Skip to content

Latest commit

 

History

History
246 lines (177 loc) · 8.12 KB

0700.二叉搜索树中的搜索.md

File metadata and controls

246 lines (177 loc) · 8.12 KB

欢迎大家参与本项目,贡献其他语言版本的代码,拥抱开源,让更多学习算法的小伙伴们收益!

700.二叉搜索树中的搜索

题目地址:https://leetcode-cn.com/problems/search-in-a-binary-search-tree/

给定二叉搜索树(BST)的根节点和一个值。 你需要在BST中找到节点值等于给定值的节点。 返回以该节点为根的子树。 如果节点不存在,则返回 NULL。

例如,

700.二叉搜索树中的搜索

在上述示例中,如果要找的值是 5,但因为没有节点值为 5,我们应该返回 NULL。

思路

之前我们讲了都是普通二叉树,那么接下来看看二叉搜索树。

关于二叉树,你该了解这些!中,我们已经讲过了二叉搜索树。

二叉搜索树是一个有序树:

  • 若它的左子树不空,则左子树上所有结点的值均小于它的根结点的值;
  • 若它的右子树不空,则右子树上所有结点的值均大于它的根结点的值;
  • 它的左、右子树也分别为二叉搜索树

这就决定了,二叉搜索树,递归遍历和迭代遍历和普通二叉树都不一样。

本题,其实就是在二叉搜索树中搜索一个节点。那么我们来看看应该如何遍历。

递归法

  1. 确定递归函数的参数和返回值

递归函数的参数传入的就是根节点和要搜索的数值,返回的就是以这个搜索数值所在的节点。

代码如下:

TreeNode* searchBST(TreeNode* root, int val)
  1. 确定终止条件

如果root为空,或者找到这个数值了,就返回root节点。

if (root == NULL || root->val == val) return root;
  1. 确定单层递归的逻辑

看看二叉搜索树的单层递归逻辑有何不同。

因为二叉搜索树的节点是有序的,所以可以有方向的去搜索。

如果root->val > val,搜索左子树,如果root->val < val,就搜索右子树,最后如果都没有搜索到,就返回NULL。

代码如下:

if (root->val > val) return searchBST(root->left, val); // 注意这里加了return
if (root->val < val) return searchBST(root->right, val);
return NULL;

这里可能会疑惑,在递归遍历的时候,什么时候直接return 递归函数的返回值,什么时候不用加这个 return呢。

我们在二叉树:递归函数究竟什么时候需要返回值,什么时候不要返回值?中讲了,如果要搜索一条边,递归函数就要加返回值,这里也是一样的道理。

因为搜索到目标节点了,就要立即return了,这样才是找到节点就返回(搜索某一条边),如果不加return,就是遍历整棵树了。

整体代码如下:

class Solution {
public:
    TreeNode* searchBST(TreeNode* root, int val) {
        if (root == NULL || root->val == val) return root;
        if (root->val > val) return searchBST(root->left, val);
        if (root->val < val) return searchBST(root->right, val);
        return NULL;
    }
};

迭代法

一提到二叉树遍历的迭代法,可能立刻想起使用栈来模拟深度遍历,使用队列来模拟广度遍历。

对于二叉搜索树可就不一样了,因为二叉搜索树的特殊性,也就是节点的有序性,可以不使用辅助栈或者队列就可以写出迭代法。

对于一般二叉树,递归过程中还有回溯的过程,例如走一个左方向的分支走到头了,那么要调头,在走右分支。

对于二叉搜索树,不需要回溯的过程,因为节点的有序性就帮我们确定了搜索的方向。

例如要搜索元素为3的节点,我们不需要搜索其他节点,也不需要做回溯,查找的路径已经规划好了。

中间节点如果大于3就向左走,如果小于3就向右走,如图:

二叉搜索树

所以迭代法代码如下:

class Solution {
public:
    TreeNode* searchBST(TreeNode* root, int val) {
        while (root != NULL) {
            if (root->val > val) root = root->left;
            else if (root->val < val) root = root->right;
            else return root;
        }
        return NULL;
    }
};

第一次看到了如此简单的迭代法,是不是感动的痛哭流涕,哭一会~

总结

本篇我们介绍了二叉搜索树的遍历方式,因为二叉搜索树的有序性,遍历的时候要比普通二叉树简单很多。

但是一些同学很容易忽略二叉搜索树的特性,所以写出遍历的代码就未必真的简单了。

所以针对二叉搜索树的题目,一样要利用其特性。

文中我依然给出递归和迭代两种方式,可以看出写法都非常简单,就是利用了二叉搜索树有序的特点。

其他语言版本

Java:

class Solution {
    // 递归,普通二叉树
    public TreeNode searchBST(TreeNode root, int val) {
        if (root == null || root.val == val) {
            return root;
        }
        TreeNode left = searchBST(root.left, val);
        if (left != null) {
            return left;
        }
        return searchBST(root.right, val);
    }
}

class Solution {
    // 递归,利用二叉搜索树特点,优化
    public TreeNode searchBST(TreeNode root, int val) {
        if (root == null || root.val == val) {
            return root;
        }
        if (val < root.val) {
            return searchBST(root.left, val);
        } else {
            return searchBST(root.right, val);
        }
    }
}

class Solution {
    // 迭代,普通二叉树
    public TreeNode searchBST(TreeNode root, int val) {
        if (root == null || root.val == val) {
            return root;
        }
        Stack<TreeNode> stack = new Stack<>();
        stack.push(root);
        while (!stack.isEmpty()) {
            TreeNode pop = stack.pop();
            if (pop.val == val) {
                return pop;
            }
            if (pop.right != null) {
                stack.push(pop.right);
            }
            if (pop.left != null) {
                stack.push(pop.left);
            }
        }
        return null;
    }
}

class Solution {
    // 迭代,利用二叉搜索树特点,优化,可以不需要栈
    public TreeNode searchBST(TreeNode root, int val) {
        while (root != null)
            if (val < root.val) root = root.left;
            else if (val > root.val) root = root.right;
            else return root;
        return root;
    }
}

Python:

递归法:

class Solution:
    def searchBST(self, root: TreeNode, val: int) -> TreeNode:
        if root is None:
            return None
        if val < root.val: return self.searchBST(root.left, val)
        elif val > root.val: return self.searchBST(root.right, val)
        else: return root

迭代法:

class Solution:
    def searchBST(self, root: TreeNode, val: int) -> TreeNode:
        while root is not None:
            if val < root.val: root = root.left
            elif val > root.val: root = root.right
            else: return root
        return root

Go: