forked from VowpalWabbit/vowpal_wabbit
-
Notifications
You must be signed in to change notification settings - Fork 0
/
loss_functions.cc
292 lines (249 loc) · 7.9 KB
/
loss_functions.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
/*
Copyright (c) 2009 Yahoo! Inc. All rights reserved. The copyrights
embodied in the content of this file are licensed under the BSD
(revised) open source license
*/
#include<math.h>
#include<iostream>
#include<stdlib.h>
using namespace std;
#include "loss_functions.h"
#include "global_data.h"
class squaredloss : public loss_function {
public:
squaredloss() {
}
float getLoss(float prediction, float label) {
if (prediction <= global.sd->max_label && prediction >= global.sd->min_label)
{
float example_loss = (prediction - label) * (prediction - label);
return example_loss;
}
else if (prediction < global.sd->min_label)
if (label == global.sd->min_label)
return 0.;
else
return (label - global.sd->min_label) * (label - global.sd->min_label)
+ 2. * (label-global.sd->min_label) * (global.sd->min_label - prediction);
else
if (label == global.sd->max_label)
return 0.;
else
return (global.sd->max_label - label) * (global.sd->max_label - label)
+ 2. * (global.sd->max_label - label) * (prediction - global.sd->max_label);
}
float getUpdate(float prediction, float label,float eta_t, float norm) {
if (eta_t < 1e-6){
/* When exp(-eta_t)~= 1 we replace 1-exp(-eta_t)
* with its first order Taylor expansion around 0
* to avoid catastrophic cancellation.
*/
return (label - prediction)*eta_t/norm;
}
return (label - prediction)*(1-exp(-eta_t))/norm;
}
float getRevertingWeight(float prediction, float eta_t){
float t = 0.5*(global.sd->min_label+global.sd->max_label);
float alternative = (prediction > t) ? global.sd->min_label : global.sd->max_label;
return log((alternative-prediction)/(alternative-t))/eta_t;
}
float getSquareGrad(float prediction, float label) {
return (prediction - label) * (prediction - label);
}
float first_derivative(float prediction, float label)
{
if (prediction < global.sd->min_label)
prediction = global.sd->min_label;
else if (prediction > global.sd->max_label)
prediction = global.sd->max_label;
return 2. * (prediction-label);
}
float second_derivative(float prediction, float label)
{
if (prediction <= global.sd->max_label && prediction >= global.sd->min_label)
return 2.;
else
return 0.;
}
};
class classic_squaredloss : public loss_function {
public:
classic_squaredloss() {
}
float getLoss(float prediction, float label) {
float example_loss = (prediction - label) * (prediction - label);
return example_loss;
}
float getUpdate(float prediction, float label,float eta_t, float norm) {
return eta_t*(label - prediction)/norm;
}
float getRevertingWeight(float prediction, float eta_t){
float t = 0.5*(global.sd->min_label+global.sd->max_label);
float alternative = (prediction > t) ? global.sd->min_label : global.sd->max_label;
return (t-prediction)/((alternative-prediction)*eta_t);
}
float getSquareGrad(float prediction, float label) {
return (prediction - label) * (prediction - label);
}
float first_derivative(float prediction, float label)
{
return 2. * (prediction-label);
}
float second_derivative(float prediction, float label)
{
return 2.;
}
};
class hingeloss : public loss_function {
public:
hingeloss() {
}
float getLoss(float prediction, float label) {
float e = 1 - label*prediction;
return (e > 0) ? e : 0;
}
float getUpdate(float prediction, float label,float eta_t, float norm) {
if(label*prediction >= label*label) return 0;
float err=(label*label-label*prediction)/(label*label);
float normal= eta_t;
return label * (normal < err ? normal : err)/norm;
}
float getRevertingWeight(float prediction, float eta_t){
return fabs(prediction)/eta_t;
}
float getSquareGrad(float prediction, float label) {
return first_derivative(prediction,label);
}
float first_derivative(float prediction, float label)
{
return (label*prediction >= label*label) ? 0 : -label;
}
float second_derivative(float prediction, float label)
{
return 0.;
}
};
class logloss : public loss_function {
public:
logloss() {
}
float getLoss(float prediction, float label) {
return log(1 + exp(-label * prediction));
}
float getUpdate(float prediction, float label, float eta_t, float norm) {
float w,x;
float d = exp(label * prediction);
if(eta_t < 1e-6){
/* As with squared loss, for small eta_t we replace the update
* with its first order Taylor expansion to avoid numerical problems
*/
return label*eta_t/((1+d)*norm);
}
x = eta_t + label*prediction + d;
w = wexpmx(x);
return -(label*w+prediction)/norm;
}
inline float wexpmx(float x){
/* This piece of code is approximating W(exp(x))-x.
* W is the Lambert W function: W(z)*exp(W(z))=z.
* The absolute error of this approximation is less than 9e-5.
* Faster/better approximations can be substituted here.
*/
double w = x>=1. ? 0.86*x+0.01 : exp(0.8*x-0.65); //initial guess
double r = x>=1. ? x-log(w)-w : 0.2*x+0.65-w; //residual
double t = 1.+w;
double u = 2.*t*(t+2.*r/3.); //magic
return w*(1.+r/t*(u-r)/(u-2.*r))-x; //more magic
}
float getRevertingWeight(float prediction, float eta_t){
float z = -fabs(prediction);
return (1-z-exp(z))/eta_t;
}
float first_derivative(float prediction, float label)
{
float v = - label/(1+exp(label * prediction));
return v;
}
float getSquareGrad(float prediction, float label) {
float d = first_derivative(prediction,label);
return d*d;
}
float second_derivative(float prediction, float label)
{
float p = 1 / (1+exp(label*prediction));
return p*(1-p);
}
};
class quantileloss : public loss_function {
public:
quantileloss(double &tau_) : tau(tau_) {
}
float getLoss(float prediction, float label) {
float e = label - prediction;
if(e > 0) {
return tau * e;
} else {
return -(1 - tau) * e;
}
}
float getUpdate(float prediction, float label, float eta_t, float norm) {
float err = label - prediction;
if(err == 0) return 0;
float normal = eta_t;//base update size
if(err > 0) {
normal = tau*normal;
return tau*(normal < err ? normal : err) / norm;
} else {
normal = -(1-tau) * normal;
return ( normal < - err ? normal : err) / norm;
}
}
float getRevertingWeight(float prediction, float eta_t){
float v,t;
t = 0.5*(global.sd->min_label+global.sd->max_label);
if(prediction > t)
v = -(1-tau);
else
v = tau;
return (t - prediction)/(eta_t*v);
}
float first_derivative(float prediction, float label)
{
float e = label - prediction;
if(e == 0) return 0;
return e > 0 ? -tau : (1-tau);
}
float getSquareGrad(float prediction, float label) {
float fd = first_derivative(prediction,label);
return fd*fd;
}
float second_derivative(float prediction, float label)
{
return 0.;
}
double tau;
};
loss_function* getLossFunction(string funcName, double function_parameter) {
if(funcName.compare("squared") == 0 || funcName.compare("Huber") == 0) {
return new squaredloss();
} else if(funcName.compare("classic") == 0){
return new classic_squaredloss();
} else if(funcName.compare("hinge") == 0) {
global.binary_label = true;
return new hingeloss();
} else if(funcName.compare("logistic") == 0) {
if (set_minmax != noop_mm)
{
global.sd->min_label = -100;
global.sd->max_label = 100;
global.binary_label = true;
}
return new logloss();
} else if(funcName.compare("quantile") == 0 || funcName.compare("pinball") == 0 || funcName.compare("absolute") == 0) {
return new quantileloss(function_parameter);
} else {
cout << "Invalid loss function name: \'" << funcName << "\' Bailing!" << endl;
exit(1);
}
cout << "end getLossFunction" << endl;
}