean <-mean(R_tp2_vec,na.rm = T)
R_tp2_ci <- quantile(R_tp2_vec,c(0.025,0.5,0.975),na.rm = T)
}else if(dthetaI_tp2_rd>T_prime) {
thetatI_tp2_vec<-thetaI_mat[,dthetaI_tp2_rd]
thetaI_tp2_mean <-mean(thetatI_tp2_vec,na.rm = T)
thetaI_tp2_ci <-quantile(thetatI_tp2_vec,c(0.025,0.5,0.975),na.rm = T)
Y_tp2_vec<-Y_pp[,dthetaI_tp2_rd-T_prime]
Y_tp2_mean <-mean(Y_tp2_vec,na.rm = T)
Y_tp2_ci <- quantile(Y_tp2_vec,c(0.025,0.5,0.975),na.rm = T)
thetatR_tp2_vec<-thetaR_mat[,dthetaI_tp2_rd]
thetaR_tp2_mean <-mean(thetatR_tp2_vec,na.rm = T)
thetaR_tp2_ci <-quantile(thetatR_tp2_vec,c(0.025,0.5,0.975),na.rm = T)
R_tp2_vec<-R_pp[,dthetaI_tp2_rd-T_prime]
R_tp2_mean <-mean(R_tp2_vec,na.rm = T)
R_tp2_ci <- quantile(R_tp2_vec,c(0.025,0.5,0.975),na.rm = T)
}else{
thetatI_tp2_vec<-thetaI_mat[,dthetaI_tp2_rd]
thetaI_tp2_mean <-mean(thetatI_tp2_vec,na.rm = T)
thetaI_tp2_ci <-quantile(thetatI_tp2_vec,c(0.025,0.5,0.975),na.rm = T)
Y_tp2_vec<-NA
Y_tp2_mean <-mean(Y_tp2_vec,na.rm = T)
Y_tp2_ci <- quantile(Y_tp2_vec,c(0.025,0.5,0.975),na.rm = T)
thetatR_tp2_vec<-thetaR_mat[,dthetaI_tp2_rd]
thetaR_tp2_mean <-mean(thetatR_tp2_vec,na.rm = T)
thetaR_tp2_ci <-quantile(thetatR_tp2_vec,c(0.025,0.5,0.975),na.rm = T)
R_tp2_vec<-NA
R_tp2_mean <-mean(R_tp2_vec,na.rm = T)
R_tp2_ci <- quantile(R_tp2_vec,c(0.025,0.5,0.975),na.rm = T)
}
thetaR_max_vec <- thetaR_mat[,T_fin]
thetaR_max_mean <- mean(thetaR_max_vec)
thetaR_max_ci <- quantile(thetaR_max_vec,c(0.025,0.5,0.975),na.rm = T)
cumInf_vec <- thetaR_mat[,T_fin]+thetaI_mat[,T_fin]
cumInf_mean <- mean(cumInf_vec)
cumInf_ci <- quantile(cumInf_vec,c(0.025,0.5,0.975),na.rm = T)
dthetaI_tp1_date <- chron_ls[dthetaI_tp1]
dthetaI_tp2_date <- chron_ls[dthetaI_tp2]
incidence_vec <- rowSums(thetaS_mat[,]*thetaI_mat[,],na.rm = T)*replicate(T_fin,c(beta_p))
incidence_mean <- mean(incidence_vec,na.rm = T)
incidence_ci <- quantile(incidence_vec,c(0.025,0.5,0.975),na.rm = T)
first_tp_vec<- (1:T_fin)[apply(dthetaI_mat,1,which.max)]# first second order derivative=0
second_tp_vec <- sapply(1:len,function(l){
(first_tp_vec[l]:T_fin)[which.min(dthetaI_mat[l,first_tp_vec[l]:T_fin]>0)]})
end_p_vec <-sapply(1:len,function(l){
if(sum(thetaI_mat[l,first_tp_vec[l]:T_fin]<=eps)>0){
(first_tp_vec[l]:T_fin)[which.max(thetaI_mat[l,first_tp_vec[l]:T_fin]<=eps)]
}else{ T_fin } })
# first order derivative=0
first_tp_mean <- mean(first_tp_vec,na.rm = T)
second_tp_mean <- mean(second_tp_vec,na.rm = T)
end_p_mean <- mean(end_p_vec,na.rm = T)
first_tp_ci <- quantile(first_tp_vec, c(0.025,0.5,0.975),na.rm = T)
second_tp_ci <- quantile(second_tp_vec, c(0.025,0.5,0.975),na.rm = T)
end_p_ci <- quantile(end_p_vec, c(0.025,0.5,0.975),na.rm = T)
first_tp_date_mean <- chron_ls[first_tp_mean]
second_tp_date_mean <- chron_ls[second_tp_mean]
end_p_date_mean <- chron_ls[end_p_mean]
first_tp_date_ci <- chron_ls[first_tp_ci]
second_tp_date_ci <- chron_ls[second_tp_ci]
end_p_date_ci <- chron_ls[end_p_ci]
names(first_tp_date_ci)<-c("2.5%","50%","97.5%")
names(second_tp_date_ci)<-c("2.5%","50%","97.5%")
names(end_p_date_ci)<-c("2.5%","50%","97.5%")
if(save_files){
png(paste0(file_add,casename,"deriv.png"), width = 700, height = 350)
plot(y=dthetaI,x=chron_ls,type='l',ylab="1st order derivative",main="Infection prevalence process")
abline(h=0,col=2)
if(!is.null(change_time_chorn)) abline(v=change_time_chorn,col="gray")
abline(v=chron_ls[T_prime],col="blue")
legend("topright", legend=c("Last observation","change point"), col=c("blue","gray"),lty=1, title="",bty = "n")
dev.off()
png(paste0(file_add,casename,"thetaQ_plot.png"), width = 700, height = 350)
plot(y=colMeans(cbind(thetaQ_p,thetaQ_pp)),x=chron_ls,type="l",xlab="date",main="Quarantine prevalence process")
abline(v=,col=2)
if(!is.null(change_time_chorn)) abline(v=change_time_chorn,col="gray")
abline(v=begin,col="blue")
legend("topright", legend=c("begin","change point"), col=c("blue","gray"),lty=1, title="",bty = "n")
dev.off()
}
## Prepare the Spaghetti plot
sample_dthetaI_mat <- cbind(dthetaI_mat[sample.int(len,20,replace=F),])
colnames(sample_dthetaI_mat)<-c(as.character(chron_ls)[-1])
sample_dthetaI_mat_long <- reshape2::melt(sample_dthetaI_mat)
colnames(sample_dthetaI_mat_long)<-c("id","date","dthetaI")
sample_dthetaI_mat_long$date<-(chron(as.character(sample_dthetaI_mat_long$date)))
dthetaI_mean_data <- data.frame(dthetaI,date=chron_ls[-1])
spaghetti_ht <- mean(range(sample_dthetaI_mat))/2
spaghetti_plot <- ggplot()+
theme_bw()+
theme( plot.title = element_text(hjust = 0.5, size = 16, face = "bold"),
plot.subtitle = element_text(hjust = 0.5, size = 12),
axis.text.x = element_text(angle = 45, hjust = 1),
axis.text=element_text(size=15),
axis.title=element_text(size=14))+
geom_line(data = sample_dthetaI_mat_long,aes(x = date, y = dthetaI, group=id,color=id))+
scale_color_gradientn(colours = rainbow(5,alpha=0.5))+
labs(title="spaghetti plot of infection prevalence process",x = "time", y = "1st order derivative")+
geom_line(data=dthetaI_mean_data,aes(x= date,y=dthetaI),color=1)+
scale_x_continuous(labels= as.character(chron_ls)[seq(1,T_fin,30)],
breaks=as.numeric(chron_ls[-1][seq(1,T_fin,30)]))+
annotate(geom="text", label=as.character(chron(chron_ls[T_prime]),format="mon day"), x=as.numeric(chron_ls[T_prime])+12, y= spaghetti_ht,color="blue")+
annotate(geom="text", label=as.character(chron(dthetaI_tp1_date,format="mon day")), x=as.numeric(dthetaI_tp1_date)+12, y= spaghetti_ht*1.25,color="darkgreen")+
geom_vline(xintercept = as.numeric(chron_ls[T_prime]),color="blue",show.legend = TRUE)+
geom_vline(xintercept = as.numeric(dthetaI_tp1_date),color="darkgreen",show.legend = TRUE)
#if(dthetaI_tp1>T_prime)
spaghetti_plot<-spaghetti_plot+
geom_rect(data=data.frame(xmin = as.numeric(first_tp_date_ci[1]), xmax = as.numeric(first_tp_date_ci[3]), ymin = -Inf, ymax =Inf,ci="first tp"),aes(xmin = xmin, xmax = xmax, ymin = ymin, ymax =ymax), fill = "darkgreen", alpha = 0.15)
#if(dthetaI_tp2>T_prime)
spaghetti_plot<-spaghetti_plot+
geom_rect(data=data.frame(xmin = as.numeric(second_tp_date_ci[1]), xmax = as.numeric(second_tp_date_ci[3],ci="second tp"), ymin = -Inf, ymax =Inf),aes(xmin = xmin, xmax = xmax, ymin = ymin, ymax =ymax),fill = "purple", alpha = 0.15)
if(dthetaI_tp2_date>dthetaI_tp1_date) {spaghetti_plot<-spaghetti_plot+
geom_vline(xintercept = as.numeric(dthetaI_tp2_date),color="purple",show.legend = TRUE)+
annotate(geom="text", label=as.character(chron(dthetaI_tp2_date,format="mon day")), x=as.numeric(dthetaI_tp2_date)+12, y= spaghetti_ht*1.5,color="purple")}
if(save_files) ggsave(paste0(file_add,casename,"_spaghetti.png"),width=12,height=10)
##############
y_text_ht <- max(rbind(thetaI_band ,Y_band),na.rm = T)/2
plot1 <- ggplot(data = data_poly, aes(x = x, y = y)) +
geom_polygon(alpha = 0.5,aes(fill=value, group=phase)) +
labs(title=substitute(paste(casename,": infection forecast with prior ",beta[0],"=",v1,",",gamma[0], "=",v2," and ", R[0],"=",v3), list(casename=casename,v1=format(beta0,digits=3),v2=format(gamma0,digits=3),v3=format(R0,digits=3))),subtitle = substitute(paste("Posterior ", beta[p],"=",v1,",",gamma[p], "=",v2," and ", R[0],"=",v3), list(v1=format(beta_p_mean,digits=3),v2=format(gamma_p_mean,digits=3),v3=format(R0_p_mean,digits=3))),x = "time", y = "P(Infected)")+
geom_line(data=data_comp,aes(x=time,y=median),color="red")+geom_vline(xintercept = T_prime,color="blue",show.legend = TRUE)+
geom_vline(xintercept = dthetaI_tp1,color="darkgreen",show.legend = TRUE)+
geom_line(data=data_comp,aes(x=time,y=mean),color="darkgray")+
geom_point(data=data_pre,aes(x=time,y=Y))+theme_bw()+
theme( plot.title = element_text(hjust = 0.5, size = 16, face = "bold"),
plot.subtitle = element_text(hjust = 0.5, size = 12),
axis.text.x = element_text(angle = 45, hjust = 1),
axis.text=element_text(size=15),
axis.title=element_text(size=14),
legend.title = element_text(size = 15),
legend.text = element_text(size=12))+
scale_x_continuous(labels= as.character(chron_ls)[seq(1,T_fin,30)],
breaks=seq(1,T_fin,30))+
scale_fill_discrete(name="Posterior",
labels=c(expression(paste(y[t[0]+1:T]^I,' | ',y[1:t[0]]^I,', ',y[1:t[0]]^R)),
expression(paste(theta[1:t[0]]^I,' | ',y[1:t[0]]^I,', ',y[1:t[0]]^R))))+
annotate(geom="text", label=as.character(chron(chron_ls[T_prime]),format="mon day"), x=T_prime+12, y=y_text_ht,color="blue")+
annotate(geom="text", label=as.character(chron(dthetaI_tp1_date,format="mon day")), x=dthetaI_tp1+12, y=y_text_ht*1.25,color="darkgreen")
if(dthetaI_tp2>dthetaI_tp1) {plot1 <-plot1+geom_vline(xintercept = dthetaI_tp2,color="purple",show.legend = TRUE)+annotate(geom="text", label=as.character(chron(dthetaI_tp2_date,format="mon day")), x=dthetaI_tp2+12, y=y_text_ht*1.5,color="purple")
}
# plot_list <- list(data_poly=data_poly,data_comp=data_comp,T_prime=T_prime,dthetaI_stationary2=dthetaI_stationary2,dthetaI_stationary1=dthetaI_stationary1,data_pre=data_pre,dthetaI_stationary2_date,dthetaI_stationary1_date,y_text_ht)
if(save_files) ggsave(paste0(file_add,casename,"_forecast.png"),width=12,height=10)
### Removed
R_band <- data.frame(t(apply(R_pp,2,quantile,probs=c(0.025,0.975),na.rm=T)))
thetaR_band <- data.frame(t(apply(theta_p[,-1,3],2,quantile,probs=c(0.025,0.975),na.rm=T)))
R_mean <- c(colMeans(R_pp,na.rm = T))
thetaR_mean <- c(colMeans(theta_p[,-1,3],na.rm = T),colMeans(theta_pp[,,3],na.rm = T))
thetaR_med <- c(apply(theta_p[,-1,3],2,median,na.rm = T),apply(theta_pp[,,3],2,median,na.rm = T))
colnames(R_band)<- c("lower", "upper")
colnames(thetaR_band)<- c("lower","upper")
data_pre_R <- data.frame(time=1:T_prime,R) # previous data
data_post_R <-data.frame(time=1:T_prime,thetaR_band) # posterior of theta^R
data_fore_R <- data.frame(time=(T_prime+1):T_fin,R_band,R_mean) # The forecast of R after T_prime
data_comp_R<-data.frame(time=1:T_fin,rbind(thetaR_band ,R_band), phase=c(rep('pre',nrow(thetaR_band)),rep('post',nrow(R_band))),mean=thetaR_mean,median=thetaR_med,dead=thetaR_mean*death_in_R,dead_med=thetaR_med*death_in_R) # the filled area--polygon
data_poly_R<-data.frame(y=c(thetaR_band$upper,rev(thetaR_band$lower),R_band$upper,rev(R_band$lower)),x=c(1:T_prime,T_prime:1,(T_prime+1):T_fin,T_fin:(T_prime+1)),phase=c(rep('pre',T_prime*2),rep('post',(T_fin-T_prime)*2)),value=c(rep(col2[1],T_prime*2),rep(col2[2],(T_fin-T_prime)*2)))
r_text_ht <- max(rbind(thetaR_band ,R_band),na.rm = T)/2
plot2 <- ggplot(data = data_poly_R, aes(x = x, y = y)) +
geom_polygon(alpha = 0.5,aes(fill=value, group=phase)) +
labs(title=substitute(paste(casename,
": removed forecast with prior ",beta[0],"=",v1,",",
gamma[0], "=",v2," and ", R[0],"=",v3),
list(casename=casename,v1=format(beta0,digits=3),
v2=format(gamma0,digits=3),v3=format(R0,digits=3))),
subtitle = substitute(paste("posterior: ", beta[p],"=",v1,",",
gamma[p], "=",v2," and ", R[0],"=",v3),
list(v1=format(beta_p_mean,digits=3),v2=format(gamma_p_mean,digits=3),
v3=format(R0_p_mean,digits=3))),x = "time", y = "P(Removed)")+
geom_line(data=data_comp_R,aes(x=time,y=median),color="red",linetype=1)+
geom_vline(xintercept = T_prime,color="blue")+
geom_vline(xintercept = dthetaI_tp1,color="darkgreen")+
geom_line(data=data_comp_R,aes(x=time,y=mean),color="darkgray")+
geom_point(data=data_pre_R,aes(x=time,y=R))+theme_bw()+
theme( plot.title = element_text(hjust = 0.5, size = 16, face = "bold"),
plot.subtitle = element_text(hjust = 0.5, size = 12),
axis.text.x = element_text(angle = 45, hjust = 1),
axis.text=element_text(size=15),
axis.title=element_text(size=14),
legend.title = element_text(size = 15),
legend.text = element_text(size=12))+
scale_x_continuous(labels= as.character(chron_ls)[seq(1,T_fin,30)],breaks=seq(1,T_fin,30))+
scale_fill_discrete(name="Posterior",
labels=c(expression(paste(y[t[0]+1:T]^R,' | ',y[1:t[0]]^I,', ',y[1:t[0]]^R)),
expression(paste(theta[1:t[0]]^R,' | ',y[1:t[0]]^I,', ',y[1:t[0]]^R))))+
annotate(geom="text", label=as.character(chron(chron_ls[T_prime]),format="mon day"), x=T_prime+12, y=r_text_ht,color="blue")+annotate(geom="text", label=as.character(chron(dthetaI_tp1_date,format="mon day")), x=dthetaI_tp1+12, y=r_text_ht*1.25,color="darkgreen")
if(dthetaI_tp2>dthetaI_tp1) {plot2 <-plot2+geom_vline(xintercept = dthetaI_tp2,color="purple",show.legend = TRUE)+annotate(geom="text", label=as.character(chron(dthetaI_tp2_date,format="mon day")), x=dthetaI_tp2+12, y=r_text_ht*1.5,color="purple")
}
if(add_death) plot2 <- plot2+geom_line(data=data_comp_R,aes(x=time,y=dead),color="black",linetype=1)+geom_line(data=data_comp_R,aes(x=time,y=dead_med),color="black",linetype=2)
#plot2_list <- list(data_poly_R=data_poly_R,data_comp_R=data_comp_R,T_prime=T_prime,dthetaI_stationary2=dthetaI_stationary2,dthetaI_stationary1=dthetaI_stationary1,data_pre_R=data_pre_R,dthetaI_stationary2_date,dthetaI_stationary1_date)
if(save_files) ggsave(paste0(file_add,casename,"_forecast2.png"),width=12,height=10)
out_table<-matrix(c(theta_p_mean,theta_p_ci,thetaQ_p_mean,thetaQ_p_ci,R0_p_mean,R0_p_ci,gamma_p_mean,gamma_p_ci,beta_p_mean,beta_p_ci),nrow=1)
out_table1<- data.frame(matrix(c(theta_p_mean,theta_p_ci,thetaQ_p_mean,thetaQ_p_ci,R0_p_mean,R0_p_ci,gamma_p_mean,gamma_p_ci,beta_p_mean,beta_p_ci,incidence_mean=incidence_mean,incidence_ci=incidence_ci,thetaI_tp1_mean=thetaI_tp1_mean,thetaI_tp1_ci=thetaI_tp1_ci,thetaR_tp1_mean=thetaR_tp1_mean,thetaR_tp1_ci=thetaR_tp1_ci,Y_tp1_mean=Y_tp1_mean,Y_tp1_ci=Y_tp1_ci,R_tp1_mean=R_tp1_mean,R_tp1_ci=R_tp1_ci,thetaI_tp2_mean=thetaI_tp2_mean,thetaI_tp2_ci=thetaI_tp2_ci,thetaR_tp2_mean=thetaR_tp2_mean,thetaR_tp2_ci=thetaR_tp2_ci,Y_tp2_mean=Y_tp2_mean,Y_tp2_ci=Y_tp2_ci,R_tp2_mean=R_tp2_mean,R_tp2_ci=R_tp2_ci,thetaR_max_mean,thetaR_max_ci,cumInf_mean=cumInf_mean,cumInf_ci=cumInf_ci),nrow=1))
out_table2<- data.frame(matrix(c(dthetaI_tp1_date=as.character(dthetaI_tp1_date),first_tp_mean=as.character(first_tp_date_mean),first_tp_ci=as.character(first_tp_date_ci),dthetaI_tp2_date=as.character(dthetaI_tp2_date),second_tp_mean=as.character(second_tp_date_mean),second_tp_ci=as.character(second_tp_date_ci),end_p_date_mean=as.character(end_p_date_mean),end_p_date_ci=as.character(end_p_date_ci),begin_str=begin_str),nrow=1))
out_table<-cbind(out_table1,out_table2)
#out_table<-matrix(c(theta_p_mean,theta_p_ci,R0_p_mean,R0_p_ci,gamma_p_mean,gamma_p_ci,beta_p_mean,beta_p_ci,k_p_mean,k_p_ci,lambdaY_p_mean,lambdaY_p_ci,lambdaR_p_mean,lambdaR_p_ci,as.character(first_order_change_date),as.character(second_order_change_date)),nrow=1)
colnames(out_table)<-c("thetaS_last_obs_p_mean","thetaI_last_obs_p_mean","thetaR_last_obs_p_mean","thetaS_last_obs_p_ci_low","thetaS_last_obs_p_ci_med","thetaS_last_obs_p_ci_up","thetaI_last_obs_p_ci_low","thetaI_last_obs_p_ci_med","thetaI_last_obs_p_ci_up","thetaR_last_obs_p_ci_low","thetaR_last_obs_p_ci_med","thetaR_last_obs_p_ci_up","thetaQ_last_obs_p_mean","thetaQ_last_obs_p_ci_low","thetaQ_last_obs_p_ci_med","thetaQ_last_obs_p_ci_up","R0_p_mean","R0_p_ci_low","R0_p_ci_med","R0_p_ci_up","gamma_p_mean","gamma_p_ci_low","gamma_p_ci_med","gamma_p_ci_up","beta_p_mean","beta_p_ci_low","beta_p_ci_med","beta_p_ci_up","incidence_mean","incidence_ci_low","incidence_ci_median","incidence_ci_up","thetaI_tp1_mean","thetaI_tp1_ci_low","thetaI_tp1_ci_med","thetaI_tp1_ci_up","thetaR_tp1_mean","thetaR_tp1_ci_low","thetaR_tp1_ci_med","thetaR_tp1_ci_up","Y_tp1_mean","Y_tp1_ci_low","Y_tp1_ci_med","Y_tp1_ci_up","R_tp1_mean","R_tp1_ci_low","R_tp1_ci_med","R_tp1_ci_up","thetaI_tp2_mean","thetaI_tp2_ci_low","thetaI_tp2_ci_med","thetaI_tp2_ci_up","thetaR_tp2_mean","thetaR_tp2_ci_low","thetaR_tp2_ci_med","thetaR_tp2_ci_up","Y_tp2_mean","Y_tp2_ci_low","Y_tp2_ci_med","Y_tp2_ci_up","R_tp2_mean","R_tp2_ci_low","R_tp2_ci_med","R_tp2_ci_up","thetaR_max_mean","thetaR_max_ci_low","thetaR_max_ci_med","thetaR_max_ci_up","cumInf_mean","cumInf_ci_low","cumInf_ci_med","cumInf_ci_up","dthetaI_tp1_date","first_tp_mean","first_tp_ci_low","first_tp_ci_med","first_tp_ci_up","dthetaI_tp2_date","second_tp_mean","second_tp_ci_low","second_tp_ci_med","second_tp_ci_up","end_p_mean","end_p_ci_low","end_p_ci_med","end_p_ci_up","begin_str")
#colnames(out_table)<-c("thetaS_p_mean","thetaI_p_mean","thetaR_p_mean","thetaS_p_ci_low","thetaS_p_ci_med","thetaS_p_ci_up","thetaI_p_ci_low","thetaI_p_ci_med","thetaI_p_ci_up","thetaR_p_ci_low","thetaR_p_ci_med","thetaR_p_ci_up","R0_p_mean","R0_p_ci_low","R0_p_ci_med","R0_p_ci_up","gamma_p_mean","gamma_p_ci_low","gamma_p_ci_med","gamma_p_ci_up","beta_p_mean","beta_p_ci_low","beta_p_ci_med","beta_p_ci_up","k_p_mean","k_p_ci_low","k_p_ci_med","k_p_ci_up","lambdaY_p_mean","lambdaY_p_ci_low","lambdaY_p_ci_med","lambdaY_p_ci_up","lambdaR_p_mean","lambdaR_p_ci_low","lambdaR_p_ci_med","lambdaR_p_ci_up","first_order_change_date","second_order_change_date")
if(save_files) write.csv(out_table,file=paste0(file_add,casename,"_summary.csv"))
if(save_mcmc) save(theta_p,theta_pp,thetaQ_p,thetaQ_pp,Y,Y_pp,R,R_pp,beta_p,gamma_p,R0_p,k_p,lambdaY_p,lambdaR_p, file=paste0(file_add,casename,"_mcmc.RData")) #@
if(save_plot_data){
other_plot <-list(T_prime=T_prime,T_fin=T_fin,chron_ls=chron_ls,dthetaI_tp1=dthetaI_tp1,dthetaI_tp2=dthetaI_tp2,dthetaI_tp1_date=dthetaI_tp1_date,dthetaI_tp2_date=dthetaI_tp2_date,beta_p_mean=beta_p_mean,gamma_p_mean=gamma_p_mean,R0_p_mean=R0_p_mean)
spaghetti_plot_ls <- list(spaghetti_ht=spaghetti_ht,dthetaI_mean_data=dthetaI_mean_data,sample_dthetaI_mat_long=sample_dthetaI_mat_long,first_tp_date_ci=first_tp_date_ci,second_tp_date_ci=second_tp_date_ci)
infection_plot_ls <-list( y_text_ht=y_text_ht,data_poly=data_poly,data_comp=data_comp,data_pre=data_pre)
removed_plot_ls <-list( r_text_ht=r_text_ht,data_poly_R=data_poly_R,data_comp_R=data_comp_R,data_pre_R=data_pre_R)
plot_data_ls <- list(casename=casename,other_plot=other_plot,spaghetti_plot_ls=spaghetti_plot_ls,infection_plot_ls=infection_plot_ls,removed_plot_ls=removed_plot_ls)
save(plot_data_ls,file=paste0(file_add,casename,"_plot_data.RData"))
}
res<-list(casename=casename,incidence_mean=incidence_mean,incidence_ci=incidence_ci,out_table=out_table,plot_infection=plot1,plot_removed=plot2,spaghetti_plot=spaghetti_plot,first_tp_mean=as.character(first_tp_date_mean),first_tp_ci=as.character(first_tp_date_ci),second_tp_mean=as.character(second_tp_date_mean),second_tp_ci=as.character(second_tp_date_ci),dic_val=dic_val)
return(res)
}
if(F){
NI_complete <- c( 41,41,41,45,62,131,200,270,375,444,549, 729,
1052,1423,2714,3554,4903,5806,7153,9074,11177,
13522,16678,19665,22112,24953,27100,29631,31728,33366)
RI_complete <- c(1,1,7,10,14,20,25,31,34,45,55,71,94,121,152,213,
252,345,417,561,650,811,1017,1261,1485,1917,2260,
2725,3284,3754)
N=58.5e6
R <- RI_complete/N
Y <- NI_complete/N- R #Jan13->Feb 11
change_time <- c("01/23/2020","02/04/2020","02/08/2020")
phi0 <- c(0.1,0.4,0.4)
res.q <- qh.eSIR (Y,R,begin_str="01/13/2020",death_in_R = 0.4,
phi0=phi0,change_time=change_time,
casename="Hubei_q",save_files = T,save_mcmc = F,
M=5e2,nburnin = 2e2)
res.q$plot_infection
#res.q$plot_removed
res.noq <- qh.eSIR (Y,R,begin_str="01/13/2020",death_in_R = 0.4,
T_fin=200,casename="Hubei_noq",
M=5e2,nburnin = 2e2)
res.noq$plot_infection
}