-
Notifications
You must be signed in to change notification settings - Fork 34
/
Copy pathmain_webface_msk.py
273 lines (236 loc) · 11.8 KB
/
main_webface_msk.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
from __future__ import print_function
from __future__ import division
import argparse
import os
import time
import torch
import torch.utils.data
import torch.optim
import torchvision.transforms as transforms
import torch.backends.cudnn as cudnn
cudnn.benchmark = True
import _init_paths
import net_msk
import datasets.dataset_pair_msk as dset
import lfw_eval_msk
import lfw_occ_eval_msk
import layer
import utils
# Training settings
parser = argparse.ArgumentParser(description='PyTorch CosFace')
# DATA
parser.add_argument('--root_path', type=str, default='/home/lingxuesong/data/CASIA-WebFace/',
help='path to root path of images')
parser.add_argument('--lfw_path', type=str, default='/home/lingxuesong/data/lfw/lfw-112X96_occ_msk_c2_mean_mix/',
help='path to root path of images')
parser.add_argument('--database', type=str, default='WebFace')
parser.add_argument('--train_list', type=str, default=None,
help='path to training list')
parser.add_argument('--batch_size', type=int, default=256,
help='input batch size for training (default: 256)')
parser.add_argument('--is_gray', type=bool, default=False,
help='Transform input image to gray or not (default: False)')
# Network
parser.add_argument('--weight_model', type=str, default='checkpoint/vggface1/Mar02-00-34-21/CosFace_15_checkpoint.pth')
parser.add_argument('--weight_fc', type=str, default='checkpoint/webface/Mar01-09-40-04/CosFace_29_checkpoint_classifier.pth')
parser.add_argument('--resume', type=str, default='')
parser.add_argument('--resume_fc', type=str, default='')
parser.add_argument('--clean_mask_flag', type=int, default=0)
# Classifier
parser.add_argument('--num_class', type=int, default=None,
help='number of people(class)')
parser.add_argument('--classifier_type', type=str, default='MCP')
# LR policy
parser.add_argument('--epochs', type=int, default=15,
help='number of epochs to train (default: 30)')
parser.add_argument('--lr', type=float, default=0.001,
help='learning rate (default: 0.1)')
parser.add_argument('--lr_freeze', type=float, default=0.1)
parser.add_argument('--step_size', type=list, default=None,
help='lr decay step')
parser.add_argument('--momentum', type=float, default=0.9,
help='SGD momentum (default: 0.9)')
parser.add_argument('--weight_decay', type=float, default=5e-4,
metavar='W', help='weight decay (default: 0.0005)')
# Common settings
parser.add_argument('--log_interval', type=int, default=100,
help='how many batches to wait before logging training status')
parser.add_argument('--save_path', type=str, default='checkpoint/',
help='path to save checkpoint')
parser.add_argument('--no_cuda', type=bool, default=False,
help='disables CUDA training')
parser.add_argument('--workers', type=int, default=4,
help='how many workers to load data')
parser.add_argument('--gpus', type=str, default='0,1,2,3')
args = parser.parse_args()
os.environ['CUDA_VISIBLE_DEVICES'] = args.gpus
args.cuda = not args.no_cuda and torch.cuda.is_available()
device = torch.device("cuda" if args.cuda else "cpu")
if args.database is 'WebFace':
args.num_class = 10572
args.step_size = [8000, 18000] # 452722 [5 10] 0.001 begin
else:
raise ValueError("NOT SUPPORT DATABASE! ")
def main():
# --------------------------------------model----------------------------------------
model = net_msk.LResNet50E_IR(is_gray=args.is_gray)
model_eval = net_msk.LResNet50E_IR(is_gray=args.is_gray)
args.run_name = utils.get_run_name()
output_dir = os.path.join(args.save_path, args.run_name.split("_")[0])
if not os.path.exists(output_dir):
os.makedirs(output_dir)
# 512 is dimension of feature
classifier = {
'MCP': layer.MarginCosineProduct(512, args.num_class),
'AL' : layer.AngleLinear(512, args.num_class),
'L' : torch.nn.Linear(512, args.num_class, bias=False)
}[args.classifier_type]
# load pretrained weight
pretrained = torch.load(args.weight_model)
model.load_state_dict(pretrained['model_state_dict'])
model_eval.load_state_dict(pretrained['model_state_dict'])
classifier.load_state_dict(torch.load(args.weight_fc))
del pretrained
start_epoch = 1
if args.resume:
checkpoint = torch.load(args.resume)
model.load_state_dict(checkpoint['model_state_dict'])
start_epoch = checkpoint['epoch']
classifier.load_state_dict(torch.load(args.resume_fc))
print("Resume from epoch: {}".format(start_epoch))
model = torch.nn.DataParallel(model).to(device)
model_eval = model_eval.to(device)
classifier = classifier.to(device)
print(model)
#model.module.save(output_dir + '/CosFace_0_checkpoint.pth')
# ------------------------------------load image---------------------------------------
if args.is_gray:
train_transform = transforms.Compose([
transforms.Grayscale(),
transforms.ToTensor(), # range [0, 255] -> [0.0,1.0]
transforms.Normalize(mean=(0.5,), std=(0.5,))
]) # gray
else:
train_transform = transforms.Compose([
transforms.ToTensor(), # range [0, 255] -> [0.0,1.0]
transforms.Normalize(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5)) # range [0.0, 1.0] -> [-1.0,1.0]
])
train_loader = torch.utils.data.DataLoader(
dset.ImageList(root=args.root_path, fileList=args.train_list,
transform=train_transform),
batch_size=args.batch_size, shuffle=True,
num_workers=args.workers, pin_memory=True, drop_last=True)
print('length of train Database: ' + str(len(train_loader.dataset)) + ' Batches: ' + str(len(train_loader)))
print('Number of Identities: ' + str(args.num_class))
# --------------------------------params setting-----------------------------
print("Params to learn:")
params_to_update = []
params_to_freeze = []
for name, param in model.named_parameters():
if param.requires_grad == True:
if 'fc' in name: # or 'layer4' in name:
params_to_update.append(param)
print("Update \t", name)
else:
params_to_freeze.append(param)
print("Freeze \t", name)
for name, param in classifier.named_parameters():
param.requires_grad = True
params_to_update.append(param)
print("Update \t", name)
# --------------------------------loss function and optimizer-----------------------------
criterion = torch.nn.CrossEntropyLoss().to(device)
optimizer = torch.optim.SGD([
{'params': params_to_freeze, 'lr':args.lr * args.lr_freeze},
{'params': params_to_update}
],
lr=args.lr,
momentum=args.momentum,
weight_decay=args.weight_decay)
if args.resume:
optimizer.load_state_dict(checkpoint['optim_state_dict'])
# ----------------------------------------train----------------------------------------
save_ckpt(model, 0, optimizer, output_dir + '/CosFace_0_checkpoint.pth')
lfw_occ_eval_msk.eval(model_eval, args.lfw_path, output_dir + '/CosFace_0_checkpoint.pth', args.is_gray)
lfw_eval_msk.eval(model_eval,output_dir + '/CosFace_0_checkpoint.pth', args.is_gray)
for epoch in range(start_epoch, args.epochs + 1):
train(train_loader, model, classifier, criterion, optimizer, epoch)
save_ckpt(model, epoch, optimizer, output_dir + '/CosFace_' + str(epoch) + '_checkpoint.pth')
torch.save(classifier.state_dict(), output_dir + '/CosFace_' + str(epoch) + '_checkpoint_classifier.pth')
lfw_eval_msk.eval(model_eval, output_dir + '/CosFace_' + str(epoch) + '_checkpoint.pth', args.is_gray)
lfw_occ_eval_msk.eval(model_eval, args.lfw_path, output_dir + '/CosFace_' + str(epoch) + '_checkpoint.pth', args.is_gray)
print('Finished Training')
def train(train_loader, model, classifier, criterion, optimizer, epoch):
model.train()
print_with_time('Epoch {} start training'.format(epoch))
time_curr = time.time()
loss_display = 0.0
losses_clean = utils.AverageMeter()
losses_occ = utils.AverageMeter()
mask_ones = torch.ones(512, 7, 6)
for batch_idx, (data, data_occ, _, masks, target) in enumerate(train_loader, 1):
iteration = (epoch - 1) * len(train_loader) + batch_idx
adjust_learning_rate(optimizer, iteration, args.step_size)
mask1 = mask_ones.expand(data.size(0), -1, -1, -1)
data, data_occ, target = data.to(device), data_occ.to(device), target.to(device)
masks = masks.to(device)
# compute output
if args.clean_mask_flag == 1:
output = model(data, masks)
else:
mask1 = mask1.to(device)
output = model(data, mask1)
output = classifier(output, target)
loss_clean = criterion(output, target)
output_occ = model(data_occ, masks)
output_occ = classifier(output_occ, target)
loss_occ = criterion(output_occ, target)
losses_clean.update(loss_clean.item(),data.size(0))
losses_occ.update(loss_occ.item(),data.size(0))
loss = 0.5 * loss_clean + 0.5 * loss_occ
loss_display += loss.item()
# compute gradient and do SGD step
optimizer.zero_grad()
loss.backward()
optimizer.step()
if batch_idx % args.log_interval == 0:
time_used = time.time() - time_curr
loss_display /= args.log_interval
if args.classifier_type is 'MCP':
INFO = ' Freeze: {:.4f}, C_M_Flag: {} [INFO:WebMsk]'.format(args.lr_freeze, args.clean_mask_flag)
elif args.classifier_type is 'AL':
INFO = ' lambda: {:.4f}'.format(classifier.lamb)
else:
INFO = ''
print_with_time(
'Train Epoch: {} [{}/{} ({:.0f}%)]{}, Loss: {:.6f}/{:.6f}/{:.6f}, Elapsed time: {:.4f}s, LR: {:.6f}/{:.6f}({} iters)'.format(
epoch, batch_idx * len(data), len(train_loader.dataset), 100. * batch_idx / len(train_loader),
iteration, losses_clean.avg, losses_occ.avg, loss_display, time_used,
optimizer.param_groups[0]['lr'], optimizer.param_groups[1]['lr'],args.log_interval) + INFO
)
time_curr = time.time()
loss_display = 0.0
torch.cuda.empty_cache()
def print_with_time(string):
print(time.strftime("%Y-%m-%d %H:%M:%S ", time.localtime()) + string)
def adjust_learning_rate(optimizer, iteration, step_size):
"""Sets the learning rate to the initial LR decayed by 10 each step size"""
if iteration in step_size:
lr = args.lr * (0.1 ** (step_size.index(iteration) + 1))
print_with_time('Adjust learning rate to {}'.format(lr))
optimizer.param_groups[0]['lr'] = args.lr_freeze * lr
optimizer.param_groups[1]['lr'] = lr
else:
pass
def save_ckpt(model, epoch, optimizer, save_name):
"""Save checkpoint"""
if isinstance(model, torch.nn.DataParallel):
model = model.module
torch.save({
'epoch': epoch,
# 'arch': self.model.__class__.__name__,
'optim_state_dict': optimizer.state_dict(),
'model_state_dict': model.state_dict()}, save_name)
if __name__ == '__main__':
print(args)
main()