forked from hanhanwu/Hanhan_Data_Science_Practice
-
Notifications
You must be signed in to change notification settings - Fork 0
/
deal_with_imbalanced_data_2.R
436 lines (347 loc) · 16.7 KB
/
deal_with_imbalanced_data_2.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
path<- "[YOUR FILE PATH]"
setwd(path)
library(data.table)
train <- fread("imbalance_train.csv", na.strings = c("", " ", "?", "NA", NA))
test <- fread("imbalance_test.csv", na.strings = c("", " ", "?", "NA", NA))
dim(train)
str(train)
# View(train)
dim(test)
str(test)
head(train)
head(test)
# check unique values of the target
unique(train$income_level)
unique(test$income_level)
# encode target values into 1 and 0, since it's binary here
train[,income_level := ifelse(income_level=="-50000", 0, 1)]
test[,income_level := ifelse(income_level=="-50000", 0, 1)]
unique(train$income_level)
unique(test$income_level)
# !!check severity of data imbalance, from taget values in the training data
round(prop.table(table(train$income_level))*100)
# convert multiple columns' data types, so convenient!
factcols <- c(2:5,7,8:16,20:29,31:38,40,41)
numcols <- setdiff(1:40,factcols)
train[,(factcols) := lapply(.SD, as.factor), .SDcols = factcols]
train[,(numcols) := lapply(.SD, as.numeric), .SDcols = numcols]
test[,(factcols) := lapply(.SD, as.factor), .SDcols = factcols]
test[,(numcols) := lapply(.SD, as.numeric), .SDcols = numcols]
str(train)
str(test)
cat_train <- train[,factcols, with=F]
cat_test <- test[,factcols, with=F]
num_train <- train[,numcols, with=F]
num_test <- test[,numcols, with=F]
rm(train, test)
library(ggplot2)
library(plotly)
# a plot function captures distribution pattern, with histogram and density curve
tr <- function(a){
ggplot(data = num_train, aes(x= a, y=..density..)) + geom_histogram(fill="blue",color="red",alpha = 0.5,bins =100) + geom_density()
ggplotly()
}
str(num_train)
tr(num_train$age)
tr(num_train$wage_per_hour)
tr(num_train$capital_gains)
tr(num_train$capital_losses)
tr(num_train$dividend_from_Stocks)
tr(num_train$num_person_Worked_employer)
tr(num_train$weeks_worked_in_year)
# In classification problem, it may help determine clusters when plotting the target
## with numeric variables
ggplot(data=num_train,aes(x = age, y=wage_per_hour))+geom_point(aes(colour=cat_train$income_level))+scale_y_continuous("wage per hour", breaks = seq(0,10000,1000))
## for the target with categorical variable, we could use bar chart
all_bar <- function(i){
ggplot(cat_train,aes(x=i,fill=income_level))+geom_bar(position = "dodge", color="black")+scale_fill_brewer(palette = "Pastel1")+theme(axis.text.x =element_text(angle = 60,hjust = 1,size=10))
}
all_bar(cat_train$class_of_worker)
all_bar(cat_train$education)
# or use proportional table to check the target and the categorical variable
prop.table(table(cat_train$marital_status,cat_train$income_level),1)
prop.table(table(cat_train$class_of_worker,cat_train$income_level),1)
# data cleaning
## find missing data in numerical variables, no missing data in this case
table(is.na(num_train))
table(is.na(num_test))
## check correlation between numeric data
library(caret)
ax <-findCorrelation(x = cor(num_train), cutoff = 0.7) # 0.7 is the threshold here
str(num_train)
num_train <- num_train[,-ax,with=FALSE]
str(num_train) # removed weeks_worked_in_year
num_test[,weeks_worked_in_year := NULL]
str(num_test)
## find missing data in categorical variables
mvtr <- sapply(cat_train, function(x){sum(is.na(x))/length(x)})*100
mvtr
mvte <- sapply(cat_test, function(x){sum(is.na(x))/length(x)})*100
mvte
#select columns with missing value than 5%,
## in this case, both training and testing data will remove the same columns
cat_train <- subset(cat_train, select = mvtr < 5 )
head(cat_train)
cat_test <- subset(cat_test, select = mvtr < 5 )
## to deal with the rest of missing data columns, convter NA to "Unavailable" (this solution, looks silly)
# convert to character
cat_train <- cat_train[,names(cat_train) := lapply(.SD, as.character),.SDcols = names(cat_train)]
for (i in seq_along(cat_train)) set(cat_train, i=which(is.na(cat_train[[i]])), j=i, value="Unavailable")
#convert back to factors
cat_train <- cat_train[, names(cat_train) := lapply(.SD,factor), .SDcols = names(cat_train)]
unique(cat_train$country_father)
# convert to character
cat_test <- cat_test[,names(cat_test) := lapply(.SD, as.character),.SDcols = names(cat_test)]
for (i in seq_along(cat_test)) set(cat_test, i=which(is.na(cat_test[[i]])), j=i, value="Unavailable")
#convert back to factors
cat_test <- cat_test[, names(cat_test) := lapply(.SD,factor), .SDcols = names(cat_test)]
unique(cat_test$country_father)
# deal with imbalanced data - combine levels with < 5% values in an imbalanced variable as "Other"
for(i in names(cat_train)){
p <- 5/100
ld <- names(which(prop.table(table(cat_train[[i]])) < p))
levels(cat_train[[i]])[levels(cat_train[[i]]) %in% ld] <- "Other"
}
for(i in names(cat_test)){
p <- 5/100
ld <- names(which(prop.table(table(cat_test[[i]])) < p))
levels(cat_test[[i]])[levels(cat_test[[i]]) %in% ld] <- "Other"
}
# check if categorical variables in training and testing data have mimatched levels
library(mlr)
summarizeColumns(cat_train)[,"nlevs"]
summarizeColumns(cat_test)[,"nlevs"]
# binning numerical variables to deal with data imbalance
# library(rpart)
# str(num_train)
# fit <- rpart(cat_train$income_level~ age+wage_per_hour+capital_gains+capital_losses+dividend_from_Stocks+num_person_Worked_employer, method="class", data=num_train)
# printcp(fit) # display the results
# plotcp(fit) # visualize cross-validation results
# summary(fit) # detailed summary of splits
num_train[,.N,age][order(age)]
tr(num_train$age) # based on the plot, create 3 bins, 0-25, 26-50, 51-90
num_train[,age:= cut(x = age,breaks = c(0,25,50,90),include.lowest = TRUE,labels = c("young","adult","old"))]
num_train[,age := factor(age)]
num_train[,.N,age][order(age)]
num_test[,age:= cut(x = age,breaks = c(0,25,50,90),include.lowest = TRUE,labels = c("young","adult","old"))]
num_test[,age := factor(age)]
num_test[,.N,age][order(age)]
## most values are 0, 2 bins (Zero, MoreThanZero)
num_train[,.N,wage_per_hour][order(-N)]
num_train[,wage_per_hour := ifelse(wage_per_hour == 0,"Zero","MoreThanZero")][,wage_per_hour := as.factor(wage_per_hour)]
num_train[,.N,wage_per_hour][order(-N)]
num_train[,.N,capital_losses][order(-N)]
num_train[,capital_losses := ifelse(capital_losses == 0,"Zero","MoreThanZero")][,capital_losses:= as.factor(capital_losses)]
num_train[,.N,capital_losses][order(-N)]
num_train[,.N,capital_gains][order(-N)]
num_train[,capital_gains := ifelse(capital_gains == 0,"Zero","MoreThanZero")][,capital_gains:= as.factor(capital_gains)]
num_train[,.N,capital_gains][order(-N)]
num_train[,.N,dividend_from_Stocks][order(-N)]
num_train[,dividend_from_Stocks := ifelse(dividend_from_Stocks == 0,"Zero","MoreThanZero")][,dividend_from_Stocks:= as.factor(dividend_from_Stocks)]
num_train[,.N,dividend_from_Stocks][order(-N)]
num_test[,.N,wage_per_hour][order(-N)]
num_test[,wage_per_hour := ifelse(wage_per_hour == 0,"Zero","MoreThanZero")][,wage_per_hour := as.factor(wage_per_hour)]
num_test[,.N,wage_per_hour][order(-N)]
num_test[,.N,capital_losses][order(-N)]
num_test[,capital_losses := ifelse(capital_losses == 0,"Zero","MoreThanZero")][,capital_losses:= as.factor(capital_losses)]
num_test[,.N,capital_losses][order(-N)]
num_test[,.N,capital_gains][order(-N)]
num_test[,capital_gains := ifelse(capital_gains == 0,"Zero","MoreThanZero")][,capital_gains:= as.factor(capital_gains)]
num_test[,.N,capital_gains][order(-N)]
num_test[,.N,dividend_from_Stocks][order(-N)]
num_test[,dividend_from_Stocks := ifelse(dividend_from_Stocks == 0,"Zero","MoreThanZero")][,dividend_from_Stocks:= as.factor(dividend_from_Stocks)]
num_test[,.N,dividend_from_Stocks][order(-N)]
# combine data
d_train <- cbind(num_train, cat_train)
d_test <- cbind(num_test, cat_test)
rm(num_train, num_test, cat_train, cat_test)
library(mlr) # The all in one library :)
# the task here is dataset
train.task <- makeClassifTask(data=d_train, target="income_level")
test.task <- makeClassifTask(data=d_test, target="income_level")
# remove zero variance features
train.task <- removeConstantFeatures(train.task)
test.task <- removeConstantFeatures(test.task)
# get variable importance chart
## This chart is deduced using a tree algorithm, where at every split, the information is calculated using reduction in entropy
var_imp <- generateFilterValuesData(train.task, method = c("information.gain"))
plotFilterValues(var_imp, feat.type.cols = TRUE)
# try undersampling, oversampling, SMOTE to balance data
## SMOTE: In SMOTE, the algorithm looks at n nearest neighbors, measures the distance between them and introduces a new observation at the center of n observations.
## undersampling: tends to loss of information
## oversampling: tends to overestimation of minority class
# undersampling
train_under <- undersample(train.task, rate = 0.1) # keep 10% majority class
table(getTaskTargets(train_under))
# oversampling
train_over <- oversample(train.task, rate = 15) # make minority class 15 times
table(getTaskTargets(train_over))
# SMOTE
train_smote <- smote(train.task, rate = 10, nn = 3)
table(getTaskTargets(train_smote))
# find available algorithms in MLR for the prediction problem here
listLearners("classif", "twoclass")[c("class", "package")]
## METHOD 1 - Try naive bayesian on all imbalanced, undersampled, oversmapled and SMOTE dataset,
## then compare accuracy using cross validation
naive_learner <- makeLearner("classif.naiveBayes", predict.type = "response")
naive_learner$par.vals <- list(laplace = 1)
## 10 folds for CV
folds <- makeResampleDesc("CV", iters=10, stratify = T)
fun_cv <- function(a){
crv_val <- resample(naive_learner,a,folds,measures = list(acc,tpr,tnr,fpr,fp,fn))
crv_val$aggr
}
## compare accuracy, tpr, tnr, fpr, fp, fn on the 4 dataset
fun_cv(train.task)
# acc.test.mean tpr.test.mean tnr.test.mean fpr.test.mean fp.test.mean fn.test.mean
# 0.7267533 0.7153964 0.8984022 0.1015978 125.8000000 5326.1000000
fun_cv(train_under)
# acc.test.mean tpr.test.mean tnr.test.mean fpr.test.mean fp.test.mean fn.test.mean
# 0.75964678 0.65667267 0.91527999 0.08472001 104.90000000 642.50000000
fun_cv(train_over)
# acc.test.mean tpr.test.mean tnr.test.mean fpr.test.mean fp.test.mean fn.test.mean
# 7.834291e-01 6.518080e-01 9.160502e-01 8.394982e-02 1.559200e+03 6.516100e+03
fun_cv(train_smote)
# acc.test.mean tpr.test.mean tnr.test.mean fpr.test.mean fp.test.mean fn.test.mean
# 8.709581e-01 8.205524e-01 9.471410e-01 5.285899e-02 6.545000e+02 3.358200e+03
# In this case, SMOTE gives the highest accuracy, use train_smote to build the model
nb_model <- train(naive_learner, train_smote)
nb_predict <- predict(nb_model, test.task)
## evaluate the model
nb_prediction <- nb_predict$data$response
dCM <- confusionMatrix(d_test$income_level, nb_prediction)
dCM
## F meansure
precision <- dCM$byClass['Pos Pred Value']
precision
recall <- dCM$byClass['Sensitivity']
recall
f_measure <- 2*((precision*recall)/(precision+recall))
f_measure
## According to dCM, Sensitivity is 98% means there is 98% accuracy in predicting majority class,
## but with 23% Specificity, which means minority class prediction accuracy is only 23%,
## more models should be tried beyond Naive Bayesian
# XGBOOST
set.seed(410)
xgb_learner <- makeLearner("classif.xgboost", predict.type = "response")
xgb_learner$par.vals <- list(
objective = "binary:logistic",
eval_metric = "error",
nrounds = 150,
print.every.n = 50
)
## tuning params
xgb_params <- makeParamSet(
makeIntegerParam("max_depth",lower=3,upper=10),
makeNumericParam("lambda",lower=0.05,upper=0.5),
makeNumericParam("eta", lower = 0.01, upper = 0.5),
makeNumericParam("subsample", lower = 0.50, upper = 1),
makeNumericParam("min_child_weight",lower=2,upper=10),
makeNumericParam("colsample_bytree",lower = 0.50,upper = 0.80)
)
## random search function to choose params
rancontrol <- makeTuneControlRandom(maxit = 5L) # 5 iterations
set_cv <- makeResampleDesc("CV", iters = 5L, stratify = T) # 5 folds cross validation
## tune params
xgb_tune <- tuneParams(learner = xgb_learner, task = train.task, resampling = set_cv, measures = list(acc, tpr, tnr, fpr, fp, fn), par.set = xgb_params, control = rancontrol)
xgb_tune$x
## train the model and make predictions with optimal params
xgb_optimal <- setHyperPars(learner = xgb_learner, par.vals = xgb_tune$x)
xgb_model <- train(xgb_optimal, train.task)
xgb_predict <- predict(xgb_model, test.task)
xgb_prediction <- xgb_predict$data$response
## evaluate the prediction results
xgb_confusionmatrix <- confusionMatrix(d_test$income_level, xgb_prediction)
xgb_confusionmatrix # Sensitivity: 0.9568, Specificity: 0.6657, Accuracy: 0.948
precision <- xgb_confusionmatrix$byClass["Pos Pred Value"]
precision
recall <- xgb_confusionmatrix$byClass["Sensitivity"]
recall
f_measure <- 2*((precision*recall)/(precision+recall))
f_measure # 0.9726193
## XGBoost got much better results than Naive Bayesian
## I'm trying to make XGBoost performs better, I'm going to use the top important features in the training data
## in the feature importance plot above, we have seen 20 top features have been chosen from 35 features
top_features <- filterFeatures(train.task, method = "information.gain", abs = 20)
xgb_model <- train(xgb_optimal, top_features)
xgb_predict <- predict(xgb_model, test.task)
xgb_prediction <- xgb_predict$data$response
## evaluate the prediction results
xgb_confusionmatrix <- confusionMatrix(d_test$income_level, xgb_prediction)
xgb_confusionmatrix # Sensitivity: 0.938, Specificity: 0.0, Accuracy: 0.9379
precision <- xgb_confusionmatrix$byClass["Pos Pred Value"]
precision
recall <- xgb_confusionmatrix$byClass["Sensitivity"]
recall
f_measure <- 2*((precision*recall)/(precision+recall))
f_measure # 0.9679402
## It seems that, after feature dimensional reduction, the performace dropped,
## especially I got 0 Specificity here which means the minority group prediction is very bad
## Instead of predicint labels as above, I'm trying to predict probabilities below
xgb_prob <- setPredictType(learner = xgb_optimal, predict.type = "prob")
xgb_model_prob <- train(xgb_prob, train.task)
xgb_predict_prob <- predict(xgb_model_prob, test.task)
# check sample probability prediction results
xgb_predict_prob$data[1:10,]
# generate AUC curve to help threshold tuning
df <- generateThreshVsPerfData(xgb_predict_prob, measures = list(fpr,tpr))
plotROCCurves(df)
# TUNE 1 - original threshold, 0.5
xgb_predict_prob$threshold
confusionMatrix(d_test$income_level, xgb_predict_prob$data$response)
## Sensitivity: 0.9569, Specifity: 0.6609
# TUNE 2 - threshold 0.4
pred2 <- setThreshold(xgb_predict_prob, 0.4)
confusionMatrix(d_test$income_level, pred2$data$response)
## Sensitivity: 0.9517, Specificity: 0.7148
# TUNE 3 - threshold 0.3
pred3 <- setThreshold(xgb_predict_prob, 0.3)
confusionMatrix(d_test$income_level, pred3$data$response)
## Sensitivity: 0.9466, Specificity: 0.7851
# TUNE 4 - threshold 0.6
pred4 <- setThreshold(xgb_predict_prob, 0.6)
confusionMatrix(d_test$income_level, pred4$data$response)
## Sensitivity: 0.9627, Specificity: 0.5977
# xgb threshold may influce the prediction for minority group when data is not balanced
## Using AUC plot to tune threshold, the AUC curve which is closer to the TOP LEFT CORNER is better
pt1 <- generateThreshVsPerfData(xgb_predict_prob, measures = list(fpr, tpr))
plotROCCurves(pt1)
pt2 <- generateThreshVsPerfData(pred3, measures = list(fpr, tpr))
plotROCCurves(pt2)
library(pROC)
roc <- plot(roc(pt1$data$tpr, pt1$data$fpr), print.auc = TRUE, col = "green")
roc <- plot(roc(pt2$data$tpr, pt2$data$fpr), print.auc = TRUE, col = "blue", print.auc.y = .4, add = TRUE)
## cannot tell too much differences in above plot.... use Sensitivity and Specifity numbers are better
## TUNE 3 is already good enough
# Beside tuning threshold, can try these methods too:
# INcrease rounds
# Use 10 folds CV
# Increase repetitions in random search
# Build xgb models on undersampling, oversampling, SMOTE data
# Or, set weights to classes, set higher wieght to the class you want to pay more attention
# SVM
## check params
getParamSet("classif.svm")
svm_learner <- makeLearner("classif.svm", predict.type = "response")
## set weights to classes
svm_learner$par.vals <- list(class.weights = c("0"=1, "1"=10), kernel="radial")
svm_param <- makeParamSet(
makeIntegerParam("cost", lower = 10^-1, upper = 10^2),
makeIntegerParam("gamma", lower = 0.5, upper = 2)
)
## random search, cross validation settings
set_search <- makeTuneControlRandom(maxit = 5L)
set_cv <- makeResampleDesc("CV", iters=3L, stratify = T)
## find optimal params, looks like this step will take forever on my machine...
svm_optimal <- tuneParams(
learner = svm_learner,
task = train.task, measures = list(acc, tpr, tnr, fpr, fp, fn),
par.set = svm_param,
control = set_search,
resampling = set_cv
)
## train and predict
svm_model <- train(svm_optimal, train.task)
svm_predict <- predict(svm_model, test.task)
## evaluate
confusionMatrix(d_test$income_level, svm_predict$data$response)