-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmodels.py
442 lines (390 loc) · 18.2 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
# author = liuwei
# date = 2022-04-11
import math
import os
import json
import numpy as np
import torch
import random
import torch.nn.functional as F
from torch import nn
from torch.nn import CrossEntropyLoss
from transformers.activations import gelu
from transformers.models.roberta.modeling_roberta import RobertaModel, RobertaPreTrainedModel, RobertaForMaskedLM
class RoBERTaForRelCls(RobertaPreTrainedModel):
def __init__(self, config, args):
super(RoBERTaForRelCls, self).__init__(config)
self.roberta = RobertaModel.from_pretrained(args.model_name_or_path, config=config)
self.dropout = nn.Dropout(p=config.HP_dropout)
self.classifier = nn.Linear(config.hidden_size, args.num_labels)
self.num_labels = args.num_labels
def forward(
self,
input_ids,
attention_mask,
token_type_ids=None,
labels=None,
flag="Train"
):
roberta_outputs = self.roberta(
input_ids=input_ids,
attention_mask=attention_mask
)
pooling_outputs = roberta_outputs.pooler_output
pooling_outputs = self.dropout(pooling_outputs)
logits = self.classifier(pooling_outputs)
_, preds = torch.max(logits, dim=-1)
outputs = (preds,)
if flag.lower() == "train":
loss_fct = CrossEntropyLoss(ignore_index=-1)
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
outputs = (loss, ) + outputs
return outputs
class RobertaForConnCls(RobertaPreTrainedModel):
def __init__(self, config, args):
super(RobertaForConnCls, self).__init__(config)
self.dropout = nn.Dropout(p=config.HP_dropout)
self.num_connectives = args.num_connectives
self.pooling_type = args.pooling_type
if self.pooling_type.lower() == "cls":
self.conn_roberta = RobertaModel.from_pretrained(args.model_name_or_path, config=config)
self.classifier = nn.Linear(config.hidden_size, args.num_connectives)
else:
self.conn_roberta = RobertaForMaskedLM.from_pretrained(args.model_name_or_path, config=config)
self.conn_onehot_in_vocab = args.conn_onehot_in_vocab # [conn_num, vocab_size]
self.conn_length_in_vocab = args.conn_length_in_vocab # [conn_num]
def forward(
self,
input_ids,
attention_mask,
mask_position_ids,
conn_ids=None,
flag="Train"
):
if self.pooling_type.lower() == "cls":
roberta_outputs = self.conn_roberta(
input_ids=input_ids,
attention_mask=attention_mask
)
pooling_outputs = roberta_outputs.pooler_output
pooling_outputs = self.dropout(pooling_outputs)
conn_logits = self.classifier(pooling_outputs)
else:
# we use the <mask>
roberta_outputs = self.conn_roberta.roberta(
input_ids=input_ids,
attention_mask=attention_mask
)
last_hidden_states = roberta_outputs.last_hidden_state # [N, L, D]
hidden_size = last_hidden_states.size(2)
mask_position_index = mask_position_ids.view(-1, 1, 1) # [N, 1, 1]
mask_position_index = mask_position_index.repeat(1, 1, hidden_size) # [N, 1, D]
mask_token_states = torch.gather(last_hidden_states, dim=1, index=mask_position_index) # [N, 1, D]
mask_token_states = mask_token_states.squeeze() # [N, D]
# 1.3 make use of masked_language_linear function
mask_token_states = self.conn_roberta.lm_head.dense(mask_token_states)
mask_token_states = gelu(mask_token_states)
mask_token_states = self.conn_roberta.lm_head.layer_norm(mask_token_states) # [N, D]
conn_decoder_weight = torch.matmul(self.conn_onehot_in_vocab, self.conn_roberta.lm_head.decoder.weight) # [conn_num, D]
conn_decoder_bias = torch.matmul(self.conn_onehot_in_vocab, self.conn_roberta.lm_head.decoder.bias.unsqueeze(1)) # [conn_num, 1]
conn_decoder_weight = conn_decoder_weight / self.conn_length_in_vocab.unsqueeze(1)
conn_decoder_bias = conn_decoder_bias / self.conn_length_in_vocab.unsqueeze(1)
conn_decoder_weight = torch.transpose(conn_decoder_weight, 1, 0) # [D, conn_num]
conn_decoder_bias = torch.transpose(conn_decoder_bias, 1, 0) # [1, conn_num]
conn_logits = torch.matmul(mask_token_states, conn_decoder_weight) + conn_decoder_bias # [N, conn_num]
_, preds = torch.max(conn_logits, dim=-1)
outputs = (preds,)
if flag.lower() == "train":
loss_fct = CrossEntropyLoss(ignore_index=-1)
loss = loss_fct(conn_logits.view(-1, self.num_connectives), conn_ids.view(-1))
outputs = (loss,) + outputs
return outputs
class MultiTaskForConnRelCls(RobertaPreTrainedModel):
"""
Refer to paper: Adapting BERT to Implicit Discourse Relation Classification
with a Focus on Discourse Connectives
"""
def __init__(self, config, args):
super(MultiTaskForConnRelCls, self).__init__(config)
self.roberta = RobertaModel.from_pretrained(args.model_name_or_path, config=config)
self.dropout = nn.Dropout(p=config.HP_dropout)
self.num_labels = args.num_labels
self.num_connectives = args.num_connectives
self.conn_classifier = nn.Linear(config.hidden_size, args.num_connectives)
self.rel_classifier = nn.Linear(config.hidden_size, args.num_labels)
def forward(
self,
input_ids,
attention_mask,
conn_ids=None,
labels=None,
flag="Train"
):
roberta_outputs = self.roberta(
input_ids=input_ids,
attention_mask=attention_mask
)
pooling_outputs = roberta_outputs.pooler_output
pooling_outputs = self.dropout(pooling_outputs)
conn_logits = self.conn_classifier(pooling_outputs)
rel_logits = self.rel_classifier(pooling_outputs)
conn_preds = torch.argmax(conn_logits, dim=-1)
rel_preds = torch.argmax(rel_logits, dim=-1)
outputs = (conn_preds, rel_preds, )
if flag.lower() == "train":
loss_fct = CrossEntropyLoss(ignore_index=-1)
conn_loss = loss_fct(conn_logits.view(-1, self.num_connectives), conn_ids.view(-1))
rel_loss = loss_fct(rel_logits.view(-1, self.num_labels), labels.view(-1))
loss = conn_loss + rel_loss
outputs = (loss, conn_loss, rel_loss) + outputs
return outputs
class AdversarialModelForRelCls(RobertaPreTrainedModel):
def __init__(self, config, args):
"""
Refer to paper: Adversarial Connective-exploiting Networks for Implicit
Discourse Relation Classification
"""
super(AdversarialModelForRelCls, self).__init__(config)
# roberta_ori: origin implicit relation,
# roberta_aug: connectives argument implicit relation,
self.roberta_ori = RobertaModel.from_pretrained(args.model_name_or_path, config=config)
self.roberta_arg = RobertaModel.from_pretrained(args.model_name_or_path, config=config)
self.dropout = nn.Dropout(p=config.HP_dropout)
self.num_labels = args.num_labels
# relation classifier and discriminator classifier
self.rel_classifier = nn.Linear(config.hidden_size, args.num_labels)
self.dis_classifier = nn.Linear(config.hidden_size, 2) # contain connectives or not
self.fix_roberta_arg = False
self.fix_roberta_ori = False
def set_roberta_arg(self, do_fix=True):
if do_fix:
self.fix_roberta_arg = True
for name, param in self.roberta_arg.named_parameters():
param.requires_grad = False
else:
self.fix_roberta_arg = False
for name, param in self.roberta_arg.named_parameters():
param.requires_grad = True
def conn_arg_rel_forward(
self,
input_ids,
attention_mask,
token_type_ids=None,
labels=None,
flag="Train"
):
""" Train only connective argument relation classification model """
roberta_outputs = self.roberta_arg(
input_ids=input_ids,
attention_mask=attention_mask
)
pooling_outputs = roberta_outputs.pooler_output
pooling_outputs = self.dropout(pooling_outputs)
logits = self.rel_classifier(pooling_outputs)
preds = torch.argmax(logits, dim=-1)
outputs = (preds, )
if flag.lower() == "train":
loss_fct = CrossEntropyLoss(ignore_index=-1)
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
outputs = (loss, ) + outputs
return outputs
def set_roberta_ori(self, do_fix=True):
if do_fix:
self.fix_roberta_ori = True
for name, param in self.roberta_ori.named_parameters():
param.requires_grad = False
else:
self.fix_roberta_ori = False
for name, param in self.roberta_ori.named_parameters():
param.requires_grad = True
def origin_rel_forward(
self,
input_ids,
attention_mask,
token_type_ids=None,
labels=None,
flag="Train"
):
""" Train original Relation classification model, no connectives in inputs """
roberta_outputs = self.roberta_ori(
input_ids=input_ids,
attention_mask=attention_mask
)
pooling_outputs = roberta_outputs.pooler_output
pooling_outputs = self.dropout(pooling_outputs)
logits = self.rel_classifier(pooling_outputs)
preds = torch.argmax(logits, dim=-1)
outputs = (preds,)
if flag.lower() == "train":
loss_fct = CrossEntropyLoss(ignore_index=-1)
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
outputs = (loss,) + outputs
return outputs
def discriminator_forward(
self,
input_ids,
attention_mask,
arg_input_ids,
arg_attention_mask,
flag="Train"
):
"""
In this stage, discriminators try to distinguish which output
contains connectives, binary classification
"""
batch_size = input_ids.size(0)
with torch.no_grad():
ori_roberta_outputs = self.roberta_ori(
input_ids=input_ids,
attention_mask=attention_mask
)
arg_roberta_outputs = self.roberta_arg(
input_ids=arg_input_ids,
attention_mask=arg_attention_mask
)
ori_pooling_outputs = ori_roberta_outputs.pooler_output
arg_pooling_outputs = arg_roberta_outputs.pooler_output
ori_pooling_outputs = self.dropout(ori_pooling_outputs)
arg_pooling_outputs = self.dropout(arg_pooling_outputs)
ori_logits = self.dis_classifier(ori_pooling_outputs)
arg_logits = self.dis_classifier(arg_pooling_outputs)
ori_preds = torch.argmax(ori_logits, dim=-1)
arg_preds = torch.argmax(arg_logits, dim=-1)
outputs = (ori_preds, arg_preds, )
if flag.lower() == "train":
loss_fct = CrossEntropyLoss(ignore_index=-1)
ori_labels = torch.zeros((batch_size)).long().to(input_ids.device)
arg_labels = torch.ones((batch_size)).long().to(input_ids.device)
labels = torch.cat((ori_labels, arg_labels), dim=0)
logits = torch.cat((ori_logits, arg_logits), dim=0)
loss = loss_fct(logits.view(-1, 2), labels.view(-1))
outputs = (loss,) + outputs
return outputs
def joint_forward(
self,
input_ids,
attention_mask,
labels,
flag="Train"
):
"""
In this stage, model try to correctly predict the relation class
and to update origin roberta's output so that discriminator predicts it
as 1, i.e. output contains connectives.
"""
batch_size = input_ids.size(0)
ori_roberta_outputs = self.roberta_ori(
input_ids=input_ids,
attention_mask=attention_mask
)
ori_pooling_outputs = ori_roberta_outputs.pooler_output
ori_pooling_outputs = self.dropout(ori_pooling_outputs)
logits = self.rel_classifier(ori_pooling_outputs)
dis_logits = self.dis_classifier(ori_pooling_outputs)
preds = torch.argmax(logits, dim=-1)
dis_preds = torch.argmax(dis_logits, dim=-1)
outputs = (preds, dis_preds, )
if flag.lower() == "train":
loss_fct = CrossEntropyLoss(ignore_index=-1)
dis_labels = torch.ones((batch_size)).long().to(input_ids.device)
rel_loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
dis_loss = loss_fct(dis_logits.view(-1, 2), dis_labels.view(-1))
loss = rel_loss + 0.1 * dis_loss # refer to origin paper for weight assignment
outputs = (loss, ) + outputs
return outputs
class JointConnRel(RobertaPreTrainedModel):
def __init__(self, config, args):
super(JointConnRel, self).__init__(config)
self.conn_roberta = RobertaForMaskedLM.from_pretrained(args.model_name_or_path, config=config)
self.classifier = nn.Linear(config.hidden_size, args.num_labels)
self.dropout = nn.Dropout(p=config.HP_dropout)
self.num_connectives = args.num_connectives
self.num_labels = args.num_labels
self.conn_onehot_in_vocab = args.conn_onehot_in_vocab # [conn_num, vocab_size]
self.conn_length_in_vocab = args.conn_length_in_vocab # [conn_num]
def forward(
self,
input_ids,
attention_mask,
mask_position_ids,
sample_p=None,
conn_ids=None,
labels=None,
flag="Train"
):
"""
batch_size: N
seq_length: L
hidden_size: D
Args:
input_ids: [N, L], args1 [mask] args2
attention_mask: [N, L], 哪些位置是有效的
mask_position_ids: [N], the position of [mask] tokens
conn_ids: [N], ground truth connective ids
labels: [N], relation labels
"""
batch_size = input_ids.size(0)
seq_length = input_ids.size(1)
## 1 for discourse connective prediction
# 1.1 roberta
conn_roberta_output = self.conn_roberta.roberta(
input_ids=input_ids,
attention_mask=attention_mask
)
last_hidden_states = conn_roberta_output.last_hidden_state # [N, L, D]
hidden_size = last_hidden_states.size(2)
# 1.2 scatter the mask position
mask_position_index = mask_position_ids.view(-1, 1, 1) # [N, 1, 1]
mask_position_index = mask_position_index.repeat(1, 1, hidden_size) # [N, 1, D]
mask_token_states = torch.gather(last_hidden_states, dim=1, index=mask_position_index) # [N, 1, D]
mask_token_states = mask_token_states.squeeze() # [N, D]
# 1.3 make use of masked_language_linear function, refer to LMHead in Roberta
mask_token_states = self.conn_roberta.lm_head.dense(mask_token_states)
mask_token_states = gelu(mask_token_states)
mask_token_states = self.conn_roberta.lm_head.layer_norm(mask_token_states) # [N, D]
conn_decoder_weight = torch.matmul(self.conn_onehot_in_vocab, self.conn_roberta.lm_head.decoder.weight) # [conn_num, D]
conn_decoder_bias = torch.matmul(self.conn_onehot_in_vocab, self.conn_roberta.lm_head.decoder.bias.unsqueeze(1)) # [conn_num, 1]
conn_decoder_weight = conn_decoder_weight / self.conn_length_in_vocab.unsqueeze(1)
conn_decoder_bias = conn_decoder_bias / self.conn_length_in_vocab.unsqueeze(1)
conn_decoder_weight = torch.transpose(conn_decoder_weight, 1, 0) # [D, conn_num]
conn_decoder_bias = torch.transpose(conn_decoder_bias, 1, 0) # [1, conn_num]
conn_logits = torch.matmul(mask_token_states, conn_decoder_weight) + conn_decoder_bias # [N, conn_num]
if self.training:
p = random.random()
if p < sample_p:
conn_scores = conn_ids
ones = torch.eye(self.num_connectives).to(conn_scores.device)
conn_scores = ones.index_select(dim=0, index=conn_scores)
else:
conn_scores = F.gumbel_softmax(conn_logits, tau=1.0, hard=True, dim=-1)
else:
conn_scores = torch.argmax(conn_logits, dim=-1)
# conn_scores = conn_ids
ones = torch.eye(self.num_connectives).to(conn_scores.device)
conn_scores = ones.index_select(dim=0, index=conn_scores)
conn_embedding = torch.matmul(self.conn_onehot_in_vocab,self.conn_roberta.roberta.embeddings.word_embeddings.weight) # [conn_num, D]
conn_embedding = conn_embedding / self.conn_length_in_vocab.unsqueeze(1)
predict_embeds = torch.matmul(conn_scores, conn_embedding) # [N, D], a soft connective embedding
predict_embeds = predict_embeds.unsqueeze(1) # [N, 1, D]
## 2 for relation classifiction
# 2.1 prepare embeddings
input_word_embeds = self.conn_roberta.roberta.embeddings.word_embeddings(input_ids)
input_word_embeds = torch.scatter(input_word_embeds, dim=1, index=mask_position_index, src=predict_embeds)
# 2.2 roberta
rel_outputs = self.conn_roberta.roberta(
inputs_embeds=input_word_embeds,
attention_mask=attention_mask
)
pooling_output = rel_outputs.last_hidden_state[:, 0, :]
pooling_output = self.dropout(pooling_output)
rel_logits = self.classifier(pooling_output)
conn_preds = torch.argmax(conn_logits, dim=1)
rel_preds = torch.argmax(rel_logits, dim=1)
outputs = (conn_preds, rel_preds,)
if flag.lower() == "train":
loss_fct = CrossEntropyLoss(ignore_index=-1)
conn_loss = loss_fct(conn_logits.view(-1, self.num_connectives), conn_ids.view(-1))
rel_loss = loss_fct(rel_logits.view(-1, self.num_labels), labels.view(-1))
loss = conn_loss + rel_loss
outputs = (loss, conn_loss, rel_loss,) + outputs
return outputs