diff --git a/docs/markdown/LOADING.md b/docs/markdown/LOADING.md index 0529ee2e9..cb5d63b4b 100644 --- a/docs/markdown/LOADING.md +++ b/docs/markdown/LOADING.md @@ -74,7 +74,7 @@ If we have records as CSV files (time series data of vairables), we can read the As an example, we have records in "./japan.csv" as shown in the next table. (Data is from [COVID-19 Data Hub]((https://covid19datahub.io/).) | | confirmed | fatal | province | population | date | -| --- | --- | --- | --- | --- | --- | +| :---: | :---: | :---: | :---: | :---: | :---: | | 0 | 966287 | 17979 | Illinois | 12671821 | 2021-01-01 | | 1 | 977677 | 18217 | Illinois | 12671821 | 2021-01-02 | | 2 | 982105 | 18322 | Illinois | 12671821 | 2021-01-03 | @@ -126,7 +126,7 @@ We can set variables using `DataLoader.assign()`. This use `pandas.DataFrame.ass Let's say, we have the following dataset as `loader.local`. We want to assign country name (string "USA") and the number of vaccinations as the total value of vaccinated_once and vaccinated_full. (Note that the values of vaccinated_once and vaccinated_full are not actual values. They are just simplified example values.) | | confirmed | fatal | province | population | date | vaccinated_once | vaccinated_full | -| --- | --- | --- | --- | --- | --- | --- | --- | +| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | | 0 | 966287 | 17979 | Illinois | 12671821 | 2021-01-01 | 1000 | 500 | | 1 | 977677 | 18217 | Illinois | 12671821 | 2021-01-02 | 2000 | 700 | | 2 | 982105 | 18322 | Illinois | 12671821 | 2021-01-03 | 3000 | 800 | @@ -141,7 +141,7 @@ print(loader.local) Two columns will be added. | | confirmed | fatal | province | population | date | vaccinated_once | vaccinated_full | country | vaccinations | -| --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | +| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | | 0 | 966287 | 17979 | Illinois | 12671821 | 2021-01-01 | 1000 | 500 | USA | 1500 | | 1 | 977677 | 18217 | Illinois | 12671821 | 2021-01-02 | 2000 | 700 | USA | 2700 | | 2 | 982105 | 18322 | Illinois | 12671821 | 2021-01-03 | 3000 | 800 | USA | 3800 |