-
Notifications
You must be signed in to change notification settings - Fork 0
/
utils.py
324 lines (270 loc) · 11.1 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
import numpy as np
import os
import dgl
import torch
from collections import defaultdict
def get_total_number(inPath, fileName):
with open(os.path.join(inPath, fileName), 'r') as fr:
for line in fr:
line_split = line.split()
return int(line_split[0]), int(line_split[1])
def load_quadruples(inPath, fileName, fileName2=None, fileName3=None):
with open(os.path.join(inPath, fileName), 'r') as fr:
quadrupleList = []
times = set()
for line in fr:
line_split = line.split()
head = int(line_split[0])
tail = int(line_split[2])
rel = int(line_split[1])
time = int(line_split[3])
quadrupleList.append([head, rel, tail, time])
times.add(time)
# times = list(times)
# times.sort()
if fileName2 is not None:
with open(os.path.join(inPath, fileName2), 'r') as fr:
for line in fr:
line_split = line.split()
head = int(line_split[0])
tail = int(line_split[2])
rel = int(line_split[1])
time = int(line_split[3])
quadrupleList.append([head, rel, tail, time])
times.add(time)
if fileName3 is not None:
with open(os.path.join(inPath, fileName3), 'r') as fr:
for line in fr:
line_split = line.split()
head = int(line_split[0])
tail = int(line_split[2])
rel = int(line_split[1])
time = int(line_split[3])
quadrupleList.append([head, rel, tail, time])
times.add(time)
times = list(times)
times.sort()
return np.asarray(quadrupleList), np.asarray(times)
def make_batch(a,b,c, n):
# For item i in a range that is a length of l,
for i in range(0, len(a), n):
# Create an index range for l of n items:
yield a[i:i+n], b[i:i+n], c[i:i+n]
def make_batch2(a,b,c,d,e, n):
# For item i in a range that is a length of l,
for i in range(0, len(a), n):
# Create an index range for l of n items:
yield a[i:i+n], b[i:i+n], c[i:i+n], d[i:i+n], e[i:i+n]
def get_big_graph(data, num_rels):
src, rel, dst = data.transpose()
uniq_v, edges = np.unique((src, dst), return_inverse=True)
src, dst = np.reshape(edges, (2, -1))
g = dgl.DGLGraph()
g.add_nodes(len(uniq_v))
src, dst = np.concatenate((src, dst)), np.concatenate((dst, src))
rel_o = np.concatenate((rel + num_rels, rel))
rel_s = np.concatenate((rel, rel + num_rels))
g.add_edges(src, dst)
norm = comp_deg_norm(g)
g.ndata.update({'id': torch.from_numpy(uniq_v).long().view(-1, 1), 'norm': norm.view(-1, 1)})
g.edata['type_s'] = torch.LongTensor(rel_s)
g.edata['type_o'] = torch.LongTensor(rel_o)
g.ids = {}
idx = 0
for idd in uniq_v:
g.ids[idd] = idx
idx += 1
return g
def comp_deg_norm(g):
in_deg = g.in_degrees(range(g.number_of_nodes())).float()
in_deg[torch.nonzero(in_deg == 0).view(-1)] = 1
norm = 1.0 / in_deg
return norm
def get_data(s_hist, o_hist):
data = None
for i, s_his in enumerate(s_hist):
if len(s_his) != 0:
tem = torch.cat((torch.LongTensor([i]).repeat(len(s_his), 1), torch.LongTensor(s_his.cpu())), dim=1)
if data is None:
data = tem.cpu().numpy()
else:
data = np.concatenate((data, tem.cpu().numpy()), axis=0)
for i, o_his in enumerate(o_hist):
if len(o_his) != 0:
tem = torch.cat((torch.LongTensor(o_his[:,1].cpu()).view(-1,1), torch.LongTensor(o_his[:,0].cpu()).view(-1,1), torch.LongTensor([i]).repeat(len(o_his), 1)), dim=1)
if data is None:
data = tem.cpu().numpy()
else:
data = np.concatenate((data, tem.cpu().numpy()), axis=0)
data = np.unique(data, axis=0)
return data
def make_subgraph(g, nodes):
nodes = list(nodes)
relabeled_nodes = []
for node in nodes:
relabeled_nodes.append(g.ids[node])
sub_g = g.subgraph(relabeled_nodes)
sub_g.ndata.update({k: g.ndata[k][sub_g.parent_nid] for k in g.ndata if k != 'norm'})
sub_g.edata.update({k: g.edata[k][sub_g.parent_eid] for k in g.edata})
sub_g.ids = {}
norm = comp_deg_norm(sub_g)
sub_g.ndata['norm'] = norm.view(-1,1)
node_id = sub_g.ndata['id'].view(-1).tolist()
sub_g.ids.update(zip(node_id, list(range(sub_g.number_of_nodes()))))
return sub_g
def cuda(tensor):
if tensor.device == torch.device('cpu'):
return tensor.cuda()
else:
return tensor
def move_dgl_to_cuda(g):
g.ndata.update({k: cuda(g.ndata[k]) for k in g.ndata})
g.edata.update({k: cuda(g.edata[k]) for k in g.edata})
'''
Get sorted s and r to make batch for RNN (sorted by length)
'''
def get_neighs_by_t(s_hist_sorted, s_hist_t_sorted, s_tem):
neighs_t = defaultdict(set)
for i, (hist, hist_t) in enumerate(zip(s_hist_sorted, s_hist_t_sorted)):
for neighs, t in zip(hist, hist_t):
neighs_t[t].update(neighs[:, 1].tolist())
neighs_t[t].add(s_tem[i].item())
return neighs_t
def get_g_list_id(neighs_t, graph_dict):
g_id_dict = {}
g_list = []
idx = 0
for tim in neighs_t.keys():
g_id_dict[tim] = idx
g_list.append(make_subgraph(graph_dict[tim], neighs_t[tim]))
if idx == 0:
g_list[idx].start_id = 0
else:
g_list[idx].start_id = g_list[idx - 1].start_id + g_list[idx - 1].number_of_nodes()
idx += 1
return g_list, g_id_dict
def get_node_ids_to_g_id(s_hist_sorted, s_hist_t_sorted, s_tem, g_list, g_id_dict):
node_ids_graph = []
len_s = []
for i, hist in enumerate(s_hist_sorted):
for j, neighs in enumerate(hist):
len_s.append(len(neighs))
t = s_hist_t_sorted[i][j]
graph = g_list[g_id_dict[t]]
node_ids_graph.append(graph.ids[s_tem[i].item()] + graph.start_id)
return node_ids_graph, len_s
'''
Get sorted s and r to make batch for RNN (sorted by length)
'''
def get_sorted_s_r_embed(s_hist, s, r, ent_embeds):
s_hist_len = torch.LongTensor(list(map(len, s_hist))).cuda()
s_len, s_idx = s_hist_len.sort(0, descending=True)
num_non_zero = len(torch.nonzero(s_len))
s_len_non_zero = s_len[:num_non_zero]
s_hist_sorted = []
for idx in s_idx:
s_hist_sorted.append(s_hist[idx.item()])
flat_s = []
len_s = []
s_hist_sorted = s_hist_sorted[:num_non_zero]
for hist in s_hist_sorted:
for neighs in hist:
len_s.append(len(neighs))
for neigh in neighs:
flat_s.append(neigh)
s_tem = s[s_idx]
r_tem = r[s_idx]
embeds = ent_embeds[torch.LongTensor(flat_s).cuda()]
embeds_split = torch.split(embeds, len_s)
return s_len_non_zero, s_tem, r_tem, embeds, len_s, embeds_split
def get_sorted_s_r_embed_rgcn(s_hist_data, s, r, ent_embeds, graph_dict, global_emb):
s_hist = s_hist_data[0]
s_hist_t = s_hist_data[1]
s_hist_len = torch.LongTensor(list(map(len, s_hist))).cuda()
s_len, s_idx = s_hist_len.sort(0, descending=True)
num_non_zero = len(torch.nonzero(s_len))
s_len_non_zero = s_len[:num_non_zero]
s_hist_sorted = []
s_hist_t_sorted = []
global_emb_list = []
for i, idx in enumerate(s_idx):
if i == num_non_zero:
break
s_hist_sorted.append(s_hist[idx])
s_hist_t_sorted.append(s_hist_t[idx])
for tt in s_hist_t[idx]:
global_emb_list.append(global_emb[tt].view(1, ent_embeds.shape[1]).cpu())
s_tem = s[s_idx]
r_tem = r[s_idx]
neighs_t = get_neighs_by_t(s_hist_sorted, s_hist_t_sorted, s_tem)
g_list, g_id_dict = get_g_list_id(neighs_t, graph_dict)
node_ids_graph, len_s = get_node_ids_to_g_id(s_hist_sorted, s_hist_t_sorted, s_tem, g_list, g_id_dict)
idx = torch.cuda.current_device()
g_list = [g.to(torch.device('cuda:'+str(idx))) for g in g_list]
batched_graph = dgl.batch(g_list)
batched_graph.ndata['h'] = ent_embeds[batched_graph.ndata['id']].view(-1, ent_embeds.shape[1])
move_dgl_to_cuda(batched_graph)
global_emb_list = torch.cat(global_emb_list, dim=0).cuda()
return s_len_non_zero, s_tem, r_tem, batched_graph, node_ids_graph, global_emb_list
def get_s_r_embed_rgcn(s_hist_data, s, r, ent_embeds, graph_dict, global_emb):
s_hist = s_hist_data[0]
s_hist_t = s_hist_data[1]
s_hist_len = torch.LongTensor(list(map(len, s_hist))).cuda()
s_idx = torch.arange(0,len(s_hist_len))
s_len = s_hist_len
num_non_zero = len(torch.nonzero(s_len))
s_len_non_zero = s_len[:num_non_zero]
s_hist_sorted = []
s_hist_t_sorted = []
global_emb_list = []
for i, idx in enumerate(s_idx):
if i == num_non_zero:
break
s_hist_sorted.append(s_hist[idx])
s_hist_t_sorted.append(s_hist_t[idx])
for tt in s_hist_t[idx]:
global_emb_list.append(global_emb[tt].view(1, ent_embeds.shape[1]).cpu())
s_tem = s[s_idx]
r_tem = r[s_idx]
neighs_t = get_neighs_by_t(s_hist_sorted, s_hist_t_sorted, s_tem)
g_list, g_id_dict = get_g_list_id(neighs_t, graph_dict)
node_ids_graph, len_s = get_node_ids_to_g_id(s_hist_sorted, s_hist_t_sorted, s_tem, g_list, g_id_dict)
idx = torch.cuda.current_device()
g_list = [g.to(torch.device('cuda:'+str(idx))) for g in g_list]
batched_graph = dgl.batch(g_list)
batched_graph.ndata['h'] = ent_embeds[batched_graph.ndata['id']].view(-1, ent_embeds.shape[1])
move_dgl_to_cuda(batched_graph)
global_emb_list = torch.cat(global_emb_list, dim=0).cuda()
return s_len_non_zero, s_tem, r_tem, batched_graph, node_ids_graph, global_emb_list
# assuming pred and soft_targets are both Variables with shape (batchsize, num_of_classes), each row of pred is predicted logits and each row of soft_targets is a discrete distribution.
def soft_cross_entropy(pred, soft_targets):
logsoftmax = torch.nn.LogSoftmax()
pred = pred.type('torch.DoubleTensor').cuda()
return torch.mean(torch.sum(- soft_targets * logsoftmax(pred), 1))
def get_true_distribution(train_data, num_s):
true_s = np.zeros(num_s)
true_o = np.zeros(num_s)
true_prob_s = None
true_prob_o = None
current_t = 0
for triple in train_data:
s = triple[0]
o = triple[2]
t = triple[3]
true_s[s] += 1
true_o[o] += 1
if current_t != t:
true_s = true_s / np.sum(true_s)
true_o = true_o /np.sum(true_o)
if true_prob_s is None:
true_prob_s = true_s.reshape(1, num_s)
true_prob_o = true_o.reshape(1, num_s)
else:
true_prob_s = np.concatenate((true_prob_s, true_s.reshape(1, num_s)), axis=0)
true_prob_o = np.concatenate((true_prob_o, true_o.reshape(1, num_s)), axis=0)
true_s = np.zeros(num_s)
true_o = np.zeros(num_s)
current_t = t
true_prob_s = np.concatenate((true_prob_s, true_s.reshape(1, num_s)), axis=0)
true_prob_o = np.concatenate((true_prob_o, true_o.reshape(1, num_s)), axis=0)
return true_prob_s, true_prob_o