-
Notifications
You must be signed in to change notification settings - Fork 0
/
test.py
256 lines (196 loc) · 7.08 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers
import keras_cv
image_size = (180, 180)
batch_size = 128
train_ds, val_ds = tf.keras.utils.image_dataset_from_directory(
"PetImages",
validation_split=0.2,
subset="both",
seed=1337,
image_size=image_size,
batch_size=batch_size,
)
"""
## Visualize the data
Here are the first 8 images in the training dataset, visualized using
the KerasCV plot_image_gallery utility.
"""
vis_ds = train_ds.take(1).unbatch()
vis_ds = vis_ds.take(8)
def get_images(image, _):
return image
vis_ds = vis_ds.map(get_images)
vis_ds = vis_ds.apply(tf.data.experimental.dense_to_ragged_batch(8))
keras_cv.visualization.plot_image_gallery(
next(iter(vis_ds.take(1))),
value_range=(0, 255),
scale=3,
rows=4,
cols=2,
)
"""
## Using image data augmentation
When you don't have a large image dataset, it's a good practice to artificially
introduce sample diversity by applying random yet realistic transformations to the
training images, such as random horizontal flipping or small random rotations. This
helps expose the model to different aspects of the training data while slowing down
overfitting. For this, we can make use of KerasCV and its wide array of preprocessing
layers.
"""
data_augmentation = keras.Sequential(
[
keras_cv.layers.RandomFlip(),
keras_cv.layers.RandAugment(
value_range=(0, 255),
augmentations_per_image=2,
magnitude=0.5,
magnitude_stddev=0.15,
),
]
)
"""
Let's visualize what the augmented samples look like, by applying `data_augmentation`
repeatedly to the first few images in the dataset:
"""
vis_ds = vis_ds.map(data_augmentation)
keras_cv.visualization.plot_image_gallery(
next(iter(vis_ds.take(1))),
value_range=(0, 255),
scale=3,
rows=4,
cols=2,
)
"""
## Standardizing the data
Our image are already in a standard size (180x180), as they are being yielded as
contiguous `float32` batches by our dataset. However, their RGB channel values are in
the `[0, 255]` range. This is not ideal for a neural network;
in general you should seek to make your input values small. Here, we will
standardize values to be in the `[0, 1]` by using a `Rescaling` layer at the start of
our model.
"""
"""
## Two options to preprocess the data
There are two ways you could be using the `data_augmentation` preprocessor:
**Option 1: Make it part of the model**, like this:
```python
inputs = keras.Input(shape=input_shape)
x = data_augmentation(inputs)
x = layers.Rescaling(1./255)(x)
... # Rest of the model
```
With this option, your data augmentation will happen *on device*, synchronously
with the rest of the model execution, meaning that it will benefit from GPU
acceleration.
Note that data augmentation is inactive at test time, so the input samples will only be
augmented during `fit()`, not when calling `evaluate()` or `predict()`.
If you're training on GPU, this may be a good option.
**Option 2: apply it to the dataset**, so as to obtain a dataset that yields batches of
augmented images, like this:
```python
augmented_train_ds = train_ds.map(
lambda x, y: (data_augmentation(x, training=True), y))
```
With this option, your data augmentation will happen **on CPU**, asynchronously, and will
be buffered before going into the model.
If you're training on CPU, this is the better option, since it makes data augmentation
asynchronous and non-blocking.
In our case, we'll go with the second option. If you're not sure
which one to pick, this second option (asynchronous preprocessing) is always a solid choice.
"""
"""
## Configure the dataset for performance
Let's apply data augmentation to our training dataset,
and let's make sure to use buffered prefetching so we can yield data from disk without
having I/O becoming blocking:
"""
# Apply `data_augmentation` to the training images.
train_ds = train_ds.map(
lambda img, label: (data_augmentation(img), label),
num_parallel_calls=tf.data.AUTOTUNE,
)
# Prefetching samples in GPU memory helps maximize GPU utilization.
train_ds = train_ds.prefetch(tf.data.AUTOTUNE)
val_ds = val_ds.prefetch(tf.data.AUTOTUNE)
"""
## Build a model
We'll build a small version of the Xception network. We haven't particularly tried to
optimize the architecture; if you want to do a systematic search for the best model
configuration, consider using
[KerasTuner](https://github.com/keras-team/keras-tuner).
Note that:
- We start the model with the `data_augmentation` preprocessor, followed by a
`Rescaling` layer.
- We include a `Dropout` layer before the final classification layer.
"""
def make_model(input_shape, num_classes):
inputs = keras.Input(shape=input_shape)
# Entry block
x = layers.Rescaling(1.0 / 255)(inputs)
x = layers.Conv2D(128, 3, strides=2, padding="same")(x)
x = layers.BatchNormalization()(x)
x = layers.Activation("relu")(x)
previous_block_activation = x # Set aside residual
for size in [256, 512, 728]:
x = layers.Activation("relu")(x)
x = layers.SeparableConv2D(size, 3, padding="same")(x)
x = layers.BatchNormalization()(x)
x = layers.Activation("relu")(x)
x = layers.SeparableConv2D(size, 3, padding="same")(x)
x = layers.BatchNormalization()(x)
x = layers.MaxPooling2D(3, strides=2, padding="same")(x)
# Project residual
residual = layers.Conv2D(size, 1, strides=2, padding="same")(
previous_block_activation
)
x = layers.add([x, residual]) # Add back residual
previous_block_activation = x # Set aside next residual
x = layers.SeparableConv2D(1024, 3, padding="same")(x)
x = layers.BatchNormalization()(x)
x = layers.Activation("relu")(x)
x = layers.GlobalAveragePooling2D()(x)
if num_classes == 2:
activation = "sigmoid"
units = 1
else:
activation = "softmax"
units = num_classes
x = layers.Dropout(0.5)(x)
outputs = layers.Dense(units, activation=activation)(x)
return keras.Model(inputs, outputs)
model = make_model(input_shape=image_size + (3,), num_classes=2)
keras.utils.plot_model(model, show_shapes=True)
"""
## Train the model
"""
epochs = 25
callbacks = [
keras.callbacks.ModelCheckpoint("save_at_{epoch}.keras"),
]
model.compile(
optimizer=keras.optimizers.Adam(1e-3),
loss="binary_crossentropy",
metrics=["accuracy"],
)
model.fit(
train_ds,
epochs=epochs,
callbacks=callbacks,
validation_data=val_ds,
)
"""
We get to >90% validation accuracy after training for 25 epochs on the full dataset
(in practice, you can train for 50+ epochs before validation performance starts degrading).
"""
"""
## Run inference on new data
Note that data augmentation and dropout are inactive at inference time.
"""
img = keras.utils.load_img("PetImages/Cat/6779.jpg", target_size=image_size)
img_array = keras.utils.img_to_array(img)
img_array = tf.expand_dims(img_array, 0) # Create batch axis
predictions = model.predict(img_array)
score = float(predictions[0])
print(f"This image is {100 * (1 - score):.2f}% cat and {100 * score:.2f}% dog.")