forked from higgsfield/RL-Adventure
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlayers.py
63 lines (49 loc) · 2.39 KB
/
layers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable
class NoisyLinear(nn.Module):
def __init__(self, in_features, out_features, use_cuda, std_init=0.4):
super(NoisyLinear, self).__init__()
self.use_cuda = use_cuda
self.in_features = in_features
self.out_features = out_features
self.std_init = std_init
self.weight_mu = nn.Parameter(torch.FloatTensor(out_features, in_features))
self.weight_sigma = nn.Parameter(torch.FloatTensor(out_features, in_features))
self.register_buffer('weight_epsilon', torch.FloatTensor(out_features, in_features))
self.bias_mu = nn.Parameter(torch.FloatTensor(out_features))
self.bias_sigma = nn.Parameter(torch.FloatTensor(out_features))
self.register_buffer('bias_epsilon', torch.FloatTensor(out_features))
self.reset_parameters()
self.reset_noise()
def forward(self, x):
if self.use_cuda:
weight_epsilon = self.weight_epsilon.cuda()
bias_epsilon = self.bias_epsilon.cuda()
else:
weight_epsilon = self.weight_epsilon
bias_epsilon = self.bias_epsilon
if self.training:
weight = self.weight_mu + self.weight_sigma.mul(Variable(weight_epsilon))
bias = self.bias_mu + self.bias_sigma.mul(Variable(bias_epsilon))
else:
weight = self.weight_mu
bias = self.bias_mu
return F.linear(x, weight, bias)
def reset_parameters(self):
mu_range = 1 / math.sqrt(self.weight_mu.size(1))
self.weight_mu.data.uniform_(-mu_range, mu_range)
self.weight_sigma.data.fill_(self.std_init / math.sqrt(self.weight_sigma.size(1)))
self.bias_mu.data.uniform_(-mu_range, mu_range)
self.bias_sigma.data.fill_(self.std_init / math.sqrt(self.bias_sigma.size(0)))
def reset_noise(self):
epsilon_in = self._scale_noise(self.in_features)
epsilon_out = self._scale_noise(self.out_features)
self.weight_epsilon.copy_(epsilon_out.ger(epsilon_in))
self.bias_epsilon.copy_(self._scale_noise(self.out_features))
def _scale_noise(self, size):
x = torch.randn(size)
x = x.sign().mul(x.abs().sqrt())
return x