-
Notifications
You must be signed in to change notification settings - Fork 421
/
fel.c
1515 lines (1343 loc) · 50.9 KB
/
fel.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*
* Copyright (C) 2012 Henrik Nordstrom <[email protected]>
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "common.h"
#include "portable_endian.h"
#include "fel_lib.h"
#include "fel-spiflash.h"
#include "fit_image.h"
#include <assert.h>
#include <ctype.h>
#include <errno.h>
#include <stdarg.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>
#include <zlib.h>
#include <sys/stat.h>
bool verbose = false; /* If set, makes the 'fel' tool more talkative */
static uint32_t uboot_entry = 0; /* entry point (address) of U-Boot */
static uint32_t uboot_size = 0; /* size of U-Boot binary */
static bool enter_in_aarch64 = false;
/* printf-style output, but only if "verbose" flag is active */
#define pr_info(...) \
do { if (verbose) printf(__VA_ARGS__); } while (0);
/* Constants taken from ${U-BOOT}/include/image.h */
#define IH_MAGIC 0x27051956 /* Image Magic Number */
#define IH_ARCH_ARM 2 /* ARM */
#define IH_TYPE_INVALID 0 /* Invalid Image */
#define IH_TYPE_FIRMWARE 5 /* Firmware Image */
#define IH_TYPE_SCRIPT 6 /* Script file */
#define IH_TYPE_FLATDT 8 /* DTB or FIT image */
#define IH_NMLEN 32 /* Image Name Length */
/* Additional error codes, newly introduced for get_image_type() */
#define IH_TYPE_ARCH_MISMATCH -1
/*
* Legacy format image U-Boot header,
* all data in network byte order (aka natural aka bigendian).
* Taken from ${U-BOOT}/include/image.h
*/
typedef struct image_header {
uint32_t ih_magic; /* Image Header Magic Number */
uint32_t ih_hcrc; /* Image Header CRC Checksum */
uint32_t ih_time; /* Image Creation Timestamp */
uint32_t ih_size; /* Image Data Size */
uint32_t ih_load; /* Data Load Address */
uint32_t ih_ep; /* Entry Point Address */
uint32_t ih_dcrc; /* Image Data CRC Checksum */
uint8_t ih_os; /* Operating System */
uint8_t ih_arch; /* CPU architecture */
uint8_t ih_type; /* Image Type */
uint8_t ih_comp; /* Compression Type */
uint8_t ih_name[IH_NMLEN]; /* Image Name */
} image_header_t;
#define HEADER_NAME_OFFSET offsetof(image_header_t, ih_name)
#define HEADER_SIZE sizeof(image_header_t)
/*
* Utility function to determine the image type from a mkimage-compatible
* header at given buffer (address).
*
* For invalid headers (insufficient size or 'magic' mismatch) the function
* will return IH_TYPE_INVALID. Negative return values might indicate
* special error conditions, e.g. IH_TYPE_ARCH_MISMATCH signals that the
* image doesn't match the expected (ARM) architecture.
* Otherwise the function will return the "ih_type" field for valid headers.
*/
int get_image_type(const uint8_t *buf, size_t len)
{
image_header_t *hdr = (image_header_t *)buf;
if (len <= HEADER_SIZE) /* insufficient length/size */
return IH_TYPE_INVALID;
if (be32toh(hdr->ih_magic) == 0xd00dfeed)
return IH_TYPE_FLATDT;
if (be32toh(hdr->ih_magic) != IH_MAGIC) /* signature mismatch */
return IH_TYPE_INVALID;
/* For sunxi, we always expect ARM architecture here */
if (hdr->ih_arch != IH_ARCH_ARM)
return IH_TYPE_ARCH_MISMATCH;
/* assume a valid header, and return ih_type */
return hdr->ih_type;
}
void aw_fel_print_version(feldev_handle *dev)
{
struct aw_fel_version buf = dev->soc_version;
const char *soc_name = dev->soc_name;
if (soc_name[0] == '0') /* hexadecimal ID -> unknown SoC */
soc_name = "unknown";
printf("%.8s soc=%08x(%s) %08x ver=%04x %02x %02x scratchpad=%08x %08x %08x\n",
buf.signature, buf.soc_id, soc_name, buf.unknown_0a,
buf.protocol, buf.unknown_12, buf.unknown_13,
buf.scratchpad, buf.pad[0], buf.pad[1]);
}
/*
* This wrapper for the FEL write functionality safeguards against overwriting
* an already loaded U-Boot binary.
* The return value represents elapsed time in seconds (needed for execution).
*/
double aw_write_buffer(feldev_handle *dev, void *buf, uint32_t offset,
size_t len, bool progress)
{
/* safeguard against overwriting an already loaded U-Boot binary */
if (uboot_size > 0 && offset <= uboot_entry + uboot_size
&& offset + len >= uboot_entry)
pr_fatal("ERROR: Attempt to overwrite U-Boot! "
"Request 0x%08X-0x%08X overlaps 0x%08X-0x%08X.\n",
offset, (uint32_t)(offset + len),
uboot_entry, uboot_entry + uboot_size);
double start = gettime();
aw_fel_write_buffer(dev, buf, offset, len, progress);
return gettime() - start;
}
void hexdump(void *data, uint32_t offset, size_t size)
{
size_t j;
unsigned char *buf = data;
for (j = 0; j < size; j+=16) {
size_t i;
printf("%08zx: ", offset + j);
for (i = 0; i < 16; i++) {
if (j + i < size)
printf("%02x ", buf[j+i]);
else
printf("__ ");
}
putchar(' ');
for (i = 0; i < 16; i++) {
if (j + i >= size)
putchar('.');
else
putchar(isprint(buf[j+i]) ? buf[j+i] : '.');
}
putchar('\n');
}
}
unsigned int file_size(const char *filename)
{
struct stat st;
if (stat(filename, &st) != 0)
pr_fatal("stat() error on file \"%s\": %s\n", filename,
strerror(errno));
if (!S_ISREG(st.st_mode))
pr_fatal("error: \"%s\" is not a regular file\n", filename);
return st.st_size;
}
int save_file(const char *name, void *data, size_t size)
{
FILE *out = fopen(name, "wb");
int rc;
if (!out) {
perror("Failed to open output file");
exit(1);
}
rc = fwrite(data, size, 1, out);
fclose(out);
return rc;
}
void *load_file(const char *name, size_t *size)
{
size_t offset = 0, bufsize = 8192;
char *buf = malloc(bufsize);
FILE *in;
if (strcmp(name, "-") == 0)
in = stdin;
else
in = fopen(name, "rb");
if (!in) {
perror("Failed to open input file");
exit(1);
}
while (true) {
size_t len = bufsize - offset;
size_t n = fread(buf+offset, 1, len, in);
offset += n;
if (n < len)
break;
bufsize *= 2;
buf = realloc(buf, bufsize);
if (!buf) {
perror("Failed to resize load_file() buffer");
exit(1);
}
}
if (size)
*size = offset;
if (in != stdin)
fclose(in);
return buf;
}
void aw_fel_hexdump(feldev_handle *dev, uint32_t offset, size_t size)
{
if (size > 0) {
unsigned char buf[size];
aw_fel_read(dev, offset, buf, size);
hexdump(buf, offset, size);
}
}
void aw_fel_dump(feldev_handle *dev, uint32_t offset, size_t size)
{
if (size > 0) {
unsigned char buf[size];
aw_fel_read(dev, offset, buf, size);
fwrite(buf, size, 1, stdout);
}
}
void aw_fel_fill(feldev_handle *dev, uint32_t offset, size_t size, unsigned char value)
{
if (size > 0) {
unsigned char buf[size];
memset(buf, value, size);
aw_write_buffer(dev, buf, offset, size, false);
}
}
/*
* Upload a function (implemented in native ARM code) to the device and
* prepare for executing it. Use a subset of 32-bit ARM AAPCS calling
* conventions: all arguments are integer 32-bit values, and an optional
* return value is a 32-bit integer too. The function code needs to be
* compiled in the ARM mode (Thumb2 is not supported), it also must be
* a position independent leaf function (have no calls to anything else)
* and have no references to any global variables.
*
* 'stack_size' - the required stack size for the function (can be
* calculated using the '-fstack-usage' GCC option)
* 'arm_code' - a pointer to the memory buffer with the function code
* 'arm_code_size' - the size of the function code
* 'num_args' - the number of 32-bit function arguments
* 'args' - an array with the function argument values
*
* Note: once uploaded, the function can be executed multiple times with
* exactly the same arguments. If some internal state needs to be
* updated between function calls, then it's best to pass a pointer
* to some state structure located elsewhere in SRAM as one of the
* function arguments.
*/
bool aw_fel_remotefunc_prepare(feldev_handle *dev,
size_t stack_size,
void *arm_code,
size_t arm_code_size,
size_t num_args,
uint32_t *args)
{
size_t idx, i;
size_t tmp_buf_size;
soc_info_t *soc_info = dev->soc_info;
uint32_t *tmp_buf;
uint32_t new_sp, num_args_on_stack = (num_args <= 4 ? 0 : num_args - 4);
uint32_t entry_code[] = {
htole32(0xe58fe040), /* 0: str lr, [pc, #64] */
htole32(0xe58fd040), /* 4: str sp, [pc, #64] */
htole32(0xe59fd040), /* 8: ldr sp, [pc, #64] */
htole32(0xe28fc040), /* c: add ip, pc, #64 */
htole32(0xe1a0200d), /* 10: mov r2, sp */
htole32(0xe49c0004), /* 14: ldr r0, [ip], #4 */
htole32(0xe3500000), /* 18: cmp r0, #0 */
htole32(0x0a000003), /* 1c: beq 30 <entry+0x30> */
htole32(0xe49c1004), /* 20: ldr r1, [ip], #4 */
htole32(0xe4821004), /* 24: str r1, [r2], #4 */
htole32(0xe2500001), /* 28: subs r0, r0, #1 */
htole32(0x1afffffb), /* 2c: bne 20 <entry+0x20> */
htole32(0xe8bc000f), /* 30: ldm ip!, {r0, r1, r2, r3} */
htole32(0xe12fff3c), /* 34: blx ip */
htole32(0xe59fe008), /* 38: ldr lr, [pc, #8] */
htole32(0xe59fd008), /* 3c: ldr sp, [pc, #8] */
htole32(0xe58f0000), /* 40: str r0, [pc] */
htole32(0xe12fff1e), /* 44: bx lr */
htole32(0x00000000), /* 48: .word 0x00000000 */
htole32(0x00000000), /* 4c: .word 0x00000000 */
};
if (!soc_info)
return false;
/* Calculate the stack location */
new_sp = soc_info->scratch_addr +
sizeof(entry_code) +
2 * 4 +
num_args_on_stack * 4 +
4 * 4 +
arm_code_size +
stack_size;
new_sp = (new_sp + 7) & ~7;
tmp_buf_size = new_sp - soc_info->scratch_addr;
tmp_buf = calloc(tmp_buf_size, 1);
memcpy(tmp_buf, entry_code, sizeof(entry_code));
idx = sizeof(entry_code) / 4;
tmp_buf[idx++] = htole32(new_sp);
tmp_buf[idx++] = htole32(num_args_on_stack);
for (i = num_args - num_args_on_stack; i < num_args; i++)
tmp_buf[idx++] = htole32(args[i]);
for (i = 0; i < 4; i++)
tmp_buf[idx++] = (i < num_args ? htole32(args[i]) : 0);
memcpy(tmp_buf + idx, arm_code, arm_code_size);
aw_fel_write(dev, tmp_buf, soc_info->scratch_addr, tmp_buf_size);
free(tmp_buf);
return true;
}
/*
* Execute the previously uploaded function. The 'result' pointer allows to
* retrieve the return value.
*/
bool aw_fel_remotefunc_execute(feldev_handle *dev, uint32_t *result)
{
soc_info_t *soc_info = dev->soc_info;
if (!soc_info)
return false;
aw_fel_execute(dev, soc_info->scratch_addr);
if (result) {
aw_fel_read(dev, soc_info->scratch_addr + 0x48, result, sizeof(uint32_t));
*result = le32toh(*result);
}
return true;
}
static uint32_t fel_to_spl_thunk[] = {
#include "thunks/fel-to-spl-thunk.h"
};
#define DRAM_BASE 0x40000000
#define DRAM_SIZE 0x80000000
uint32_t aw_read_arm_cp_reg(feldev_handle *dev, soc_info_t *soc_info,
uint32_t coproc, uint32_t opc1, uint32_t crn,
uint32_t crm, uint32_t opc2)
{
uint32_t val = 0;
uint32_t opcode = 0xEE000000 | (1 << 20) | (1 << 4)
| ((opc1 & 0x7) << 21) | ((crn & 0xF) << 16)
| ((coproc & 0xF) << 8) | ((opc2 & 0x7) << 5)
| (crm & 0xF);
uint32_t arm_code[] = {
htole32(opcode), /* mrc coproc, opc1, r0, crn, crm, opc2 */
htole32(0xe58f0000), /* str r0, [pc] */
htole32(0xe12fff1e), /* bx lr */
};
aw_fel_write(dev, arm_code, soc_info->scratch_addr, sizeof(arm_code));
aw_fel_execute(dev, soc_info->scratch_addr);
aw_fel_read(dev, soc_info->scratch_addr + 12, &val, sizeof(val));
return le32toh(val);
}
void aw_write_arm_cp_reg(feldev_handle *dev, soc_info_t *soc_info,
uint32_t coproc, uint32_t opc1, uint32_t crn,
uint32_t crm, uint32_t opc2, uint32_t val)
{
uint32_t opcode = 0xEE000000 | (0 << 20) | (1 << 4)
| ((opc1 & 0x7) << 21) | ((crn & 0xF) << 16)
| ((coproc & 0xF) << 8) | ((opc2 & 7) << 5)
| (crm & 0xF);
uint32_t arm_code[] = {
htole32(0xe59f000c), /* ldr r0, [pc, #12] */
htole32(opcode), /* mcr coproc, opc1, r0, crn, crm, opc2 */
htole32(0xf57ff04f), /* dsb sy */
htole32(0xf57ff06f), /* isb sy */
htole32(0xe12fff1e), /* bx lr */
htole32(val)
};
aw_fel_write(dev, arm_code, soc_info->scratch_addr, sizeof(arm_code));
aw_fel_execute(dev, soc_info->scratch_addr);
}
/* "readl" of a single value */
uint32_t fel_readl(feldev_handle *dev, uint32_t addr)
{
uint32_t val;
fel_readl_n(dev, addr, &val, 1);
return val;
}
/* "writel" of a single value */
void fel_writel(feldev_handle *dev, uint32_t addr, uint32_t val)
{
fel_writel_n(dev, addr, &val, 1);
}
void aw_fel_print_sid(feldev_handle *dev, bool force_workaround)
{
uint32_t key[4];
soc_info_t *soc_info = dev->soc_info;
if (!soc_info->sid_base) {
printf("SID registers for your SoC (%s) are unknown or inaccessible.\n",
dev->soc_name);
return;
}
if (soc_info->sid_fix || force_workaround) {
pr_info("Read SID key via registers, base = 0x%08X\n",
soc_info->sid_base);
} else {
pr_info("SID key (e-fuses) at 0x%08X\n",
soc_info->sid_base + soc_info->sid_offset);
}
fel_read_sid(dev, key, 0, sizeof(key), force_workaround);
/* output SID in "xxxxxxxx:xxxxxxxx:xxxxxxxx:xxxxxxxx" format */
for (unsigned i = 0; i <= 3; i++)
printf("%08x%c", key[i], i < 3 ? ':' : '\n');
}
void aw_fel_dump_sid(feldev_handle *dev)
{
uint32_t buffer[2048 / sizeof(uint32_t)]; /* total SID size is 2K */
soc_info_t *soc_info = dev->soc_info;
if (!soc_info->sid_base || !soc_info->sid_sections) {
printf("SID memory maps for your SoC (%s) are unknown.\n",
dev->soc_name);
return;
}
for (const sid_section *s = soc_info->sid_sections; s->name; s++) {
uint32_t count = s->size_bits / 32;
if (fel_read_sid(dev, buffer, s->offset, count * 4, false)) {
fprintf(stderr, "Read sid:%s failed\n", s->name);
return;
}
printf("%-15s", s->name);
for (uint32_t i = 0; i < count; i++) {
if (i > 0 && ((i % 8) == 0))
printf("\n%-15s", "");
printf(" %08x", buffer[i]);
}
putchar('\n');
}
}
void aw_enable_l2_cache(feldev_handle *dev, soc_info_t *soc_info)
{
uint32_t arm_code[] = {
htole32(0xee112f30), /* mrc 15, 0, r2, cr1, cr0, {1} */
htole32(0xe3822002), /* orr r2, r2, #2 */
htole32(0xee012f30), /* mcr 15, 0, r2, cr1, cr0, {1} */
htole32(0xe12fff1e), /* bx lr */
};
aw_fel_write(dev, arm_code, soc_info->scratch_addr, sizeof(arm_code));
aw_fel_execute(dev, soc_info->scratch_addr);
}
void aw_get_stackinfo(feldev_handle *dev, soc_info_t *soc_info,
uint32_t *sp_irq, uint32_t *sp)
{
uint32_t results[2] = { 0 };
#if 0
/* Does not work on Cortex-A8 (needs Virtualization Extensions) */
uint32_t arm_code[] = {
htole32(0xe1010300), /* mrs r0, SP_irq */
htole32(0xe58f0004), /* str r0, [pc, #4] */
htole32(0xe58fd004), /* str sp, [pc, #4] */
htole32(0xe12fff1e), /* bx lr */
};
aw_fel_write(dev, arm_code, soc_info->scratch_addr, sizeof(arm_code));
aw_fel_execute(dev, soc_info->scratch_addr);
aw_fel_read(dev, soc_info->scratch_addr + 0x10, results, 8);
#else
/* Works everywhere */
uint32_t arm_code[] = {
htole32(0xe10f0000), /* mrs r0, CPSR */
htole32(0xe3c0101f), /* bic r1, r0, #31 */
htole32(0xe3811012), /* orr r1, r1, #18 */
htole32(0xe121f001), /* msr CPSR_c, r1 */
htole32(0xe1a0100d), /* mov r1, sp */
htole32(0xe121f000), /* msr CPSR_c, r0 */
htole32(0xe58f1004), /* str r1, [pc, #4] */
htole32(0xe58fd004), /* str sp, [pc, #4] */
htole32(0xe12fff1e), /* bx lr */
};
aw_fel_write(dev, arm_code, soc_info->scratch_addr, sizeof(arm_code));
aw_fel_execute(dev, soc_info->scratch_addr);
aw_fel_read(dev, soc_info->scratch_addr + 0x24, results, 8);
#endif
*sp_irq = le32toh(results[0]);
*sp = le32toh(results[1]);
}
uint32_t aw_get_ttbr0(feldev_handle *dev, soc_info_t *soc_info)
{
return aw_read_arm_cp_reg(dev, soc_info, 15, 0, 2, 0, 0);
}
uint32_t aw_get_ttbcr(feldev_handle *dev, soc_info_t *soc_info)
{
return aw_read_arm_cp_reg(dev, soc_info, 15, 0, 2, 0, 2);
}
uint32_t aw_get_dacr(feldev_handle *dev, soc_info_t *soc_info)
{
return aw_read_arm_cp_reg(dev, soc_info, 15, 0, 3, 0, 0);
}
uint32_t aw_get_sctlr(feldev_handle *dev, soc_info_t *soc_info)
{
return aw_read_arm_cp_reg(dev, soc_info, 15, 0, 1, 0, 0);
}
void aw_set_ttbr0(feldev_handle *dev, soc_info_t *soc_info,
uint32_t ttbr0)
{
return aw_write_arm_cp_reg(dev, soc_info, 15, 0, 2, 0, 0, ttbr0);
}
void aw_set_ttbcr(feldev_handle *dev, soc_info_t *soc_info,
uint32_t ttbcr)
{
return aw_write_arm_cp_reg(dev, soc_info, 15, 0, 2, 0, 2, ttbcr);
}
void aw_set_dacr(feldev_handle *dev, soc_info_t *soc_info,
uint32_t dacr)
{
aw_write_arm_cp_reg(dev, soc_info, 15, 0, 3, 0, 0, dacr);
}
void aw_set_sctlr(feldev_handle *dev, soc_info_t *soc_info,
uint32_t sctlr)
{
aw_write_arm_cp_reg(dev, soc_info, 15, 0, 1, 0, 0, sctlr);
}
/*
* Issue a "smc #0" instruction. This brings a SoC booted in "secure boot"
* state from the default non-secure FEL into secure FEL.
* This crashes on devices using "non-secure boot", as the BROM does not
* provide a handler address in MVBAR. So we have a runtime check.
*/
void aw_apply_smc_workaround(feldev_handle *dev)
{
soc_info_t *soc_info = dev->soc_info;
uint32_t val;
uint32_t arm_code[] = {
htole32(0xe1600070), /* smc #0 */
htole32(0xe12fff1e), /* bx lr */
};
/* Return if the SoC does not need this workaround */
if (!soc_info->needs_smc_workaround_if_zero_word_at_addr)
return;
/* This has less overhead than fel_readl_n() and may be good enough */
aw_fel_read(dev, soc_info->needs_smc_workaround_if_zero_word_at_addr,
&val, sizeof(val));
/* Return if the workaround is not needed or has been already applied */
if (val != 0)
return;
pr_info("Applying SMC workaround... ");
aw_fel_write(dev, arm_code, soc_info->scratch_addr, sizeof(arm_code));
aw_fel_execute(dev, soc_info->scratch_addr);
pr_info(" done.\n");
}
/*
* Reconstruct the same MMU translation table as used by the A20 BROM.
* We are basically reverting the changes, introduced in newer SoC
* variants. This works fine for the SoC variants with the memory
* layout similar to A20 (the SRAM is in the first megabyte of the
* address space and the BROM is in the last megabyte of the address
* space).
*/
uint32_t *aw_generate_mmu_translation_table(void)
{
uint32_t *tt = malloc(4096 * sizeof(uint32_t));
uint32_t i;
/*
* Direct mapping using 1MB sections with TEXCB=00000 (Strongly
* ordered) for all memory except the first and the last sections,
* which have TEXCB=00100 (Normal). Domain bits are set to 1111
* and AP bits are set to 11, but this is mostly irrelevant.
*/
for (i = 0; i < 4096; i++)
tt[i] = 0x00000DE2 | (i << 20);
tt[0x000] |= 0x1000;
tt[0xFFF] |= 0x1000;
return tt;
}
uint32_t *aw_backup_and_disable_mmu(feldev_handle *dev,
soc_info_t *soc_info)
{
uint32_t *tt = NULL;
uint32_t sctlr, ttbr0, ttbcr, dacr;
uint32_t i;
uint32_t arm_code[] = {
/* Disable I-cache, MMU and branch prediction */
htole32(0xee110f10), /* mrc 15, 0, r0, cr1, cr0, {0} */
htole32(0xe3c00001), /* bic r0, r0, #1 */
htole32(0xe3c00b06), /* bic r0, r0, #0x1800 */
htole32(0xee010f10), /* mcr 15, 0, r0, cr1, cr0, {0} */
/* Return back to FEL */
htole32(0xe12fff1e), /* bx lr */
};
/*
* Below are some checks for the register values, which are known
* to be initialized in this particular way by the existing BROM
* implementations. We don't strictly need them to exactly match,
* but still have these safety guards in place in order to detect
* and review any potential configuration changes in future SoC
* variants (if one of these checks fails, then it is not a serious
* problem but more likely just an indication that one of these
* checks needs to be relaxed).
*/
/*
* Basically, ignore M/Z/I/V/UNK bits and expect no TEX remap.
* Bits [23:22] are Read-As-One on ARMv7, but Should-Be-Zero
* on ARMv5, so ignore them.
* We need the RES1 bits[18,16,4,3] and CP15BEN[5].
*/
sctlr = aw_get_sctlr(dev, soc_info);
if ((sctlr & ~((0x3 << 22) | (0x7 << 11) | (1 << 6) | 1)) != 0x00050038)
pr_fatal("Unexpected SCTLR (%08X)\n", sctlr);
if (!(sctlr & 1)) {
pr_info("MMU is not enabled by BROM\n");
return NULL;
}
dacr = aw_get_dacr(dev, soc_info);
if (dacr != 0x55555555)
pr_fatal("Unexpected DACR (%08X)\n", dacr);
ttbcr = aw_get_ttbcr(dev, soc_info);
if (ttbcr != 0x00000000)
pr_fatal("Unexpected TTBCR (%08X)\n", ttbcr);
ttbr0 = aw_get_ttbr0(dev, soc_info);
if (ttbr0 & 0x3FFF)
pr_fatal("Unexpected TTBR0 (%08X)\n", ttbr0);
tt = malloc(16 * 1024);
pr_info("Reading the MMU translation table from 0x%08X\n", ttbr0);
aw_fel_read(dev, ttbr0, tt, 16 * 1024);
for (i = 0; i < 4096; i++)
tt[i] = le32toh(tt[i]);
/* Basic sanity checks to be sure that this is a valid table */
for (i = 0; i < 4096; i++) {
if (((tt[i] >> 1) & 1) != 1 || ((tt[i] >> 18) & 1) != 0)
pr_fatal("MMU: not a section descriptor\n");
if ((tt[i] >> 20) != i)
pr_fatal("MMU: not a direct mapping\n");
}
pr_info("Disabling I-cache, MMU and branch prediction...");
aw_fel_write(dev, arm_code, soc_info->scratch_addr, sizeof(arm_code));
aw_fel_execute(dev, soc_info->scratch_addr);
pr_info(" done.\n");
return tt;
}
void aw_restore_and_enable_mmu(feldev_handle *dev,
soc_info_t *soc_info,
uint32_t *tt)
{
uint32_t i;
uint32_t ttbr0 = aw_get_ttbr0(dev, soc_info);
uint32_t arm_code[] = {
/* Invalidate I-cache, TLB and BTB */
htole32(0xe3a00000), /* mov r0, #0 */
htole32(0xee080f17), /* mcr 15, 0, r0, cr8, cr7, {0} */
htole32(0xee070f15), /* mcr 15, 0, r0, cr7, cr5, {0} */
htole32(0xee070fd5), /* mcr 15, 0, r0, cr7, cr5, {6} */
htole32(0xf57ff04f), /* dsb sy */
htole32(0xf57ff06f), /* isb sy */
/* Enable I-cache, MMU and branch prediction */
htole32(0xee110f10), /* mrc 15, 0, r0, cr1, cr0, {0} */
htole32(0xe3800001), /* orr r0, r0, #1 */
htole32(0xe3800b06), /* orr r0, r0, #0x1800 */
htole32(0xee010f10), /* mcr 15, 0, r0, cr1, cr0, {0} */
/* Return back to FEL */
htole32(0xe12fff1e), /* bx lr */
};
pr_info("Setting write-combine mapping for DRAM.\n");
for (i = (DRAM_BASE >> 20); i < ((DRAM_BASE + DRAM_SIZE) >> 20); i++) {
/* Clear TEXCB bits */
tt[i] &= ~((7 << 12) | (1 << 3) | (1 << 2));
/* Set TEXCB to 00100 (Normal uncached mapping) */
tt[i] |= (1 << 12);
}
pr_info("Setting cached mapping for BROM.\n");
/* Clear TEXCB bits first */
tt[0xFFF] &= ~((7 << 12) | (1 << 3) | (1 << 2));
/* Set TEXCB to 00111 (Normal write-back cached mapping) */
tt[0xFFF] |= (1 << 12) | /* TEX */
(1 << 3) | /* C */
(1 << 2); /* B */
pr_info("Writing back the MMU translation table.\n");
for (i = 0; i < 4096; i++)
tt[i] = htole32(tt[i]);
aw_fel_write(dev, tt, ttbr0, 16 * 1024);
pr_info("Enabling I-cache, MMU and branch prediction...");
aw_fel_write(dev, arm_code, soc_info->scratch_addr, sizeof(arm_code));
aw_fel_execute(dev, soc_info->scratch_addr);
pr_info(" done.\n");
free(tt);
}
/* Minimum offset of the main U-Boot image within u-boot-sunxi-with-spl.bin. */
#define SPL_MIN_OFFSET 0x8000
uint32_t aw_fel_write_and_execute_spl(feldev_handle *dev, uint8_t *buf, size_t len)
{
soc_info_t *soc_info = dev->soc_info;
sram_swap_buffers *swap_buffers;
char header_signature[9] = { 0 };
size_t i, thunk_size;
uint32_t *thunk_buf;
uint32_t sp, sp_irq;
uint32_t spl_checksum, spl_len, spl_len_limit;
uint32_t *buf32 = (uint32_t *)buf;
uint32_t cur_addr = soc_info->spl_addr;
uint32_t *tt = NULL;
if (!soc_info || !soc_info->swap_buffers)
pr_fatal("SPL: Unsupported SoC type\n");
if (len < 32 || memcmp(buf + 4, "eGON.BT0", 8) != 0)
pr_fatal("SPL: eGON header is not found\n");
spl_checksum = 2 * le32toh(buf32[3]) - 0x5F0A6C39;
spl_len = le32toh(buf32[4]);
if (spl_len > len || (spl_len % 4) != 0)
pr_fatal("SPL: bad length in the eGON header\n");
len = spl_len;
for (i = 0; i < len / 4; i++)
spl_checksum -= le32toh(buf32[i]);
if (spl_checksum != 0)
pr_fatal("SPL: checksum check failed\n");
if (soc_info->needs_l2en) {
pr_info("Enabling the L2 cache\n");
aw_enable_l2_cache(dev, soc_info);
}
aw_get_stackinfo(dev, soc_info, &sp_irq, &sp);
pr_info("Stack pointers: sp_irq=0x%08X, sp=0x%08X\n", sp_irq, sp);
tt = aw_backup_and_disable_mmu(dev, soc_info);
if (!tt && soc_info->mmu_tt_addr) {
if (soc_info->mmu_tt_addr & 0x3FFF)
pr_fatal("SPL: 'mmu_tt_addr' must be 16K aligned\n");
pr_info("Generating the new MMU translation table at 0x%08X\n",
soc_info->mmu_tt_addr);
/*
* These settings are used by the BROM in A10/A13/A20 and
* we replicate them here when enabling the MMU. The DACR
* value 0x55555555 means that accesses are checked against
* the permission bits in the translation tables for all
* domains. The TTBCR value 0x00000000 means that the short
* descriptor translation table format is used, TTBR0 is used
* for all the possible virtual addresses (N=0) and that the
* translation table must be aligned at a 16K boundary.
*/
aw_set_dacr(dev, soc_info, 0x55555555);
aw_set_ttbcr(dev, soc_info, 0x00000000);
aw_set_ttbr0(dev, soc_info, soc_info->mmu_tt_addr);
tt = aw_generate_mmu_translation_table();
}
spl_len_limit = soc_info->sram_size;
swap_buffers = soc_info->swap_buffers;
for (i = 0; swap_buffers[i].size; i++) {
if ((swap_buffers[i].buf2 >= soc_info->spl_addr) &&
(swap_buffers[i].buf2 < soc_info->spl_addr + spl_len_limit))
spl_len_limit = swap_buffers[i].buf2 - soc_info->spl_addr;
if (len > 0 && cur_addr < swap_buffers[i].buf1) {
uint32_t tmp = swap_buffers[i].buf1 - cur_addr;
if (tmp > len)
tmp = len;
aw_fel_write(dev, buf, cur_addr, tmp);
cur_addr += tmp;
buf += tmp;
len -= tmp;
}
if (len > 0 && cur_addr == swap_buffers[i].buf1) {
uint32_t tmp = swap_buffers[i].size;
if (tmp > len)
tmp = len;
aw_fel_write(dev, buf, swap_buffers[i].buf2, tmp);
cur_addr += tmp;
buf += tmp;
len -= tmp;
}
}
/* Clarify the SPL size limitations, and bail out if they are not met */
if (soc_info->thunk_addr - soc_info->spl_addr < spl_len_limit)
spl_len_limit = soc_info->thunk_addr - soc_info->spl_addr;
if (spl_len > spl_len_limit)
pr_fatal("SPL: too large (need %u, have %u)\n",
spl_len, spl_len_limit);
/* Write the remaining part of the SPL */
if (len > 0)
aw_fel_write(dev, buf, cur_addr, len);
thunk_size = sizeof(fel_to_spl_thunk) + sizeof(soc_info->spl_addr) +
(i + 1) * sizeof(*swap_buffers);
if (thunk_size > soc_info->thunk_size)
pr_fatal("SPL: bad thunk size (need %d, have %d)\n",
(int)sizeof(fel_to_spl_thunk), soc_info->thunk_size);
thunk_buf = malloc(thunk_size);
memcpy(thunk_buf, fel_to_spl_thunk, sizeof(fel_to_spl_thunk));
memcpy(thunk_buf + sizeof(fel_to_spl_thunk) / sizeof(uint32_t),
&soc_info->spl_addr, sizeof(soc_info->spl_addr));
memcpy(thunk_buf + sizeof(fel_to_spl_thunk) / sizeof(uint32_t) + 1,
swap_buffers, (i + 1) * sizeof(*swap_buffers));
for (i = 0; i < thunk_size / sizeof(uint32_t); i++)
thunk_buf[i] = htole32(thunk_buf[i]);
pr_info("=> Executing the SPL...");
aw_fel_write(dev, thunk_buf, soc_info->thunk_addr, thunk_size);
aw_fel_execute(dev, soc_info->thunk_addr);
pr_info(" done.\n");
free(thunk_buf);
/* TODO: Try to find and fix the bug, which needs this workaround */
struct timespec req = { .tv_nsec = 250000000 }; /* 250ms */
nanosleep(&req, NULL);
/* Read back the result and check if everything was fine */
aw_fel_read(dev, soc_info->spl_addr + 4, header_signature, 8);
if (strcmp(header_signature, "eGON.FEL") != 0)
pr_fatal("SPL: failure code '%s'\n", header_signature);
/* re-enable the MMU if it was enabled by BROM */
if (tt != NULL)
aw_restore_and_enable_mmu(dev, soc_info, tt);
return spl_len;
}
/*
* This function tests a given buffer address and length for a valid U-Boot
* image. Upon success, the image data gets transferred to the default memory
* address stored within the image header; and the function preserves the
* U-Boot entry point (offset) and size values.
*/
static void aw_fel_write_uboot_image(feldev_handle *dev, uint8_t *buf,
size_t len, const char *dt_name)
{
if (len <= HEADER_SIZE)
return; /* Insufficient size (no actual data), just bail out */
image_header_t hdr = *(image_header_t *)buf;
/* Check for a valid mkimage header */
int image_type = get_image_type(buf, len);
if (image_type <= IH_TYPE_INVALID) {
switch (image_type) {
case IH_TYPE_INVALID:
pr_error("Invalid U-Boot image: bad size or signature\n");
break;
case IH_TYPE_ARCH_MISMATCH:
pr_error("Invalid U-Boot image: wrong architecture\n");
break;
default:
pr_error("Invalid U-Boot image: error code %d\n",
image_type);
}
exit(1);
}
if (image_type == IH_TYPE_FLATDT) { /* FIT image */
uboot_entry = load_fit_images(dev, buf, dt_name,
&enter_in_aarch64);
uboot_size = 4; /* dummy value to pass check below */
return;
}
if (image_type != IH_TYPE_FIRMWARE)
pr_fatal("U-Boot image type mismatch: "
"expected IH_TYPE_FIRMWARE, got %02X\n", image_type);
/* The CRC is calculated on the whole header but the CRC itself */
uint32_t hcrc = be32toh(hdr.ih_hcrc);
hdr.ih_hcrc = 0;
uint32_t computed_hcrc = crc32(0, (const uint8_t *) &hdr, HEADER_SIZE);
if (hcrc != computed_hcrc)
pr_fatal("U-Boot header CRC mismatch: expected %x, got %x\n",
hcrc, computed_hcrc);
uint32_t data_size = be32toh(hdr.ih_size); /* Image Data Size */
uint32_t load_addr = be32toh(hdr.ih_load); /* Data Load Address */
if (data_size > len - HEADER_SIZE)
pr_fatal("U-Boot image data trucated: "
"expected %zu bytes, got %u\n",
len - HEADER_SIZE, data_size);
uint32_t dcrc = be32toh(hdr.ih_dcrc);
uint32_t computed_dcrc = crc32(0, buf + HEADER_SIZE, data_size);
if (dcrc != computed_dcrc)
pr_fatal("U-Boot data CRC mismatch: expected %x, got %x\n",
dcrc, computed_dcrc);
/* If we get here, we're "good to go" (i.e. actually write the data) */
pr_info("Writing image \"%.*s\", %u bytes @ 0x%08X.\n",
IH_NMLEN, buf + HEADER_NAME_OFFSET, data_size, load_addr);
aw_write_buffer(dev, buf + HEADER_SIZE, load_addr, data_size, false);
/* keep track of U-Boot memory region in global vars */
uboot_entry = load_addr;
uboot_size = data_size;
}
static const char *spl_get_dtb_name(uint8_t *spl_buf)
{
uint32_t dt_offset;
if (memcmp(spl_buf + 4, "eGON.BT0", 8))
return NULL;
if (memcmp(spl_buf + 0x14, "SPL", 3))
return NULL;
if (spl_buf[0x17] < 0x2) /* only since v0.2 */
return NULL;
memcpy(&dt_offset, spl_buf + 0x20, 4);
dt_offset = le32toh(dt_offset);
if (verbose)
printf("found DT name in SPL header: %s\n", spl_buf + dt_offset);
return (char *)spl_buf + dt_offset;
}
/*
* This function handles the common part of both "spl" and "uboot" commands.
*/
void aw_fel_process_spl_and_uboot(feldev_handle *dev, const char *filename)
{
size_t size;