Skip to content

This is a brief PyTorch implementation of EfficientNetV2, providing with experiments on ImageNet and CIFAR-10/100.

Notifications You must be signed in to change notification settings

lingffff/EfficientNetV2-PyTorch

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

9 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

EfficientNetV2-PyTorch

This is a brief PyTorch implementation of EfficientNetV2[paper], providing with experiments on ImageNet and CIFAR-10/100.
The official TensorFlow implementation is at google/automl/efficientnetv2.

Run

1. Train

sh prepare.sh
python train.py efficientnetv2-b0 cifar10

if using Distributed Data Parallel Training:

python train.py efficientnetv2-b0 cifar10 --ddp

2. Test

python eval.py efficientnetv2-b0 cifar10 --ckpt weights/best.pth.tar

Acknowledgement

With sincerely appreciation to google/automl/efficientnetv2 and lukemelas/EfficientNet-PyTorch!

Cites

@article{tan2021efficientnetv2,
  title={Efficientnetv2: Smaller models and faster training},
  author={Tan, Mingxing and Le, Quoc V},
  journal={arXiv preprint arXiv:2104.00298},
  year={2021}
}

About

This is a brief PyTorch implementation of EfficientNetV2, providing with experiments on ImageNet and CIFAR-10/100.

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published