Skip to content

Latest commit

 

History

History
117 lines (89 loc) · 4.31 KB

README.md

File metadata and controls

117 lines (89 loc) · 4.31 KB

CLAP-IPA

The taste of IPA: Towards open-vocabulary keyword spotting and forced alignment in any language. NAACL 2024.

We are gradually releasing the data and code. Thank you for your patience.

Usage

Install

git clone https://github.com/lingjzhu/clap-ipa
cd clap-ipa
pip install .

Inference

For CLAP-IPA

from clap.encoders import *
import torch.nn.functional as F
from transformers import DebertaV2Tokenizer, AutoProcessor

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

speech_encoder = SpeechEncoder.from_pretrained('anyspeech/clap-ipa-tiny-speech')
phone_encoder = PhoneEncoder.from_pretrained('anyspeech/clap-ipa-tiny-phone')
phone_encoder.eval().to(device)
speech_encoder.eval().to(device)

tokenizer = DebertaV2Tokenizer.from_pretrained('charsiu/IPATokenizer')
processor = AutoProcessor.from_pretrained('openai/whisper-tiny')

audio_input = processor(some_audio)
ipa_input = tokenizer(some_ipa_string)

with torch.no_grad():
   speech_embed = speech_encoder(audio_input)
   phone_embed = phone_encoder(ipa_input)

similarity = F.cosine_similarity(speech_embed,phone_embed,dim=-1)

For IPA-Aligner

from clap.encoders import *
import torch.nn.functional as F

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

speech_encoder = SpeechEncoder.from_pretrained('anyspeech/clap-ipa-tiny-speech')
phone_encoder = PhoneEncoder.from_pretrained('anyspeech/clap-ipa-tiny-phone')

phone_encoder.eval().to(device)
speech_encoder.eval().to(device)

Forced-alignment code is in evaluate/eval_boundary.py. This aligner will be incorported into charsiu in coming months.

Training

For training, you can download data from HuggingFace hub. Then sample train/val filelists are available in data/.

python train.py -c config/clap_ipa/base.yaml

Evaluation

Evaluation code is available in evaluate. Each evalaute code script has almost the same organization, so you can simply pass the .ckpt checkpoint after training to evaluate their performance. Please check the evalaution code for usage.

python evaluate_fieldwork.py --data ucla --checkpoint "last.ckpt"

Pretrained Models

Model Phone Encoder Speech encoder
CLAP-IPA-tiny anyspeech/clap-ipa-tiny-phone anyspeech/clap-ipa-tiny-speech
CLAP-IPA-base anyspeech/clap-ipa-base-phone anyspeech/clap-ipa-base-speech
CLAP-IPA-small anyspeech/clap-ipa-small-phone anyspeech/clap-ipa-small-speech
IPA-Aligner-tiny anyspeech/ipa-align-tiny-phone anyspeech/ipa-align-tiny-speech
IPA-Aligner-base anyspeech/ipa-align-base-phone anyspeech/ipa-align-base-speech
IPA-Aligner-small anyspeech/ipa-align-small-phone anyspeech/ipa-align-base-speech

IPA Pack

All datasets are distributed as wds files on huggingface hub.

After this study, we found that these datasets still contain inconsistent unicode encoding of IPA symbols.
A cleaner version will be released when we finish another round of data cleaning.

To download these datasets:

from huggingface_hub import snapshot_download

snapshot_download(repo_id="anyspeech/fleurs_ipa", repo_type="dataset", local_dir="your_own_folder",local_dir_use_symlinks=False,resume_download=False,max_workers=4)

To load webdataset files:

import webdataset as wds  # Note the typical import shorthand
dataset = (
      wds.WebDataset("data-archives/shard-00{00...24}.tar")  # 25 shards
      .decode()  # Automagically decode files
      .shuffle(size=1000)  # Shuffle on-the-fly in a buffer
      .batch(batchsize=10)  # Create batches
)

Citation

Jian Zhu, Changbing Yang, Farhan Samir, and Jahurul Islam. 2024. The taste of IPA: Towards open-vocabulary keyword 
  spotting and forced alignment in any language. In Proceedings of the 2024 Conference of the North American  
 Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers),  
 pages 750–772, Mexico City, Mexico. Association for Computational Linguistics.