forked from mizimmer90/slandscapes
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrankings.py
489 lines (431 loc) · 18.2 KB
/
rankings.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
import enspara.tpt
# import msmbuilder.tpt
import numpy as np
import scipy.sparse as spar
from . import scalings
########################################################################
# helper functions #
########################################################################
def euclidean_dist(centers, frame):
diffs = centers - frame
dists = np.sqrt(np.einsum('ij,ij->i', diffs, diffs))
return dists
class DistanceLookup:
"""A class for reading in user specified distances from
a pre-computed state space, for KMC with real tprobs.
Parameters
----------
dists : 2D array of the distance between each state pair
metric : function, default=self.euclidean evaluates
how far a frame is from all the other frames found thus far.
Returns
----------
distance : float
The accumulated distance from each center to the provided center
"""
def euclidean(self, dist_pairs):
return np.sqrt(np.einsum('ij,ij->i', dist_pairs, dist_pairs))
def __init__(self, dists, metric=None):
self.dists = dists
if metric:
self.metric = metric
else:
self.metric = self.euclidean
def __call__(self, centers, frame):
dist_pairs = self.dists[frame, :][centers]
return self.metric(dist_pairs)
def _evens_select_states(unique_states, n_clones):
"""Helper function for evens state selection. Picks among all
discovered states evenly. If more states were discovered than
clones, randomly picks remainder states."""
# calculate the number of clones per state and the balance to
# match n_clones
clones_per_state = int(n_clones / len(unique_states))
remainder_states = n_clones % len(unique_states)
# generate states to simulate list
repeat_states_to_simulate = np.repeat(unique_states, clones_per_state)
remainder_states_to_simulate = np.random.choice(
unique_states, remainder_states, replace=False)
total_states_to_simulate = np.concatenate(
[repeat_states_to_simulate, remainder_states_to_simulate])
return total_states_to_simulate
def _unbias_state_selection(states, rankings, n_selections, select_max=True):
"""Unbiases state selection due to state labeling. Shuffles states
with equivalent rankings so that state index does not influence
selection probability."""
# determine the unique ranking values
unique_rankings = np.unique(rankings)
# sort states and rankings
iis_sort = np.argsort(rankings)
sorted_rankings = rankings[iis_sort]
sorted_states = states[iis_sort]
# if we're maximizing the rankings, reverse the sorts
if select_max:
unique_rankings = unique_rankings[::-1]
sorted_rankings = sorted_rankings[::-1]
sorted_states = sorted_states[::-1]
# shuffle states with unique rankings to unbias selections
# this is done upto n_selections
tot_state_count = 0
for ranking_num in unique_rankings:
iis = np.where(sorted_rankings == ranking_num)[0]
sorted_states[iis] = sorted_states[np.random.permutation(iis)]
tot_state_count += len(iis)
if tot_state_count > n_selections:
break
return sorted_states[:n_selections]
def _select_states_spreading(
rankings, unique_states, n_clones, centers, distance_metric,
select_max=True, width=1.0, non_overlap=True):
states_to_simulate = [
_unbias_state_selection(
unique_states, rankings, 1, select_max=select_max)[0]]
dist_list = []
for num in range(n_clones-1):
dist_list.append(
distance_metric(
centers[unique_states], centers[states_to_simulate[-1]]))
gaussian_weights = np.sum(
[
(1 - np.exp(-(dists**2)/float(2.0*(width**2))))
for dists in dist_list], axis=0) / len(dist_list)
new_rankings = rankings + gaussian_weights
if non_overlap:
states_to_zero = np.array(
[
np.where(unique_states == state)[0]
for state in states_to_simulate])
if select_max:
new_rankings[states_to_zero] = 0
else:
new_rankings[states_to_zero] = np.inf
states_to_simulate.append(
_unbias_state_selection(
unique_states, new_rankings, 1, select_max=select_max)[0])
states_to_simulate = np.array(states_to_simulate)
return states_to_simulate
def get_unique_states(msm):
"""returns a list of the visited states within an msm object"""
tcounts = msm.tcounts_
unique_states = np.unique(np.nonzero(tcounts)[0])
return unique_states
########################################################################
# page rankings #
########################################################################
def generate_aij(tcounts, spreading=False):
"""Generates the adjacency matrix used for page ranking.
Parameters
----------
tcounts : matrix, shape=(n_states, n_states)
The count matrix of an MSM. Can be dense or sparse.
spreading : bool, default=False
Optionally transposes matrix to do counts spreading instead of
page rank.
Returns
----------
aij : matrix, shape=(n_states, n_states)
The adjacency matrix used for page ranking.
"""
# check if sparse matrix
if not spar.isspmatrix(tcounts):
iis = np.where(tcounts != 0)
tcounts = spar.coo_matrix(
(tcounts[iis], iis), shape=(len(tcounts), len(tcounts)))
else:
tcounts = tcounts.tocoo()
# get row and col information
row_info = tcounts.row
col_info = tcounts.col
tcounts.data = np.zeros(len(tcounts.data)) + 1
tcounts.setdiag(0) # Sets diagonal to zero
tcounts = tcounts.tocsr()
tcounts.eliminate_zeros()
# optionally does spreading
if spreading:
tcounts = (tcounts + tcounts.T) / 2.
aij = normalize(tcounts, norm='l1', axis=1)
else:
# Set 0 connections to 1 (
# this doesn't change anything and avoids dividing by zero)
connections = tcounts.sum(axis = 1)
iis = np.where(connections == 0)
connections[iis] = 1
# Convert 1/Connections to sparse matrix format
connections = spar.coo_matrix(connections).data
con_len = len(connections)
iis = (np.array(range(con_len)), np.array(range(con_len)))
inv_connections = spar.coo_matrix(
(connections**-1, iis), shape=(con_len, con_len))
aij = tcounts.transpose() * inv_connections
return aij
def rank_aij(aij, d=0.85, Pi=None, max_iters=100000, norm=True):
"""Ranks the adjacency matrix.
Parameters
----------
aij : matrix
The adjacency matrix used for ranking.
d : float
The weight of page ranks [0, 1]. A value of 1 is pure page rank
and 0 is all the initial ranks.
Pi : array, default=None
The prior ranks.
max_iters : int, default=100000
The maximum number of iterations to check for convergence.
norm : bool, default=True
Normilizes output ranks
Returns
----------
The rankings of each state
"""
N = float(aij.shape[0])
# if Pi is None, set it to 1/total states
if Pi is None:
Pi = np.zeros(int(N))
Pi[:] = 1/N
# set error for page ranks
error = 1 / N**2
# first pass of rankings
new_page_rank = (1 - d) * Pi + d * aij.dot(Pi)
pr_error = np.sum(np.abs(Pi - new_page_rank))
page_rank = new_page_rank
# iterate until error is below threshold
iters = 0
while pr_error > error:
new_page_rank = (1 - d) * Pi + d * aij.dot(page_rank)
pr_error = np.sum(np.abs(page_rank - new_page_rank))
page_rank = new_page_rank
iters += 1
# error out if does not converge
if iters > max_iters:
raise
# normalize rankings
if norm:
page_rank *= 100./page_rank.sum()
return page_rank
########################################################################
# ranking classes #
########################################################################
class evens:
"""Evens ranking object"""
def __init__(self):
pass
def rank(self, msm):
unique_states = get_unique_states(msm)
return np.zeros(len(unique_states))
def select_states(self, msm, n_clones):
unique_states = get_unique_states(msm)
return _evens_select_states(unique_states, n_clones)
class base_ranking:
"""base ranking class. Pieces out selection of states from
independent rankings"""
def __init__(
self, maximize_ranking=True, state_centers=None,
distance_metric=None, width=1.0):
self.maximize_ranking = maximize_ranking
self.state_centers = state_centers
self.distance_metric = distance_metric
self.width = width
def select_states(self, msm, n_clones):
# determine discovered states from msm
unique_states = get_unique_states(msm)
# if not enough discovered states for selection of n_clones,
# selects states using the evens method
if len(unique_states) < n_clones:
states_to_simulate = _evens_select_states(unique_states, n_clones)
# selects the n_clones with minimum counts
else:
rankings = self.rank(msm, unique_states=unique_states)
# if a state-ranking is `nan`, does not consider it in rankings.
non_nan_rank_iis = np.where(1 - np.isnan(rankings))[0]
# if not enought non-`nan` states are discivered, performs evens
if len(non_nan_rank_iis) < n_clones:
states_to_simulate = _evens_select_states(
unique_states[non_nan_rank_iis], n_clones)
else:
if (self.state_centers is None) or (self.distance_metric is None):
states_to_simulate = _unbias_state_selection(
unique_states[non_nan_rank_iis],
rankings[non_nan_rank_iis], n_clones,
select_max=self.maximize_ranking)
else:
states_to_simulate = _select_states_spreading(
rankings[non_nan_rank_iis],
unique_states[non_nan_rank_iis], n_clones,
centers=self.state_centers,
distance_metric=self.distance_metric,
select_max=self.maximize_ranking,
width=self.width)
return states_to_simulate
class page_ranking(base_ranking):
"""page ranking. ri = (1-d)*init_ranks + d*aij"""
def __init__(
self, d, init_pops=True, max_iters=100000, norm=True,
spreading=False, maximize_ranking=True, **kwargs):
"""
Parameters
----------
d : float
The weight of page ranks [0, 1]. A value of 1 is pure page rank
and 0 is all the initial ranks.
init_pops : bool, default=True
Optionally uses the populations within an MSM as the initial ranks.
max_iters : int, default=100000
The maximum number of iterations to check for convergence.
norm : bool, default=True
Normilizes output ranks
spreading : bool, default = False
Solves for page ranks with the transpose of aij.
"""
self.d = d
self.init_pops = init_pops
self.max_iters = max_iters
self.norm = norm
self.spreading = spreading
base_ranking.__init__(
self, maximize_ranking=maximize_ranking, **kwargs)
def rank(self, msm, unique_states=None):
# generate aij matrix
if unique_states is None:
unique_states = get_unique_states(msm)
tcounts = msm.tcounts_
tcounts_sub = tcounts.tocsr()[:, unique_states][unique_states, :]
aij = generate_aij(tcounts_sub)
# determine the initial ranks
if self.init_pops:
Pi = msm.eq_probs_[unique_states]
else:
Pi = None
rankings = rank_aij(
aij, d=self.d, Pi=Pi, max_iters=self.max_iters, norm=self.norm)
return rankings
class counts(base_ranking):
"""Min-counts ranking object. Ranks states based on their raw
counts."""
def __init__(
self, maximize_ranking=False, scaling=None, **kwargs):
self.scaling = scaling
base_ranking.__init__(
self, maximize_ranking=maximize_ranking, **kwargs)
def rank(self, msm, unique_states=None):
counts_per_state = np.array(msm.tcounts_.sum(axis=1)).flatten()
if unique_states is None:
unique_states = np.where(counts_per_state > 0)[0]
counts_return = counts_per_state[unique_states]
if self.scaling is not None:
counts_return = self.scaling.scale(counts_return)
return counts_return
class FAST(base_ranking):
"""FAST ranking object"""
def __init__(
self, state_rankings,
directed_scaling = scalings.feature_scale(maximize=True),
statistical_component = counts(),
statistical_scaling = scalings.feature_scale(maximize=False),
alpha = 1, alpha_percent=False, maximize_ranking=True,
**kwargs):
"""
Parameters
----------
state_rankings : array, shape = (n_states, )
An array with ranking values for each state. This is
previously calculated for each state in the MSM.
directed_scaling : scaling object, default = feature_scale(maximize=True)
An object used for scaling the directed component values.
statistical_component : ranking function
A function that has an enspara msm object as input, and
returns the unique states and statistical rankings per
state.
statistical_scaling : scaling object, default = feature_scale(maximize=False)
An object used for scaling the statistical component values.
alpha : float, default = 1
The weighting of the statistical component to FAST.
i.e. r_i = directed + alpha * undirected
alpha_percent : bool, default=False
Optionally treat the alpha value as a percent.
i.e. r_i = (1 - alpha) * directed + alpha * undirected
"""
self.state_rankings = state_rankings
self.directed_scaling = directed_scaling
self.statistical_component = statistical_component
self.statistical_scaling = statistical_scaling
self.alpha = alpha
self.alpha_percent = alpha_percent
if self.alpha_percent and ((self.alpha < 0) or (self.alpha > 1)):
raise
base_ranking.__init__(
self, maximize_ranking=maximize_ranking, **kwargs)
def rank(self, msm, unique_states=None):
# determine unique states
if unique_states is None:
unique_states = get_unique_states(msm)
if self.statistical_component is None:
statistical_weights = np.zeros(unique_states.shape)
else:
# get statistical component
statistical_ranking = self.statistical_component.rank(msm)
# scale the statistical weights
statistical_weights = self.statistical_scaling.scale(
statistical_ranking)
# scale the directed weights
directed_weights = self.directed_scaling.scale(
self.state_rankings[unique_states])
# determine rankings
if self.alpha_percent:
total_rankings = (1-self.alpha)*directed_weights + \
self.alpha*statistical_weights
else:
total_rankings = directed_weights + self.alpha*statistical_weights
return total_rankings
class string(base_ranking):
"""Uses the string method with MSMs to relax pathway. Samples from
states along the highest flux pathway between start-states and
end-states. Uses the statistical component to rank the states on
this pathway.
Parameters
----------
start_states : int or array-like, shape = (n_start_states, )
The starting states for defining the pathway.
end_states : int of array-like, shape = (n_end_states, )
The ending states for defining the pathway.
statistical_component : ranking function
A ranking class object to rank the pathway states. If none is
selected, evens is used.
"""
def __init__(
self, start_states, end_states, statistical_component=None,
n_paths=1, maximize_ranking=True, **kwargs):
self.start_states = start_states
self.end_states = end_states
self.statistical_component = statistical_component
self.n_paths = n_paths
base_ranking.__init__(
self, maximize_ranking=maximize_ranking, **kwargs)
def rank(self, msm, unique_states=None):
# determine unique states
if unique_states is None:
unique_states = get_unique_states(msm)
if self.statistical_component is None:
statistical_ranking = np.zeros(unique_states.shape)
else:
# get statistical component
statistical_ranking = self.statistical_component.rank(msm)
# determine the highest flux pathway between states
if spar.issparse(msm.tprobs_):
tprobs = np.array(msm.tprobs_.todense())
else:
tprobs = msm.tprobs_
nfm = enspara.tpt.net_fluxes(
tprobs, self.start_states,
self.end_states, populations=msm.eq_probs_)
paths, fluxes = enspara.tpt.paths(
self.start_states, self.end_states, nfm, num_paths=self.n_paths)
# make all non-pathway states `nan`
path_states = np.unique(np.concatenate(paths))
path_iis = np.array(
[
np.where(unique_states == path_state)[0][0]
for path_state in path_states])
non_path_iis = np.setdiff1d(range(len(unique_states)), path_iis)
new_rankings = np.array(np.copy(statistical_ranking), dtype=float)
new_rankings[non_path_iis] = np.nan
return new_rankings