-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy path01_textmining.qmd
405 lines (287 loc) · 11.6 KB
/
01_textmining.qmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
---
title: "Sentiment Analysis"
author:
- name: John R Little
affiliations:
- name: Duke University
- department: Center for Data & Vizualization Sciences
# date: 'today'
date-modified: 'today'
date-format: long
format:
html:
embed-resources: true
footer: "[John R Little](https://JohnLittle.info) ● [Center for Data & Visualization Sciences](https://library.duke.edu/data/) ● [CC BY 4.0](https://creativecommons.org/licenses/by/4.0/)"
logo: images/Rfun_logo.png
license: CC BY
toc: true
toc_float: true
df-print: paged
---
Find this repository: https://github.com/libjohn/workshop_textmining
Much of this review comes from the site: https://juliasilge.github.io/tidytext/
The primary library package `tidytext` enables all kinds of text mining. See Also this helpful free online book: [Text Mining with R: A Tidy Approach](https://www.tidytextmining.com/) by Silge and Robinson
```{r}
library(janeaustenr)
library(tidyverse)
library(tidytext)
library(wordcloud2)
library(textdata)
```
```{r}
#| echo: false
htmltools::img(src = knitr::image_uri(here::here("images", "Rfun_logo.png")),
alt = 'Rfun',
style = 'position:absolute; bottom:15px; left:0; padding:5px; border:0px;')
htmltools::img(src = knitr::image_uri(here::here("images", "CDVS-logo_sm_Spring2020.png")),
alt = 'Rfun',
style = 'position:absolute; bottom:0; right:0; padding:5px; border:0px;')
```
## Data
We'll look at some books by [Jane Austen](https://en.wikipedia.org/wiki/Jane_Austen), an 18th century novelist. Austen explored women and marriage within the British upper class. The novelist has a unique and well earned following within literature. Her works is consistently discussed and honored. To this day, Austen's novels are the source of many adaptations, written and on-screen. Through the `janeaustenr` package we can access and mine the text of six Austen novels. We can call the collection of novels a corpra. An individual novel is a corpus.
```{r}
austen_books()
```
Austen is best know for six published works:
```{r}
austen_books() %>%
distinct(book)
```
## Data Cleaning
Text mining typically requires a lot of data cleaning. In this case, we start with the `janeaustenr` collection that has already been cleaned. Nonetheless, further data wrangling is required. First, identifying a line number for each line of text in each book.
## Identify line numbers
```{r}
original_books <- austen_books() %>%
group_by(book) %>%
mutate(line = row_number()) %>% # identify line numbers
ungroup()
original_books
```
## Tokens
To work with these data as a **tidy** dataset, we need to restructure the data through *tokenization*. In our case a token is a single word. We want **one-token-per-row**. The `unnest_tokens()` function (tidytext package) will convert a data frame with a text column into the one-token-per-row format.
**Token**\
**Tokenization**\
[defined](https://www.techopedia.com/definition/13698/tokenization)
The default tokenizing mode is "words". With the `unnest_tokens()` function, tokens can be: **words**, characters, character_shingles, **ngrams**, skip_ngrams, **sentences**, lines, paragraphs, regex, tweets, and ptb (Penn Treebank).
### Process
1. Group by **line number** (above)
2. Make each single word a token
```{r}
tidy_books <- original_books %>%
unnest_tokens(word, text)
tidy_books
```
> Now that the data is in the one-word-per-row format, we can manipulate it with tidy tools like dplyr.
## Stop Words
`tidytext::get_stopwords()`
Remove stop-words from the books.
```{r}
matchwords_books <- tidy_books %>%
anti_join(get_stopwords())
matchwords_books
```
### Join types
![](https://pbs.twimg.com/media/B6eUTTACUAAahLf.png "Dplyr Join Diagram")
### Customize your dictionaries
You can customize stop-words data frames, sentiment data frames, etc.
There are various *stop words* dictionaries. Here we add the stop word, "farfegnugen" to a custom dictionary. If Jane Austen ever used the word "farfegnugen" that would be weird, or bad. So we will take pains to not calculate the sentiment of that word - whether or not the term shows up in a sentiment dictionary. That is, we will remove the word by making it a part of a customized stop-words dictionary.
```{r}
stopwords::stopwords_getsources()
stopwords::stopwords_getlanguages("snowball")
stopwords_custom <- tribble(~word, ~lexicon,
"farfegnugen", "custom")
stopwords_custom
get_stopwords(source = "snowball")
bind_rows(get_stopwords(), stopwords_custom) # The default is "snowball"
```
### Calculate word frequency
How many Austen countable words are there if we remove *snowball* stop-words? There are `r nrow(dplyr::distinct(matchwords_books, word))` countable words.
```{r}
matchwords_books %>%
# distinct(word)
count(word, sort = TRUE)
```
## Word clouds
```{r interactive word cloud, fig.width=10}
matchwords_books %>%
count(word, sort = TRUE) %>%
head(100) %>%
wordcloud2(size = .4, shape = 'triangle-forward',
color = c("steelblue", "firebrick", "darkorchid"),
backgroundColor = "salmon")
```
### Basic word cloud
A non-interactive word cloud.
```{r basic word cloud, fig.height=8, fig.width=8}
matchwords_books %>%
count(word) %>%
with(wordcloud::wordcloud(word, n, max.words = 100))
```
## Your Turn: Exercise 1
Goal: Make a basic word cloud for the novel, *Pride and Predjudice*, `pride_prej_novel`
a. Prepare
```{r}
pride_prej_novel <- tibble(text = prideprejudice) %>%
mutate(line = row_number())
```
b. Tokenize `pride_prej_novel` with `unnest_tokens()`
```{r}
```
c. Remove stop-words
```{r}
```
d. calculate word frequency
```{r}
```
e. make a simple wordcloud
```{r}
```
## Sentiment Analysis
`get_sentiments()`
Let's see what positive words exist in the bing dictionary. Then, count the frequency of those positive words that exist in *Emma*.
```{r}
positive <- get_sentiments("bing") %>%
filter(sentiment == "positive") # get POSITIVE words
positive
tidy_books %>%
filter(book == "Emma") %>% # only the book _emma_
semi_join(positive) %>% # semi_join()
count(word, sort = TRUE)
```
### Prepare to visualize sentiment score
Match all the Austen books to the bing sentiment dictionary. Count the word frequency.
```{r}
tidy_books %>%
inner_join(get_sentiments("bing")) %>%
count(book)
```
### Calculate sentiment
> **Algorithm:** sentiment = positive - negative
Define a section of text.
> "Small sections of text may not have enough words in them to get a good estimate of sentiment while really large sections can wash out narrative structure. For these books, using 80 lines works well, but this can vary depending on individual texts... -- [Text Mining with R](https://www.tidytextmining.com/sentiment.html)
```{r echo=TRUE}
bing <- get_sentiments("bing")
janeaustensentiment <- tidy_books %>%
inner_join(bing) %>%
count(book, index = line %/% 80, sentiment) %>% # `%/%` = int division ; 80 lines / section
pivot_wider(names_from = sentiment, values_from = n, values_fill = 0) %>% # spread(sentiment, n, fill = 0)
mutate(sentiment = positive - negative) # ALGO!!!
janeaustensentiment
```
### Viz it
```{r sentiment score}
janeaustensentiment %>%
ggplot(aes(index, sentiment, )) +
geom_col(show.legend = FALSE, fill = "cadetblue") +
geom_col(data = . %>% filter(sentiment < 0), show.legend = FALSE, fill = "firebrick") +
geom_hline(yintercept = 0, color = "goldenrod") +
facet_wrap(~ book, ncol = 2, scales = "free_x")
```
### Preparation: Most common positive and negative words
```{r}
bing_word_counts <- tidy_books %>%
inner_join(bing) %>%
count(word, sentiment, sort = TRUE)
bing_word_counts
```
### Viz it too
```{r positive and negative, fig.height=7, fig.width=10}
bing_word_counts %>%
filter(n > 170) %>%
mutate(n = if_else(sentiment == "negative", - n, n)) %>%
ggplot(aes(fct_reorder(str_to_title(word), n), n, fill = str_to_title(sentiment))) +
geom_col() +
coord_flip() +
scale_fill_brewer(type = "qual") +
guides(fill = guide_legend(reverse = TRUE)) +
labs(title = "Frequency of popular positive and negative words",
subtitle = "Jane Austen novels",
y = "Compound sentiment score", x = "",
fill = "Sentiment", caption = "Source: library(janeaustenr)") +
theme(plot.title.position = "plot")
```
## Dictionaries
What other dictionaries are available? How to choose?
- [Without Dictiionaries there is no sentiment analysis](http://www.thinkingondata.com/without-dictionaries-no-sentiment-analysis/)
- [Sentiment Analysis: Analyzing Lexicon Quality and Estimation Errors](https://paulvanderlaken.com/2017/12/27/sentiment-analysis-lexicon-quality/)
- [Limits of the Bing, AFINN, and NRC Lexicons with the Tidytext Package in R](https://hoyeolkim.wordpress.com/2018/02/25/the-limits-of-the-bing-afinn-and-nrc-lexicons-with-the-tidytext-package-in-r/)
- [Case Study with Harry Potter](https://afit-r.github.io/sentiment_analysis)
```{r}
head(get_sentiments("bing"))
head(get_sentiments("loughran"))
head(get_sentiments("nrc"))
head(get_sentiments("afinn"))
get_sentiments("nrc") %>%
count(sentiment, sort = TRUE)
```
## Afinn
What words in *Emma* match the AFINN dictionary?
```{r}
emma_afinn <- tidy_books %>%
filter(book == "Emma") %>%
anti_join(get_stopwords()) %>%
inner_join(get_sentiments("afinn"))
emma_afinn
```
```{r}
emma_afinn %>%
count(word, sort = TRUE)
```
### Make Sections
Just as we calculated sentiment, above, make sections of 80 words then calculate sentiment.
```{r}
emma_afinn_sentiment <- emma_afinn %>%
mutate(word_count = 1:n(),
index = word_count %/% 80) %>%
group_by(index) %>%
summarise(sentiment = sum(value)) ## ALGO sum each Afinn score in the 80 word section
emma_afinn_sentiment
```
### Viz it
```{r emma word cloud}
emma_afinn %>%
mutate(word_count = 1:n(),
index = word_count %/% 80) %>%
filter(index == 104) %>%
count(word, sort = TRUE) %>%
with(wordcloud::wordcloud(word, n,
rot.per = .3))
emma_afinn %>%
mutate(word_count = 1:n(),
index = word_count %/% 80) %>%
filter(index == 104) %>%
count(word, sort = TRUE) %>%
wordcloud2(size = .4, shape = 'diamond',
backgroundColor = "darkseagreen")
```
```{r emma afinn}
emma_afinn_sentiment %>%
ggplot(aes(index, sentiment)) +
geom_col(aes(fill = cut_interval(sentiment, n = 5))) +
geom_hline(yintercept = 0, color = "forestgreen", linetype = "dashed") +
scale_fill_brewer(palette = "RdBu", guide = FALSE) +
theme(panel.background = element_rect(fill = "grey"),
plot.background = element_rect(fill = "grey"),
panel.grid.major = element_blank(),
panel.grid.minor = element_blank()) +
labs(title = "Afinn Sentiment Analysis of _Emma_")
```
```{r emma boxplot of afinn}
emma_afinn %>%
mutate(word_count = 1:n(),
index = as.character(word_count %/% 80)) %>%
filter(index == 10 | index == 104 | index == 105) %>%
ggplot(aes(value, index)) +
geom_boxplot() +
# geom_boxplot(notch = TRUE) +
geom_jitter() +
coord_flip() +
labs(y = "section", x = "Afinn")
```
## Resources
- [Tidytext package](https://juliasilge.github.io/tidytext/)
- Book: [Text Mining with R](https://www.tidytextmining.com/) by Silge and Robinson
- Data Wrangling with dplyr: ([video](https://juliasilge.github.io/tidytext/) \| [workshop](https://rfun.library.duke.edu/portfolio/r_flipped/))
- Data Visualization with ggplot2: ([video](https://warpwire.duke.edu/w/80YEAA/) \| [workshop](https://rfun.library.duke.edu/portfolio/ggplot_workshop/))