-
Notifications
You must be signed in to change notification settings - Fork 7
/
model.py
485 lines (401 loc) · 17.1 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
from collections import defaultdict
import torch
import torch.nn as nn
import torch.nn.init as I
import torch.nn.utils.rnn as R
import torch.nn.functional as F
import re
import logging
import constant as C
logger = logging.getLogger()
def log_sum_exp(tensor, dim=0):
"""LogSumExp operation."""
m, _ = torch.max(tensor, dim)
m_exp = m.unsqueeze(-1).expand_as(tensor)
return m + torch.log(torch.sum(torch.exp(tensor - m_exp), dim))
def sequence_mask(lens, max_len=None):
batch_size = lens.size(0)
if max_len is None:
max_len = lens.max().item()
ranges = torch.arange(0, max_len).long()
ranges = ranges.unsqueeze(0).expand(batch_size, max_len)
if lens.data.is_cuda:
ranges = ranges.cuda()
lens_exp = lens.unsqueeze(1).expand_as(ranges)
mask = ranges < lens_exp
return mask
def load_embedding(path: str,
dimension: int,
vocab: dict = None,
skip_first_line: bool = True,
):
logger.info('Scanning embedding file: {}'.format(path))
embed_vocab = set()
lower_mapping = {} # lower case - original
digit_mapping = {} # lower case + replace digit with 0 - original
digit_pattern = re.compile('\d')
with open(path, 'r', encoding='utf-8') as r:
if skip_first_line:
r.readline()
for line in r:
try:
token = line.split(' ')[0].strip()
if token:
embed_vocab.add(token)
token_lower = token.lower()
token_digit = re.sub(digit_pattern, '0', token_lower)
if token_lower not in lower_mapping:
lower_mapping[token_lower] = token
if token_digit not in digit_mapping:
digit_mapping[token_digit] = token
except UnicodeDecodeError:
continue
token_mapping = defaultdict(list) # embed token - vocab token
for token in vocab:
token_lower = token.lower()
token_digit = re.sub(digit_pattern, '0', token_lower)
if token in embed_vocab:
token_mapping[token].append(token)
elif token_lower in lower_mapping:
token_mapping[lower_mapping[token_lower]].append(token)
elif token_digit in digit_mapping:
token_mapping[digit_mapping[token_digit]].append(token)
logger.info('Loading embeddings')
weight = [[.0] * dimension for _ in range(len(vocab))]
with open(path, 'r', encoding='utf-8') as r:
if skip_first_line:
r.readline()
for line in r:
try:
segs = line.rstrip().split(' ')
token = segs[0]
if token in token_mapping:
vec = [float(v) for v in segs[1:]]
for t in token_mapping.get(token):
weight[vocab[t]] = vec.copy()
except UnicodeDecodeError:
continue
except ValueError:
continue
embed = nn.Embedding(
len(vocab),
dimension,
padding_idx=C.PAD_INDEX,
sparse=True,
_weight=torch.FloatTensor(weight)
)
return embed
class Linear(nn.Linear):
def __init__(self,
in_features: int,
out_features: int,
bias: bool = True):
super(Linear, self).__init__(in_features, out_features, bias=bias)
I.orthogonal_(self.weight)
class Linears(nn.Module):
def __init__(self,
in_features: int,
out_features: int,
hiddens: list,
bias: bool = True,
activation: str = 'tanh'):
super(Linears, self).__init__()
assert len(hiddens) > 0
self.in_features = in_features
self.out_features = self.output_size = out_features
in_dims = [in_features] + hiddens[:-1]
self.linears = nn.ModuleList([Linear(in_dim, out_dim, bias=bias)
for in_dim, out_dim
in zip(in_dims, hiddens)])
self.output_linear = Linear(hiddens[-1], out_features, bias=bias)
self.activation = getattr(F, activation)
def forward(self, inputs):
linear_outputs = inputs
for linear in self.linears:
linear_outputs = linear(linear_outputs)
linear_outputs = self.activation(linear_outputs)
return self.output_linear(linear_outputs)
class Highway(nn.Module):
def __init__(self,
size: int,
layer_num: int = 1,
activation: str = 'relu'):
super(Highway, self).__init__()
self.size = self.output_size = size
self.layer_num = layer_num
self.activation = getattr(F, activation)
self.non_linear = nn.ModuleList([Linear(size, size)
for _ in range(layer_num)])
self.gate = nn.ModuleList([Linear(size, size)
for _ in range(layer_num)])
def forward(self, inputs):
for layer in range(self.layer_num):
gate = F.sigmoid(self.gate[layer](inputs))
non_linear = self.activation(self.non_linear[layer](inputs))
inputs = gate * non_linear + (1 - gate) * inputs
return inputs
class LSTM(nn.LSTM):
def __init__(self,
input_size: int,
hidden_size: int,
num_layers: int = 1,
bias: bool = True,
batch_first: bool = False,
dropout: float = 0,
bidirectional: bool = False,
forget_bias: float = 0
):
super(LSTM, self).__init__(input_size=input_size,
hidden_size=hidden_size,
num_layers=num_layers,
bias=bias,
batch_first=batch_first,
dropout=dropout,
bidirectional=bidirectional)
self.output_size = hidden_size * 2 if bidirectional else hidden_size
self.forget_bias = forget_bias
def initialize(self):
for n, p in self.named_parameters():
if 'weight' in n:
I.orthogonal_(p)
elif 'bias' in n:
bias_size = p.size(0)
p[bias_size // 4:bias_size // 2].fill_(self.forget_bias)
class CharCNN(nn.Module):
def __init__(self, embedding_num, embedding_dim, filters):
super(CharCNN, self).__init__()
self.output_size = sum([x[1] for x in filters])
self.embedding = nn.Embedding(embedding_num,
embedding_dim,
padding_idx=0,
sparse=True)
self.convs = nn.ModuleList([nn.Conv2d(1, x[1], (x[0], embedding_dim))
for x in filters])
def forward(self, inputs):
inputs_embed = self.embedding(inputs)
inputs_embed = inputs_embed.unsqueeze(1)
conv_outputs = [F.relu(conv(inputs_embed)).squeeze(3)
for conv in self.convs]
max_pool_outputs = [F.max_pool1d(i, i.size(2)).squeeze(2)
for i in conv_outputs]
outputs = torch.cat(max_pool_outputs, 1)
return outputs
class CRF(nn.Module):
def __init__(self, label_size):
super(CRF, self).__init__()
self.label_size = label_size
self.start = self.label_size - 2
self.end = self.label_size - 1
transition = torch.randn(self.label_size, self.label_size)
self.transition = nn.Parameter(transition)
self.initialize()
def initialize(self):
self.transition.data[:, self.end] = -100.0
self.transition.data[self.start, :] = -100.0
def pad_logits(self, logits):
# lens = lens.data
batch_size, seq_len, label_num = logits.size()
# pads = Variable(logits.data.new(batch_size, seq_len, 2).fill_(-1000.0),
# requires_grad=False)
pads = logits.new_full((batch_size, seq_len, 2), -1000.0,
requires_grad=False)
logits = torch.cat([logits, pads], dim=2)
return logits
def calc_binary_score(self, labels, lens):
batch_size, seq_len = labels.size()
# labels_ext = Variable(labels.data.new(batch_size, seq_len + 2))
labels_ext = labels.new_empty((batch_size, seq_len + 2))
labels_ext[:, 0] = self.start
labels_ext[:, 1:-1] = labels
mask = sequence_mask(lens + 1, max_len=(seq_len + 2)).long()
# pad_stop = Variable(labels.data.new(1).fill_(self.end))
pad_stop = labels.new_full((1,), self.end, requires_grad=False)
pad_stop = pad_stop.unsqueeze(-1).expand(batch_size, seq_len + 2)
labels_ext = (1 - mask) * pad_stop + mask * labels_ext
labels = labels_ext
trn = self.transition
trn_exp = trn.unsqueeze(0).expand(batch_size, *trn.size())
lbl_r = labels[:, 1:]
lbl_rexp = lbl_r.unsqueeze(-1).expand(*lbl_r.size(), trn.size(0))
trn_row = torch.gather(trn_exp, 1, lbl_rexp)
lbl_lexp = labels[:, :-1].unsqueeze(-1)
trn_scr = torch.gather(trn_row, 2, lbl_lexp)
trn_scr = trn_scr.squeeze(-1)
mask = sequence_mask(lens + 1).float()
trn_scr = trn_scr * mask
score = trn_scr
return score
def calc_unary_score(self, logits, labels, lens):
labels_exp = labels.unsqueeze(-1)
scores = torch.gather(logits, 2, labels_exp).squeeze(-1)
mask = sequence_mask(lens).float()
scores = scores * mask
return scores
def calc_gold_score(self, logits, labels, lens):
unary_score = self.calc_unary_score(logits, labels, lens).sum(
1).squeeze(-1)
binary_score = self.calc_binary_score(labels, lens).sum(1).squeeze(-1)
return unary_score + binary_score
def calc_norm_score(self, logits, lens):
batch_size, seq_len, feat_dim = logits.size()
# alpha = logits.data.new(batch_size, self.label_size).fill_(-10000.0)
alpha = logits.new_full((batch_size, self.label_size), -100.0)
alpha[:, self.start] = 0
# alpha = Variable(alpha)
lens_ = lens.clone()
logits_t = logits.transpose(1, 0)
for logit in logits_t:
logit_exp = logit.unsqueeze(-1).expand(batch_size,
*self.transition.size())
alpha_exp = alpha.unsqueeze(1).expand(batch_size,
*self.transition.size())
trans_exp = self.transition.unsqueeze(0).expand_as(alpha_exp)
mat = logit_exp + alpha_exp + trans_exp
alpha_nxt = log_sum_exp(mat, 2).squeeze(-1)
mask = (lens_ > 0).float().unsqueeze(-1).expand_as(alpha)
alpha = mask * alpha_nxt + (1 - mask) * alpha
lens_ = lens_ - 1
alpha = alpha + self.transition[self.end].unsqueeze(0).expand_as(alpha)
norm = log_sum_exp(alpha, 1).squeeze(-1)
return norm
def viterbi_decode(self, logits, lens):
"""Borrowed from pytorch tutorial
Arguments:
logits: [batch_size, seq_len, n_labels] FloatTensor
lens: [batch_size] LongTensor
"""
batch_size, seq_len, n_labels = logits.size()
# vit = logits.data.new(batch_size, self.label_size).fill_(-10000)
vit = logits.new_full((batch_size, self.label_size), -100.0)
vit[:, self.start] = 0
# vit = Variable(vit)
c_lens = lens.clone()
logits_t = logits.transpose(1, 0)
pointers = []
for logit in logits_t:
vit_exp = vit.unsqueeze(1).expand(batch_size, n_labels, n_labels)
trn_exp = self.transition.unsqueeze(0).expand_as(vit_exp)
vit_trn_sum = vit_exp + trn_exp
vt_max, vt_argmax = vit_trn_sum.max(2)
vt_max = vt_max.squeeze(-1)
vit_nxt = vt_max + logit
pointers.append(vt_argmax.squeeze(-1).unsqueeze(0))
mask = (c_lens > 0).float().unsqueeze(-1).expand_as(vit_nxt)
vit = mask * vit_nxt + (1 - mask) * vit
mask = (c_lens == 1).float().unsqueeze(-1).expand_as(vit_nxt)
vit += mask * self.transition[self.end].unsqueeze(
0).expand_as(vit_nxt)
c_lens = c_lens - 1
pointers = torch.cat(pointers)
scores, idx = vit.max(1)
# idx = idx.squeeze(-1)
paths = [idx.unsqueeze(1)]
for argmax in reversed(pointers):
idx_exp = idx.unsqueeze(-1)
idx = torch.gather(argmax, 1, idx_exp)
idx = idx.squeeze(-1)
paths.insert(0, idx.unsqueeze(1))
paths = torch.cat(paths[1:], 1)
scores = scores.squeeze(-1)
return scores, paths
class Model(nn.Module):
def __init__(self):
super(Model, self).__init__()
self.gpu = False
def cuda(self, device=None):
self.gpu = True
for module in self.children():
module.cuda(device)
return self
def cpu(self):
self.gpu = False
for module in self.children():
module.cpu()
return self
class LstmCrf(Model):
def __init__(self,
token_vocab,
label_vocab,
char_vocab,
word_embedding,
char_embedding,
crf,
lstm,
input_layer=None,
univ_fc_layer=None,
spec_fc_layer=None,
output_layer=None,
embed_dropout_prob=0,
lstm_dropout_prob=0,
use_char_embedding=True,
char_highway=None
):
super(LstmCrf, self).__init__()
self.token_vocab = token_vocab
self.label_vocab = label_vocab
self.char_vocab = char_vocab
self.idx_label = {idx: label for label, idx in label_vocab.items()}
self.embed_dropout_prob = embed_dropout_prob
self.lstm_dropout_prob = lstm_dropout_prob
self.use_char_embedding = use_char_embedding
self.word_embedding = word_embedding
self.char_embedding = char_embedding
self.feat_dim = word_embedding.embedding_dim
if use_char_embedding:
self.feat_dim += char_embedding.output_size
self.lstm = lstm
self.input_layer = input_layer
self.univ_fc_layer = univ_fc_layer
self.spec_fc_layer = spec_fc_layer
self.output_layer = output_layer
self.crf = crf
self.char_highway = char_highway
self.lstm_dropout = nn.Dropout(p=lstm_dropout_prob)
self.embed_dropout = nn.Dropout(p=embed_dropout_prob)
self.label_size = len(label_vocab)
if spec_fc_layer:
self.spec_gate = Linear(spec_fc_layer.in_features,
spec_fc_layer.out_features)
def forward_model(self, inputs, lens, chars=None, char_lens=None):
batch_size, seq_len = inputs.size()
# Word embedding
inputs_embed = self.word_embedding(inputs)
# Character embedding
if self.use_char_embedding:
chars_embed = self.char_embedding(chars)
if self.char_highway:
chars_embed = self.char_highway(chars_embed)
chars_embed = chars_embed.view(batch_size, seq_len, -1)
inputs_embed = torch.cat([inputs_embed, chars_embed], dim=2)
inputs_embed = self.embed_dropout(inputs_embed)
# LSTM layer
inputs_packed = R.pack_padded_sequence(inputs_embed, lens.tolist(),
batch_first=True)
lstm_out, _ = self.lstm(inputs_packed)
lstm_out, _ = R.pad_packed_sequence(lstm_out, batch_first=True)
lstm_out = lstm_out.contiguous().view(-1, self.lstm.output_size)
lstm_out = self.lstm_dropout(lstm_out)
# Fully-connected layer
univ_feats = self.univ_fc_layer(lstm_out)
if self.spec_fc_layer is not None:
spec_feats = self.spec_fc_layer(lstm_out)
gate = F.sigmoid(self.spec_gate(lstm_out))
outputs = gate * spec_feats + (1 - gate) * univ_feats
else:
outputs = univ_feats
outputs = outputs.view(batch_size, seq_len, self.label_size)
return outputs
def predict(self, inputs, labels, lens, chars=None, char_lens=None):
self.eval()
loglik, logits = self.loglik(inputs, labels, lens, chars, char_lens)
loss = -loglik.mean()
scores, preds = self.crf.viterbi_decode(logits, lens)
self.train()
return preds, loss
def loglik(self, inputs, labels, lens, chars=None, char_lens=None):
logits = self.forward_model(inputs, lens, chars, char_lens)
logits = self.crf.pad_logits(logits)
norm_score = self.crf.calc_norm_score(logits, lens)
gold_score = self.crf.calc_gold_score(logits, labels, lens)
loglik = gold_score - norm_score
return loglik, logits