-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathconfig.py
103 lines (94 loc) · 3.14 KB
/
config.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
# --------------------------------------------------------
# Swin Transformer
# Copyright (c) 2021 Microsoft
# Licensed under The MIT License [see LICENSE for details]
# Written by Ze Liu
# --------------------------------------------------------'
"""
Config for Swin transformer
"""
import os
import yaml
from yacs.config import CfgNode as CN
_C = CN()
# Base config files
_C.BASE = ['']
# -----------------------------------------------------------------------------
# Data settings
# -----------------------------------------------------------------------------
_C.DATA = CN()
# Batch size for a single GPU, could be overwritten by command line argument
_C.DATA.BATCH_SIZE = 128
# Path to dataset, could be overwritten by command line argument
_C.DATA.DATA_PATH = ''
# Dataset name
_C.DATA.DATASET = 'imagenet'
# Input image size
_C.DATA.IMG_SIZE = 384
# Interpolation to resize image (random, bilinear, bicubic)
_C.DATA.INTERPOLATION = 'bicubic'
# Use zipped dataset instead of folder dataset
# could be overwritten by command line argument
_C.DATA.ZIP_MODE = False
# Cache Data in Memory, could be overwritten by command line argument
_C.DATA.CACHE_MODE = 'part'
# Pin CPU memory in DataLoader for more efficient (sometimes) transfer to GPU.
_C.DATA.PIN_MEMORY = True
# Number of data loading threads
_C.DATA.NUM_WORKERS = 8
# -----------------------------------------------------------------------------
# Model settings
# -----------------------------------------------------------------------------
_C.MODEL = CN()
# Model type
_C.MODEL.TYPE = 'swin'
# Model name
_C.MODEL.NAME = 'LAVT'
# Checkpoint to resume, could be overwritten by command line argument
_C.MODEL.RESUME = ''
# Number of classes, overwritten in data preparation
_C.MODEL.NUM_CLASSES = 1000
# Dropout rate
_C.MODEL.DROP_RATE = 0.0
# Drop path rate
_C.MODEL.DROP_PATH_RATE = 0.1
# Label Smoothing
_C.MODEL.LABEL_SMOOTHING = 0.1
# Swin Transformer parameters
_C.MODEL.SWIN = CN()
_C.MODEL.SWIN.PATCH_SIZE = 4
_C.MODEL.SWIN.IN_CHANS = 3
_C.MODEL.SWIN.EMBED_DIM = 128
_C.MODEL.SWIN.DEPTHS = [2, 2, 18, 2]
_C.MODEL.SWIN.NUM_HEADS = [4, 8, 16, 32]
_C.MODEL.SWIN.WINDOW_SIZE = 12
_C.MODEL.SWIN.MLP_RATIO = 4.
_C.MODEL.SWIN.QKV_BIAS = True
_C.MODEL.SWIN.QK_SCALE = None
_C.MODEL.SWIN.APE = False
_C.MODEL.SWIN.PATCH_NORM = True
# Path to output folder, overwritten by command line argument
_C.OUTPUT = './checkpoint'
_C.TRAIN=CN()
_C.TRAIN.USE_CHECKPOINT=False
_C.PRETRAIN=CN()
_C.PRETRAIN.PATH=''
def _update_config_from_file(config,cfg_file):
config.defrost()
with open(cfg_file, 'r') as f:
yaml_cfg = yaml.load(f, Loader=yaml.FullLoader)
for cfg in yaml_cfg.setdefault('BASE', ['']):
if cfg:
_update_config_from_file(
config, os.path.join(os.path.dirname(cfg_file), cfg)
)
print('=> merge config from {}'.format(cfg_file))
config.merge_from_file(cfg_file)
config.freeze()
def get_config(args):
"""Get a yacs CfgNode object with default values."""
# Return a clone so that the defaults will not be altered
# This is for the "local variable" use pattern
config = _C.clone()
_update_config_from_file(config,args.cfg_file)
return config