-
Notifications
You must be signed in to change notification settings - Fork 334
/
Copy pathchatglm_pybind.cpp
211 lines (173 loc) · 10.1 KB
/
chatglm_pybind.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
#include "chatglm.h"
#include <pybind11/pybind11.h>
#include <pybind11/stl.h>
namespace chatglm {
namespace py = pybind11;
using namespace pybind11::literals;
class PyBaseTokenizer : public BaseTokenizer {
public:
using BaseTokenizer::BaseTokenizer;
std::vector<int> encode(const std::string &text, int max_length) const override {
PYBIND11_OVERRIDE_PURE(std::vector<int>, BaseTokenizer, encode, text, max_length);
}
std::string decode(const std::vector<int> &ids, bool skip_special_tokens) const override {
PYBIND11_OVERLOAD_PURE(std::string, BaseTokenizer, decode, ids, skip_special_tokens);
}
std::vector<int> apply_chat_template(const std::vector<ChatMessage> &messages, int max_length) const override {
PYBIND11_OVERLOAD_PURE(std::vector<int>, BaseTokenizer, apply_chat_template, messages, max_length);
}
};
class PyBaseModelForCausalLM : public BaseModelForCausalLM {
public:
using BaseModelForCausalLM::BaseModelForCausalLM;
void load_state_dict(const StateDict &sd) override {
PYBIND11_OVERLOAD_PURE(void, PyBaseModelForCausalLM, load_state_dict, sd);
}
ggml_tensor *forward(ModelContext *mctx, ggml_tensor *input_ids, ggml_tensor *images,
const std::vector<int> &input_ids_vec, int n_past, bool is_decoding) const override {
PYBIND11_OVERLOAD_PURE(ggml_tensor *, PyBaseModelForCausalLM, forward, mctx, input_ids, images, input_ids_vec,
n_past, is_decoding);
}
void set_graph_inputs(const std::vector<int> &input_ids, const std::optional<Image> &image, int n_past,
int n_ctx) const override {
PYBIND11_OVERLOAD_PURE(void, PyBaseModelForCausalLM, set_graph_inputs, input_ids, image, n_past, n_ctx);
}
int count_tokens(const std::vector<int> &input_ids, const std::optional<Image> &image) const override {
PYBIND11_OVERLOAD_PURE(int, PyBaseModelForCausalLM, count_tokens, input_ids, image);
}
};
template <typename T>
static inline std::string to_string(const T &obj) {
std::ostringstream oss;
oss << obj;
return oss.str();
}
PYBIND11_MODULE(_C, m) {
m.doc() = "ChatGLM.cpp python binding";
py::enum_<ModelType>(m, "ModelType")
.value("CHATGLM", ModelType::CHATGLM)
.value("CHATGLM2", ModelType::CHATGLM2)
.value("CHATGLM3", ModelType::CHATGLM3)
.value("CHATGLM4", ModelType::CHATGLM4);
py::class_<VisionModelConfig>(m, "VisionModelConfig")
// .def_readonly("dtype", &VisionModelConfig::dtype)
// .def_readonly("hidden_act", &VisionModelConfig::hidden_act)
.def_readonly("hidden_size", &VisionModelConfig::hidden_size)
.def_readonly("image_size", &VisionModelConfig::image_size)
.def_readonly("in_channels", &VisionModelConfig::in_channels)
.def_readonly("intermediate_size", &VisionModelConfig::intermediate_size)
.def_readonly("norm_eps", &VisionModelConfig::norm_eps)
.def_readonly("num_attention_heads", &VisionModelConfig::num_attention_heads)
.def_readonly("num_hidden_layers", &VisionModelConfig::num_hidden_layers)
.def_readonly("num_positions", &VisionModelConfig::num_positions)
.def_readonly("patch_size", &VisionModelConfig::patch_size)
.def_readonly("scaling_factor", &VisionModelConfig::scaling_factor);
py::class_<ModelConfig>(m, "ModelConfig")
.def_readonly("model_type", &ModelConfig::model_type)
// .def_readonly("dtype", &ModelConfig::dtype)
.def_readonly("vocab_size", &ModelConfig::vocab_size)
.def_readonly("hidden_size", &ModelConfig::hidden_size)
.def_readonly("num_attention_heads", &ModelConfig::num_attention_heads)
.def_readonly("num_key_value_heads", &ModelConfig::num_key_value_heads)
.def_readonly("num_hidden_layers", &ModelConfig::num_hidden_layers)
.def_readonly("intermediate_size", &ModelConfig::intermediate_size)
.def_readonly("norm_eps", &ModelConfig::norm_eps)
.def_readonly("max_length", &ModelConfig::max_length)
.def_readonly("bos_token_id", &ModelConfig::bos_token_id)
.def_readonly("eos_token_id", &ModelConfig::eos_token_id)
.def_readonly("pad_token_id", &ModelConfig::pad_token_id)
.def_readonly("sep_token_id", &ModelConfig::sep_token_id)
.def_readonly("extra_eos_token_ids", &ModelConfig::extra_eos_token_ids)
.def_readonly("vision", &ModelConfig::vision)
.def_property_readonly("model_type_name", &ModelConfig::model_type_name);
py::class_<GenerationConfig>(m, "GenerationConfig")
.def(py::init<int, int, int, bool, int, float, float, float>(), "max_length"_a = 2048, "max_new_tokens"_a = -1,
"max_context_length"_a = 512, "do_sample"_a = true, "top_k"_a = 0, "top_p"_a = 0.7, "temperature"_a = 0.95,
"repetition_penalty"_a = 1.0)
.def_readwrite("max_length", &GenerationConfig::max_length)
.def_readwrite("max_new_tokens", &GenerationConfig::max_new_tokens)
.def_readwrite("max_context_length", &GenerationConfig::max_context_length)
.def_readwrite("do_sample", &GenerationConfig::do_sample)
.def_readwrite("top_k", &GenerationConfig::top_k)
.def_readwrite("top_p", &GenerationConfig::top_p)
.def_readwrite("temperature", &GenerationConfig::temperature)
.def_readwrite("repetition_penalty", &GenerationConfig::repetition_penalty);
py::class_<FunctionMessage>(m, "FunctionMessage")
.def("__repr__", &to_string<FunctionMessage>)
.def("__str__", &to_string<FunctionMessage>)
.def_readwrite("name", &FunctionMessage::name)
.def_readwrite("arguments", &FunctionMessage::arguments);
py::class_<CodeMessage>(m, "CodeMessage")
.def("__repr__", &to_string<CodeMessage>)
.def("__str__", &to_string<CodeMessage>)
.def_readwrite("input", &CodeMessage::input);
py::class_<ToolCallMessage>(m, "ToolCallMessage")
.def("__repr__", &to_string<ToolCallMessage>)
.def("__str__", &to_string<ToolCallMessage>)
.def_readwrite("type", &ToolCallMessage::type)
.def_readwrite("function", &ToolCallMessage::function)
.def_readwrite("code", &ToolCallMessage::code);
py::class_<Image>(m, "Image", py::buffer_protocol())
.def(py::init([](py::buffer b) {
py::buffer_info info = b.request();
CHATGLM_CHECK(info.format == py::format_descriptor<uint8_t>::format())
<< "Incompatible format: expect a byte array!";
CHATGLM_CHECK(info.ndim == 3 && info.shape[2] == 3) << "Only support RGB image for now";
for (int i = 1; i < info.ndim; i++) {
CHATGLM_CHECK(info.strides[i] * info.shape[i] == info.strides[i - 1])
<< "Only support contiguous array";
}
return Image(info.shape[1], info.shape[0], info.shape[2], (uint8_t *)info.ptr);
}))
.def_buffer([](Image &self) {
return py::buffer_info(
self.pixels.data(), sizeof(uint8_t), py::format_descriptor<uint8_t>::format(), 3,
{self.height, self.width, self.channels},
{self.width * self.channels * sizeof(uint8_t), self.channels * sizeof(uint8_t), sizeof(uint8_t)});
})
.def("__repr__", &to_string<Image>)
.def("__str__", &to_string<Image>)
.def_readonly("width", &Image::width)
.def_readonly("height", &Image::height)
.def_readonly("channels", &Image::channels)
.def_readonly("pixels", &Image::pixels);
py::class_<ChatMessage>(m, "ChatMessage")
.def(py::init<std::string, std::string, std::optional<Image>, std::vector<ToolCallMessage>>(), "role"_a,
"content"_a, "image"_a = std::nullopt, "tool_calls"_a = std::vector<ToolCallMessage>{})
.def("__repr__", &to_string<ChatMessage>)
.def("__str__", &to_string<ChatMessage>)
.def_readonly_static("ROLE_SYSTEM", &ChatMessage::ROLE_SYSTEM)
.def_readonly_static("ROLE_USER", &ChatMessage::ROLE_USER)
.def_readonly_static("ROLE_ASSISTANT", &ChatMessage::ROLE_ASSISTANT)
.def_readonly_static("ROLE_OBSERVATION", &ChatMessage::ROLE_OBSERVATION)
.def_readwrite("role", &ChatMessage::role)
.def_readwrite("content", &ChatMessage::content)
.def_readwrite("image", &ChatMessage::image)
.def_readwrite("tool_calls", &ChatMessage::tool_calls);
py::class_<BaseTokenizer, PyBaseTokenizer>(m, "BaseTokenizer")
.def("encode", &BaseTokenizer::encode, "text"_a, "max_length"_a)
.def("decode", &BaseTokenizer::decode, "ids"_a, "skip_special_tokens"_a = true)
.def("apply_chat_template", &BaseTokenizer::apply_chat_template, "messages"_a, "max_length"_a)
.def("decode_message", &BaseTokenizer::decode_message, "ids"_a);
py::class_<BaseModelForCausalLM, PyBaseModelForCausalLM>(m, "BaseModelForCausalLM")
.def("generate_next_token", &BaseModelForCausalLM::generate_next_token, "input_ids"_a, "image"_a,
"gen_config"_a, "n_past"_a, "n_ctx"_a)
.def("count_tokens", &BaseModelForCausalLM::count_tokens, "input_ids"_a, "image"_a)
.def_readonly("config", &BaseModelForCausalLM::config);
// ===== ChatGLM =====
py::class_<ChatGLMTokenizer, BaseTokenizer>(m, "ChatGLMTokenizer");
py::class_<ChatGLMForCausalLM, BaseModelForCausalLM>(m, "ChatGLMForCausalLM");
// ===== ChatGLM2 =====
py::class_<ChatGLM2Tokenizer, BaseTokenizer>(m, "ChatGLM2Tokenizer");
py::class_<ChatGLM2ForCausalLM, BaseModelForCausalLM>(m, "ChatGLM2ForCausalLM");
// ===== ChatGLM3 =====
py::class_<ChatGLM3Tokenizer, BaseTokenizer>(m, "ChatGLM3Tokenizer");
// ===== ChatGLM4 =====
py::class_<ChatGLM4Tokenizer, BaseTokenizer>(m, "ChatGLM4Tokenizer");
// ===== Pipeline ====
py::class_<Pipeline>(m, "Pipeline")
.def(py::init<const std::string &, int>(), "path"_a, "max_length"_a = -1)
.def_property_readonly("model", [](const Pipeline &self) { return self.model.get(); })
.def_property_readonly("tokenizer", [](const Pipeline &self) { return self.tokenizer.get(); });
}
} // namespace chatglm